首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Stone preservation with illustrative examples from the United Kingdom   总被引:1,自引:0,他引:1  
Interest in the preservation of rapidly decaying monuments, especially in urban areas, has increased appreciably over the last three decades. A stone preservative can be defined as a chemical treatment, which, when applied to stone, combats the harmful effects of time and environment, thereby prolonging the life of a stone by either restoring its physical integrity or by inhibiting its decay. Any preservative applied to stone must not change the natural appearance or architectural value of the stone to any appreciable extent. There are two principal means by which stone can be preserved. One involves the formation of an outer stabilized zone around the stone; the other alters the chemical composition of the stone.A number of examples of stone preservation carried out on ancient monuments in the United Kingdom are taken to illustrate stone preservation methods. Their relative success is evaluated, and some more recent developments in stone preservation referred to.  相似文献   

2.
The extant remains of the Roman monuments of Tarragona, Spain are made of different types of Miocenic rocks from the quarries surrounding the city, which vary from calcarenite to bioclastic limestones, showing different degrees of dolomitization, depending on their diagenetic evolution. The decay of these monuments is highly dependent on the mineralogy and the fabric of the stone as well as on the environmental conditions to which the monument subjected. As a consequence, different forms of decay are observed on these monuments, namely, granular disintegration, differential erosion between sparitic and micritic areas of the rock, and development of black crust and orange patinas, some of them attributed to a sulfation process. A number of processes have been established as being responsible for the decay forms observed: sulfation on sheltered areas of the building in the urban environment; differential dilatation because of the NaCl of the marine spray that crystallizes inside the porosity; hydric and thermal expansion of the stone, both related to the amount and crystallinity of the clay minerals forming the rock matrix; and biocolonization on the stone surface. An empirical model is proposed to explain the decay forms studied in relation to these factors (rock and environment).  相似文献   

3.
The Angera stone is a sedimentary Triassic dolostone mainly composed of dolomite, which was widely employed in the Lombard architecture. In the present work, the study of the Angera stone of the ‘Cortile del Richini’, a masterpiece of the Lombard baroque, is discussed as an example of a particularly challenging conservation issue. The courtyard suffered from a particularly troubled conservative history and the highly polluted urban environment of Milan provided very favourable conditions for the decay of such a delicate stone type. The last extensive conservative intervention was performed during the nineties due to massive black crust formation and granular disintegration of the stone. Almost 20 years later, a thorough study of the stone has been aimed at the definition of a long-term maintenance project. The Angera stone has been investigated in order to define an updated version of its state of conservation, as well as to track any changes in the degradation mechanisms due to the environmental variations of the Milan city centre. In particular, the soluble salts’ content of the stone substrate has been evaluated as an indicator of the damage level. The results highlighted that the stone is currently in critical condition: An extensive sulphation process is taking place, leading to the chemical transformation of the dolomitic substrate into gypsum. Moreover, the powder deposits affecting the stone surfaces have a similar composition to those generally found in the black crusts growing in urban environment. Therefore, they can be considered as precursor of this particularly dangerous decay mechanism.  相似文献   

4.
This paper deals with a significant process of decohesion of a marly limestone, taking place in the cloister of the medieval Cathedral of Cefalù, a pleasant town on the northern coast of Sicily. After desalination with deionised water and consolidation with ethyl silicate, the decay of the stone became faster. The aim of our study is to characterise the stony material and investigate the observed decay phenomena. The stone, that is a poor building material indeed, is characterised by means of petrographical, chemical and physical analyses on samples taken from the monument. Furthermore, experimental tests are performed in the laboratory in order to highlight the causes of incompatibility between the stone and the applied treatments.  相似文献   

5.
Surface properties, especially albedo, and aspect are widely accepted as strong influences on the surface thermal response of building stone to insolation. However, the influence that adjacent areas of stone with very different surface properties may have on the thermal response of a patch of stonework, and the ways in which spatial variation in thermal characteristics might enhance stone decay has received relatively little attention. This paper examines the differential thermal response of granite used in construction that results from the presence of dark coloured micro-granular enclaves within a leucocratic host. Surface temperatures and temperature differences between enclaves exhibiting mico-spalling, enclaves with no spalling and the surrounding stone were measured for different aspects and seasons on a 20th century building in Madrid. These data were used to calculate a number of “indices” related to short-term temperature cycling and temperature gradients that have the theoretical capability of generating irreversible deformation of the stone. These indices suggest that micro-spalling of enclaves, compared to a lack of similar decay on the host-rock, is related to their differential thermal response to insolation, most importantly the lower albedo and thermal conductivity values of the enclaves. However, these factors are not sufficient on their own to trigger spalling, and breakdown was only observed where enclaves also experienced repeated, short-term surface temperature cycling caused by, for example, temporary shading by adjacent vegetation. These rapid temperature reversals are identified as a key contributory factor to the thermally driven decay observed on some of the enclaves.  相似文献   

6.
The stone traditionally used to build cities contributes to their personality and attests to the geological substrate on which they stand. While stone decay in the built heritage can be attributed to a number of causes, anthropic activity has a particularly significant impact. The geomonumental routes project is one of the initiatives proposed in recent years for urban routes that convey geological fundamentals by observing the rocks present in heritage structures. Its innovative approach addresses traditional stone properties, original quarrying sites and mechanisms of decay. Madrid’s Royal Palace is a fine example of the use of traditional building stone in the centre of the Iberian Peninsula. In the geomonumental route proposed, the building doubles as an in situ laboratory that affords an overview of the main petrological properties of the two traditional stones most commonly used in the city’s built heritage, the forms of decay they are subject and the factors underlying such alterations. This route constitutes a tool for showing the main petrological features and decay forms in traditional building stones found in urban heritage façades, with a special focus on anthropic impact, primarily air pollution and the use of conservation treatments that time has proven to be unsuitable.  相似文献   

7.
The crystallisation of soluble sulphate salts is one of the most important factors of stone monument degradation. The origin of these salts is variable: marine, air pollution, building or restoration material. The lack of certainty about these sources represents a problem for restoration campaigns. The use of sulphur and oxygen isotopic tracers allows to discriminate the origins of materials and some stone deterioration patterns like black crusts (e.g. [Šrámek J., 1988. Sulfur Isotopes in the revealing corrosion mechanism of stones. 6th International Congress on Deterioration and Conservation of Stone,. Proceedings, ed. J. Ciabach. Nicholas Copernicus University, Torun, Poland, 341–345.]). First results obtained on the Bourges cathedral (France) show that the sulphur and oxygen isotopic composition of sulphates from external (atmospheric pollution) and internal (mortars, plasters and sulphates coming from stone sulphide oxidation) origins constitute well differentiated poles. The isotopic composition of sulphates implied in different stone deterioration patterns is well explained by a combination of these poles. The present study will be extended to other French monuments located in different lithological and hydroclimatic settings where contributions of sea salts and ancient chemical treatments are suspected.  相似文献   

8.
The crystallisation of soluble salts within the pores of the stone is widely recognised as a major mechanism causing the deterioration of the stone-built architectural heritage. Temperature, in turn, is one of the main controls on this process, including salt precipitation, the pressure of crystallisation and the thermal expansion of salts. Most laboratory experiments on decay generated by salts are just carried out with convective heating regimes, while in natural environments building stones can undergo radiative and convective heating regimes. The thermal response of stone to these different heating regimes is noticeably different and might influence the crystallisation patterns of a salt within a stone. The aim of this work is to raise awareness on the different patterns of crystallisation of NaCl within a porous stone tested with different heating regimes (convection and radiation) and the implications that this could have on the design of experimental modelling of natural weathering conditions in laboratory simulations. Results show that heating regime affects the sodium chloride distribution within a stone with high percentage of microporosity. In this case, radiation heating facilitates the generation of subefflorescences, while convection heating promotes efflorescences. This has a clear implication both on the stone decay in natural environments and on the methodologies for testing salt decay, as subefflorescences are more destructive than efflorescences. In this sense, the use of convective heating in laboratory experimentation might underestimate the potential damage that sodium chloride may generate. This counsels the use of radiation heating test methods in addition to convection for the laboratory study of salt crystallisation.  相似文献   

9.
陈涛  韩文  李甜  皱倩 《地球科学》2012,37(5):981-988
对我国浙江青田山炮绿、福建寿山月尾绿以及西安绿3种绿色图章石分别利用X射线衍射、电子探针、环境扫描电镜以及能谱分析对其矿物成分、化学成分、微形貌特征以及颜色成因等方面进行了研究.研究发现, 3种图章石的绿色部分均由具二八面体结构的2M1型多硅白云母组成, 属于云母型图章石; 它们的次要矿物组成中山炮绿含有白云石、黄铁矿和磷灰石, 月尾绿含有高岭石, 西安绿含有白云石, 次要矿物组成对绿色图章石的产地鉴定具有一定意义.3种白云母的微形貌特征揭示了西安绿中白云母结晶程度高于月尾绿中白云母, 而山炮绿中白云母经历热液蚀变后晶形不完整重结晶程度不高.另外, 白云母八面体层中杂质离子的化学成分分析表明, 月尾绿和西安绿中白云母的绿色是由Fe3+和Ti4+离子形成, 而山炮绿的翠绿颜色主要由白云母中Cr3+离子以及Fe3+、Ti4+离子共同作用形成.   相似文献   

10.
Environmental controls on stone decay processes are rapidly changing as a result of changing climate. UKCP09 projections for the 2020s (2010–2039) indicate that over much of the UK seasonality of precipitation will increase. Summer dryness and winter wetness are both set to increase, the latter linked to projected precipitation increases in autumn and spring months. If so, this could increase the time that stone structures remain wet and possibly the depth of moisture penetration, and it appears that building stone in Northern Ireland has already responded through an increased incidence of algal ‘greening’. This paper highlights the need for understanding the effects of climate change through a series of studies of largely sandstone structures. Current and projected climatic trends are therefore considered to have aesthetic, physical and chemical implications that are not currently built into our models of sandstone decay, especially with respect to the role played by deep-seated wetness on sandstone deterioration and decay progression and the feedbacks associated with, for example surface algal growth. In particular, it is proposed that algal biofilms will aid moisture retention and further facilitate moisture and dissolved salt penetration to depth. Thus, whilst the outer surface of stone may continue to experience frequent wetting and drying associated with individual precipitation events, the latter is less likely to be complete, and the interiors of building blocks may only experience wetting/drying in response to seasonal cycling. A possible consequence of deeper salt penetration could be a delay in the onset of surface deterioration, but more rapid and effective retreat once it commences as decay mechanisms ‘tap into a reservoir of deep salt’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号