首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Variations in the abundances of Zn, Cu, and Pb are found to be useful in identifying tectonic regimes and separating oceanisland basalts into enriched- and depleted-source categories. The average Zn, Cu, and Pb contents of normal mid-ocean ridge basalts (N-MORB) are 84, 70, and 0.35 ppm, respectively. Differences in average Zn contents for various ridges reflect more the varying degrees of differentiation than variations of Zn content in the source rocks. At a Mg# of 70, or Mg#70, which is taken to represent primitive MORB, many MORB sequences converge at a Zn content of 58 ± 6 ppm, which is close to the value for primitive mantle (50 ppm) and ordinary chondrites (~55 ppm). Values of 0.1 to 0.15 ppm Pb in MORB at Mg#70, best defined at the superfast-spreading Southern East Pacific Rise, are similar to estimates of Pb in the primitive mantle (0.12 to 0.18 ppm). They also are near the lower end of the range for ordinary chondrites. The very slow spreading Southwest Indian Ocean Ridge has a sequence with higher Pb contents, in addition to a more normal sequence, which has a visual best value of 0.4 ppm Pb at Mg#70. With the exception of the Walvis Ridge, Zn and Cu appear to be little affected by proximity to hotspots (i.e., E-MORB); however, Pb contents are higher and average about 0.6 ppm.

Both Zn and Pb in MORB are incompatible elements (i.e., favor the melt), but Cu is a compatible element. At Mg#70, there is the suggestion of a value of 100 ppm for Cu, with lower values possibly representing partial removal of sulfides and their associated Cu from the source. Nonetheless, Cu contents of primitive MORB tend to be much higher than even high estimates for the primitive mantle (28 ppm), and are closer to ordinary chondrites (~90 ppm). Therefore, Zn, Cu, and Pb all approximate chondritic values in the primitive MORB melt.

Average contents of Zn, Cu, and Pb in oceanic island basalts (OIB) are 115, 62, and 3.2 ppm, respectively. At Mg#70, values of Zn and Cu are similar to the respective averages for OIB, with Zn higher and Cu lower than MORB. At a Mg# of ~40, however, OIB and MORB tend to have similar Zn contents. With further differentiation, OIB trachytes can contain >200 ppm Zn. Unlike MORB, OIB can differentiate to high Cu contents of 200 ppm at Mg#s of 40 to 60. In contrast to Zn and Cu, Pb regresses to a value of 0.83 ppm at Mg#70 for Hawaiian and Reunion volcanics, which is much less than the average value for Pb in OIB volcanics, but higher than for MORB.

Average Zn, Cu, and Pb contents of magmatic-arc basalts are 77, 108, and 1.9 ppm, respectively. In basalts, Zn tends to be incompatible, but a dual incompatible and compatible behavior can occur at high SiO2 contents. Dacites may average near 55 ppm Zn, but peralkalic rhyolite can contain >300 ppm Zn. A dual compatible and incompatible nature occurs for Cu. Most common, particularly in submarine volcanics, is a compatible trend, with a Cu content of around 80 ppm at a Mg# of 60, which decreases to less than 40 ppm at a Mg# of 30. The incompatible trend of increasing Cu can achieve >200 ppm at a Mg# of 30, leaving a gap approaching 100 ppm at that Mg#. The gap is less obvious on a plot of Cu vs. SiO2, but is still there. The compatible trend is proposed to result from sulfur-saturated magmas, whereas the incompatible trend is believed to result from sulfur-deficient magmas. Support for this hypothesis is found in sparse sulfur-isotope data. Zn and Cu both can be incompatible over an extended range of Mg#s or silica content. When Zn and Cu are both compatible, Cu decreases more than twice as rapidly as Zn.

Primitive magmas at Mg#70 average about 50 ppm Zn for submarine Mariana arc basalts and 58 ppm for forearc boninites, contents close to MORB values. Mariana arc basalts have a Zn content of ~45 ppm estimated at Mg#70. Cu varies more widely than Zn in primitive magmas, being about 50 ppm Cu for Mariana Islands volcanics and 120 ppm for Kermadec Islands volcanics, a range broadly around MORB values. Average Pb contents are 1.9 ppm for island-arc tholeiites, 5.6 ppm for high-Al basalt, and 3.2 ppm for alkali basalt with average boninite of approximately 1.8 ppm. Back-arc-basin basalts in the deepest parts of the Mariana trough have Pb contents of 0.45 ppm, but more shallow parts may exceed 1.0 ppm Pb. Although the lower contents are similar to MORB values, the 208Pb/204Pb values are greater than Pacific Ocean MORB. At Mg#70 for rocks from the Tonga and Kermadec island arcs, the Pb content is about 0.1 ppm, similar to MORB.  相似文献   

2.
True graphic quartz structures in pegmatites from Carrara/Giggiga and Harrar (town) districts of Ethiopia, are compared with the micrographic quartz textures in the Rapakiwi granite of Finland. Graphic-like textures of uraninite in microcline are also discussed and compared with these graphic structures.A quartz vein, about 1–2 meters in thickness, intersects a pegmatite in the Carrara/Giggiga district. This quartz vein extends into the microcline of the pegmatite as fine quartz veins which attain the form and character of graphic quartz. Also the graphic quartz of the Harrar pegmatites is observed to extend into and occupy cracks in the microcline.Comparable in origin to these graphic textures is the micrographic quartz in the Rapakiwi granite. Observations show micrographic quartz following the cleavage directions in the orthoclase as well as the interzonal spaces and the boundaries of inclusions in the K-feldspar.On the basis of the observed structures and textures these graphic and micrographic intergrowths are considered to be due to solutions penetrating or infiltrating into existing structures and not due to simultaneous crystallisation as conditions of eutectic crystallisation would require.In addition to the well known graphic structures there occur graphic or myrmekitic-like intergrowths of uraninite in microcline which, from a structural and physico-chemical point of view, cannot be considered to be due to eutectic crystallisation.  相似文献   

3.
Fine atmospheric dust includes mineral particles and aggregates, fibrous minerals and fibrous organic material. Generation, dislodgement and transport (deflation) of natural dust with the finer (〈4 microns) components suspended as silt-size aggregates, is widespread in and adjacent to the world's drylands, as well as deriving from volcanic vents. Silica is a highly fibrogenic agent in lung tissue. Long-term inhaling of siliceous dusts can lead to a number of fibrotic lung diseases, including natural (non-occupational) pneumoconioses (notably silicosis, but including asbestosis and others). Different polymorphs of silica show different levels of toxicity in interaction with lung tissue. Particles with highly active surfaces may release radicals, causing cell damage. Some types of inhaled particulates are degraded by macrophages, but many are highly resistant and persist in the lungs, some stimulating fibroblastic cells to deposit collagen. Silicosis is an inflammation of the lung commonly caused by silicate mineral particles, leading to fibrosis. Three types are recognized: nodular pulmonary fibrosis (simple or chronic silicosis), acute silicosis, and accelerated silicosis. Generally, finer particulates have greater oxidative capacity than the coarser fractions. They contain more reactive oxygen species, their greater bioreactivity making them more toxic to pulmonary tissue. Nevertheless, inhalation of large dust particles (〉 10μm) may constitute a health risk if the mineralogy is toxic, regardless of where the grains lodge in the respiratory system. Dust may absorb harmful gases, disease-generating bacteria and carcinogenic hydrocarbon compounds. Silica-related respiratory disease may also an exacerbate cardiac problem, and epidemiology suggests a link with tuberculosis. Quantification of dust loading and exposure requires study of spatial and temporal patterns, supported by meteorological analysis, airflow modeling and satellite-borne imagery. Some acute, short-term health impacts have been assessed using atmospheric and health records both before and after a dust storm or by comparison of populations within and outside such events. Analysis of the size, shape, mineralogy and geochemistry of ambient dust particulates provides information on natural dust sources, dust concentrations, and potential particulate toxicity, as well as providing a datum for assessment of human exposure levels.  相似文献   

4.
Asteroid impact spherule layers and tsunami deposits underlying banded iron-formations in the Fortescue and Hamersley Groups have been further investigated to test their potential stratigraphic relationships. This work has included new observations related to the ca 2.63 Ga Jeerinah Impact Layer (JIL) and impact spherules associated with the 4th Shale-Macroband of the Dales Gorge Iron Member (DGS4) of the Brockman Iron Formation. A unit of impact spherules (microkrystite) correlated with the ca 2.63 Ga JIL is observed within a >100 m-thick fragmental-intraclast breccia pile in drill cores near Roy Hill. The sequence represents significant thickening of the impact/tsunami unit relative to the JIL type section at Hesta, as well as relative to the 20–30 m-thick ca 2.63 Ga Carawine Dolomite spherule-bearing mega-breccia. The ca 2.48 Ga-old Dales Gorge Member of the Brockman Iron Formation is underlain by an ?0.5 m-thick rip-up clast breccia located at the top of the ca 2.50 Ga Mt McRae Shale, and is interpreted as a tsunami deposit. We suggest that the presence of impact ejecta and tsunami units stratigraphically beneath a number of banded iron-formations, and units of ferruginous shale in the Pilbara and South Africa may result from a genetic relationship. For example, it could be that under Archean atmospheric conditions, mafic volcanism triggered by large asteroid impacts enriched the oceans in soluble FeO. If so, seasonal microbial and/or photolytic oxidation to ferric oxide could have caused precipitation of Fe2O3 and silica. In view of the possible occurrence of depositional gaps and paraconformities between impact ejecta units and overlying ferruginous sediments, these relationships require further testing by isotopic age studies.  相似文献   

5.
The East Tianshan is a remote Gobi area located in eastern Xinjiang, northwestern China. In the past several years, a number of gold, porphyry copper, and Fe(-Cu) and Cu-Ag-Pb-Zn skarn deposits have been discovered there and are attracting exploration interest.The East Tianshan is located between the Junggar block to the north and early Paleozoic terranes of the Middle Tianshan to the south. It is part of a Hercynian orogen with three distinct E-W-trending tectonic belts: the Devonian-Early Carboniferous Tousuquan-Dananhu island arc on the north and the Carboniferous Aqishan -Yamansu rift basin to the south, which are separated by rocks of the Kanggurtag shear zone. The porphyry deposits, dated at 322 Ma, are related to the late evolutionary stages of a subduction-related oceanic or continental margin arc. In contrast, the skarn, gold, and magmatic Ni-Cu deposits are associated with post-colli-sional tectonics at ca. 290-270 Ma. These Late Carboniferous - Early Permian deposits are associated with large-scale emplacement and eruption of magmas possibly caused by lithosphere delamination and rifting within the East Tianshan.  相似文献   

6.
The characteristic structures of the Precambrian cherts from the Gusui section, Guangdong ,Chi-na, include bedded structure ,laminated structure ,massive structure and pseudobrecciated structure.The chert is characterized by consistently low abundance of TiO2,Al2O3 and most trace elements.Howevver ,it is enriched in Ba,As,Sb,Hg and Se.In Al-Fe-Mn ternary diagrams,it falls into the “hydrothermal field“ .Correspondence analysis and factor analysis show that many elements show up in the factor that represents the leaching of country rocks by hydrothermal solutions,and are the very characteristic element association fo the geochemically anomalous South China basement.Petrologic and geochemical evidence suggests a hydrothermal origin for the chert.The chert may have been formed in a Precambrian fift or an extension zone developed within the Yunkai marginal geosyncline, with a fault system linking it to an unknown heat source at depth.  相似文献   

7.
This study is aimed at determining the diffusion coefficient of net-work modifiers (mainly Na, K, and Ca) in a two-phase melt-NaCl system, in which the melts are granitic and the system is NaCl-rich in composition. The diffusion coefficients of Na, K, and Ca were measured at the temperatures of 750 – 1400°C, pressures of 0.001 × 108 – 2 × 108 Pa, and initial H2O contents of 0 wt% –6.9 wt% in the granitic melts. The diffusion coefficients of Fe and Mg were difficult to resolve. In all experiments a NaCl melt was present as well. In the absence of H2O, the diffusion of net-work modifiers follows an Arrhanious equation at 1 × 105 Pa: lgDca=−3. 88−5140/T, lgDk =−3. 79−4040/T, and lgDNa, =−4.99−3350/T, where D is in cm2 /s andT is in K. The diffusion coefficients of Ca, Na, K, and Fe increase non-linearly with increasing H2O content in the melt. The presence of about 2 wt% H2O m the melt will lead to a dramatical increase in diffusivity, but higher H2O content has only a minor effect. This change is probably the result of a change in the melt structure when H2O is present. The diffusion coefficients measured in this study are significantly different from those in previous works. This may be understood in terms of the “transient two-liquid equilibrium” theory. Element interdiffusion depends not only on its concentration, but also on its activity co-efficient gradient, which is reflected by the distribution coefficient, of the two contacting melts.  相似文献   

8.
Epochs of changing atmospheric CO2 and seawater CO2–carbonic acid system chemistry and acidification have occurred during the Phanerozoic at various time scales. On the longer geologic time scale, as sea level rose and fell and continental free board decreased and increased, respectively, the riverine fluxes of Ca, Mg, DIC, and total alkalinity to the coastal ocean varied and helped regulate the C chemistry of seawater, but nevertheless there were major epochs of ocean acidification (OA). On the shorter glacial–interglacial time scale from the Last Glacial Maximum (LGM) to late preindustrial time, riverine fluxes of DIC, total alkalinity, and N and P nutrients increased and along with rising sea level, atmospheric PCO2 and temperature led, among other changes, to a slightly deceasing pH of coastal and open ocean waters, and to increasing net ecosystem calcification and decreasing net heterotrophy in coastal ocean waters. From late preindustrial time to the present and projected into the 21st century, human activities, such as fossil fuel and land-use emissions of CO2 to the atmosphere, increasing application of N and P nutrient subsidies and combustion N to the landscape, and sewage discharges of C, N, P have led, and will continue to lead, to significant modifications of coastal ocean waters. The changes include a rapid decline in pH and carbonate saturation state (modern problem of ocean acidification), a shift toward dissolution of carbonate substrates exceeding production, potentially leading to the “demise” of the coral reefs, reversal of the direction of the sea-to-air flux of CO2 and enhanced biological production and burial of organic C, a small sink of anthropogenic CO2, accompanied by a continuous trend toward increasing autotrophy in coastal waters.  相似文献   

9.
A May 2007 tornado destroyed 95% of aging, declining Greensburg, Kansas. The city took the opportunity to build back “stronger, better, and greener,” enforcing upgraded codes, requiring city-owned buildings to meet LEED Platinum level standards, and recommending energy-efficiency housing in a new Sustainable Comprehensive Plan. Using information collected from surveys of Greensburg tornado survivors, interviews, and publications, we examined the housing-related recovery, including the emergency provision of temporary shelter and rebuilding permanently. Although temporary shelter kept residents nearby for rebuilding, given the gap between insurance policy limits on the aging housing stock and rebuilding costs, housing affordability is a critical issue in Greensburg’s recovery. Local, state, and federal support have made construction of municipal buildings at LEED Platinum level and some affordable and green housing projects possible. However, far greater public and private sector funding for affordable workforce housing, in conjunction with broader economic and job development, is needed.  相似文献   

10.
This article explores the role of geographical context in generating a stigmatised identity among residents of Tara rural subdivisions in the coal seam gas fields in Queensland’s Western Downs. The research was based on qualitative interviews with Tara ‘Blockies’, as these residents are commonly referred to, that revealed how their existence in the middle of an agrarian region resulted in the assignation of a stigma that has marked them as different, and subsequently devalued their status. We explain that this distinction and category division of the normals, referring to Tara’s Agrarian residents, from the ‘stigmatised’ led to an antagonistic relationship that prevented successful socio-cultural assimilation. We demonstrate how an immoral place becomes disadvantaged, resulting in poor well-being, and how imposed labels threaten the self-esteem of its occupants.  相似文献   

11.
Between 1985 and 1991, two new mountain protected areas (MTNPA) covering more than 35,000 km2 and based on participatory management models — the Makalu-Barun National Park and Conservation Area, Nepal, and Qomolangma Nature Preserve, Tibet Autonomous Region — were successfully established through the collaborative efforts of Woodlands Mountain Institute and conservationists in China and Nepal. Characteristics common to both projects include the importance of establishing (1) effective rationales, (2) local support constituencies, (3) a senior advisory group, (4) a task force, (5) linkages between conservation and development, and (6) fund raising mechanisms. The lessons derived from the experiences of Woodlands Mountain Institute are of significant value to others in preserving MTNPA. Increased collaboration and communication between all interested in conservation, however, will remain a critical component for expanding mountain protected area coverage to throughout the world.  相似文献   

12.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

13.
The contents of As, Cd, Cu, Cr, Mg, Mn, Ni, Pb and Zn have been determined in sediment and water samples from Valle de las Garzas estuary and Port Manzanillo (Colima, Mexico) using ICP-AES. The concentrations of these elements were used for a comparative study to determine the distribution of heavy metals and to evaluate which elements reflect natural or anthropogenic backgrounds. For this purpose, seven sampling points were selected: Four of them correspond to the lagoon, and three were situated in the port. Statistical analysis of the mineral content was assessed. Initially, data comparison was assessed by statistical tests for each variable. Principal component analysis was then applied considering the influence of all variables at the same time by obtaining the distribution of samples according to their scores in the principal component space. In this way, four studies were carried out: (1) study of sediments collected during the dry season; (2) study of sediments collected during the rainy season; (3) comparative study between sediments from rainy and dry season; and (4) study of water composition collected during rainy season. From the results of the performed analyses, it can be concluded that metals distribution pattern reflected natural and anthropogenic backgrounds (e.g., sediments from the lagoon, situated at the beginning of the rain channel, presented high contents of Zn and Cu, perhaps related to anthropogenic activities or the influence of igneous sediments).  相似文献   

14.
This article advances critical geographies of youth through examining the spatiality implicit in the imagined futures of young women in rural India. Geographers and other scholars of youth have begun to pay more attention to the interplay between young people’s past, present, and imagined futures. Within this emerging body of scholarship the role of the family and peer group in influencing young people’s orientations toward the future remain underexamined. Drawing on eleven months of ethnographic fieldwork, my research focuses on a first generation of college-going young women from socioeconomically marginalized backgrounds in India’s westernmost state of Gujarat. I draw on the “possible selves” theoretical construct in order to deploy a flexible conceptual framework that links imagined post-educational trajectories with motivation to act in the present. In tracing the physical movement of these young women as they navigate and complete college, my analysis highlights the ways in which particular kinds of spaces and spatial arrangements facilitate and limit intra- and inter-generational contact, and the extent to which this affects young women’s conceptions of the future. I conclude by considering the wider implications of my research for ongoing debates surrounding youth transitions, relational geographies of age, and education in the Global South.  相似文献   

15.
Partition coefficients of Hf,Zr, and REE between zircon,apatite, and liquid   总被引:25,自引:2,他引:25  
Concentration ratios of Hf, Zr, and REE between zircon, apatite, and liquid were determined for three igneous compositions: two andesites and a diorite. The concentration ratios of these elements between zircon and corresponding liquid can approximate the partition coefficient. Although the concentration ratios between apatite and andesite groundmass can be considered as partition coefficients, those for the apatite in the diorite may deviate from the partition coefficients. The HREE partition coefficients between zircon and liquid are very large (100 for Er to 500 for Lu), and the Hf partition coefficient is even larger. The REE partition coefficients between apatite and liquid are convex upward, and large (D=10–100), whereas the Hf and Zr partition coefficients are less than 1. The large differences between partition coefficients of Lu and Hf for zircon-liquid and for apatite-liquid are confirmed. These partition coefficients are useful for petrogenetic models involving zircon and apatite.  相似文献   

16.
17.
《Chemical Geology》2007,236(1-2):13-26
We examined the coprecipitation behavior of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides under two different fluoride forming conditions: at < 70 °C in an ultrasonic bath (denoted as the ultrasonic method) and at 245 °C using a Teflon bomb (denoted as the bomb method). In the ultrasonic method, small amounts of Ti, Mo and Sn coprecipitation were observed with 100% Ca and 100% Mg fluorides. No coprecipitation of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides occurred when the sample was decomposed by the bomb method except for 100% Ca fluoride. Based on our coprecipitation observations, we have developed a simultaneous determination method for B, Ti, Zr, Nb, Mo, Sn, Sb, Hf and Ta by Q-pole type ICP-MS (ICP-QMS) and sector field type ICP-MS (ICP-SFMS). 9–50 mg of samples with Zr–Mo–Sn–Sb–Hf spikes were decomposed by HF using the bomb method and the ultrasonic method with B spike. The sample was then evaporated and re-dissolved into 0.5 mol l 1 HF, followed by the removal of fluorides by centrifuging. B, Zr, Mo, Sn, Sb and Hf were measured by ID method. Nb and Ta were measured by the ID-internal standardization method, based on Nb/Mo and Ta/Mo ratios using ICP-QMS, for which pseudo-FI was developed and applied. When 100% recovery yields of Zr and Hf are expected, Nb/Zr and Ta/Hf ratios may also be used. Ti was determined by the ID-internal standardization method, based on the Ti/Nb ratio from ICP-SFMS. Only 0.053 ml sample solution was required for measurement of all 9 elements. Dilution factors of ≤ 340 were aspirated without matrix effects. To demonstrate the applicability of our method, 4 carbonaceous chondrites (Ivuna, Orgueil, Cold Bokkeveld and Allende) as well as GSJ and USGS silicate reference materials of basalts, andesites and peridotites were analyzed. Our analytical results are consistent with previous studies, and the mean reproducibility of each element is 1.0–4.6% for basalts and andesites, and 6.7–11% for peridotites except for TiO2.  相似文献   

18.
Materials and energy are the interdependent feedstocks of economic systems, and thermodynamics is their moderator. It costs energy to transform the dispersed minerals of Earth's crust into ordered materials and structures. And it costs materials to collect and focus the energy to perform work — be it from solar, fossil fuel, nuclear, or other sources. The greater the dispersal of minerals sought, the more energy is required to collect them into ordered states.But available energy can be used once only. And the ordered materials of industrial economies become disordered with time. They may be partially reordered and recycled, but only at further costs in energy. Available energy everywhere degrades to bound states and order to disorder — for though entropy may be juggled it always increases. Yet industry is utterly dependent on low entropy states of matter and energy, while decreasing grades of ore require ever higher inputs of energy to convert them to metals, with ever increasing growth both of entropy and environmental hazard.Except as we may prize a thing for its intrinsic qualities — beauty, leisure, love, or gold — low-entropy is the only thing of real value. It is worth whatever the market will bear, and it becomes more valuable as entropy increases. It would be foolish of suppliers to sell it more cheaply or in larger amounts than their own enjoyment of life requires, whatever form it may take. For this reason, and because of physical constraints on the availability of all low-entropy states, the recent energy crises is only the first of a sequence of crises to be expected in energy and materials as long as current trends continue.The apportioning of low-entropy states in a modern industrial society is achieved more or less according to the theory of competitive markets. But the rational powers of this theory suffer as the world grows increasingly polarized into rich, over-industrialized nations with diminishing resource bases and poor, supplier nations with little industry. The theory also discounts posterity, the more so as population density and percapita rates of consumption continue to grow. A new social, economic, and ecologic norm that leads to population control, conservation, and an apportionment of low-entropy states across the generations is needed to assure to posterity the options that properly belong to it as an important but voiceless constituency of the collectivity we call mankind.
Zusammenfassung Rohstoffe und Energie sind die Grundlagen unseres ökonomischen Systems, das von den Gesetzen der Thermodynamik bestimmt wird. Es kostet Energie, um die auf der Erde verteilten Rohstoffe diesem System zuzuführen. Andererseits braucht man Rohstoffe, um die Energie nutzbar zu machen.Die verfügbare Energie kann nur einmal genutzt werden und das Material verbraucht sich. Verbrauchtes Material kann teilweise zur weiteren Nutzung zurückgeführt werden, das kostet wiederum Energie. Die verfügbare Energie nimmt überall ab, und einmal geschaffene Ordnung gerät wieder in Unordnung — das heißt, die Entropie des Systems nimmt ständig zu. Die Industrie ist jedoch abhängig von einem niedrigen Entropiezustand sowohl der Materie als auch der Energie.Je ärmer die Erze sind, um so höher wird die Energie sein, um sie in Metalle umzuwandeln, wobei die Entropie und die Belastung der Umwelt ständig zunimmt.Außer den Dingen, die wir wegen höherer ideeller Werte schätzen, ist eine niedrige Entropie der einzige realistische Wertmaßstab, und der wirkliche Wertzuwachs ist nur an einer höheren Entropie zu messen. Es ist unverantwortlich, Dinge, die eine höhere Entropie bedingen, billiger zu verkaufen oder in größerer Menge zu erzeugen, als unbedingt notwendig ist. Da wir dies heute in unserem Handeln nicht berücksichtigen, ist die derzeitige Energiekrise nur der Anfang einer Folge von Krisen, die Energie und Rohstoffe betreffen, solange wir nicht umdenken.Die Verteilung von niedriger Entropie in einer modernen Industriegesellschaft wird mehr oder weniger nach dem Prinzip der konkurrierenden Märkte erreicht. Das selbstregulierende System gerät jedoch mit zunehmender Polarisierung in reiche Industrienationen mit abnehmenden Ressourcen und armen Nationen mit geringer Industrialisierung in Unordnung. Dieses Prinzip berücksichtigt auch nicht die Nachwelt, vor allem wenn die Bevölkerungsdichte stetig zunimmt und die Konsumbedürfnisse anwachsen. Es sind neue soziale, ökonomische und ökologische Normen notwendig, die zur Populationskontrolle, zur Erhaltung der Umwelt und zu einem Zustand niedriger Entropie für zukünftige Generationen führen. Die nach uns kommenden Menschen haben ein Anrecht darauf.

Résumé Matériaux et énergie sont les sources des systèmes économiques et sont régis par les lois de la thermodynamique. Il faut de l'énergie pour transformer les ressources minérales dispersées dans la croûte terrestre en matériaux et structures ordonnancées. Et il faut des matériaux pour receuillir et concentrer l'énergie, qu'elle soit solaire ou atomique, ou provienne de combustibles fossiles ou d'autres sources. Plus les minéraux recherchés sont dispersés et plus est côuteuse l'énergie pour leur donner une ordonnance.Or l'énergie disponsible ne peut être utilisée qu'une seule fois. Et les matériaux ordonnancés des économies industrielles se dégradent avec le temps. Ils peuvent être remis partiellement en état et recyclés, mais pour cela il faut de nouveau de l'énergie. Partout l'énergie disponible se dégrade et l'ordre devient désordre; -malgré toutes les jongleries possibles l'entropie augmente toujours.L'industrie dépend clairement d'états de basse entropie tant en ce qui concerne les matériaux que l'énergie, tandis que plus pauvres sont les minerais, plus; élevée est l'énergie à mettre en jeu pour en extraire les métaux, avec toujours augmentation à la fois de l'entropie et de la degradation des milieux.A l'exception de ce que nous apprécions pour leur valeur intrinsèque — la beauté, le loisir, l'amour ou l'or — la basse entropie est la seule chose de réelle valeur. Son prix est réglé par le marché, et sa valeur augmente au fur et à mesure que l'entropie s'accroît. Ceux qui en disposent seraient insensés de la vendre à bas prix ou en quantité supérieure à ce qu'exige leur propre niveau de vie. Pour cette raison, et à cause des contraintes physiques liées à la disponibilité en états de basse entropie, la récente crise d'énergie n'est, en ce qui concerne les matières premières et l'énergie, que la première d'une série de crises auxquelles il faut s'attendre aussi longtemps que se poursoit la marche actuelle des étènements.Dans les sociétés industrielles modernes, les approvisionnement en basse entropie s'effectuent plus ou moins conformément à la théorie de la concurrence des marchés. Cependant la rationalité de cette théorie se ressent de l'accentuation croissante de la polarisation, à l'échelle du monde, en nations riches, surindustrialisées, à ressources de base décroissantes, et en nations pauvres, sous-industrialisées, mais fournisseurs de resources-naturelles. De plus cette théorie ne tient pas compte de notre postérité, et ce, en face d'une densité de population et d'un taux de la consommation par tête d'habitant en augmentation continue.Nous avons donc besoin de nouvelles normes sociales, économiques et écologiques qui conduisent au contrôle de la population, à la conservation et à la répartition des états de basse entropie à travers les générations pour assurer à notre postérité les options qui leur riviennent de droit comme une constituante importante, mais encore muette, de la collectivité que nous appelons l'Humanité.

, . . . . , . , .. . , , . , , , . , - , , , : , , . .. , , , , , . . , : , — , . , . , , , . .


Dedicated with appreciation to Nicholas Georgescu-Roegen, distinguished economist, realist among cornucopians  相似文献   

19.
Models have become so fashionable that many scientists and engineers cannot imagine working without them. The predominant use of computer codes to execute model calculations has blurred the distinction between code and model. The recent controversy regarding model validation has brought into question what we mean by a ‘model’ and by ‘validation.’ It has become apparent that the usual meaning of validation may be common in engineering practice and seems useful in legal practice but it is contrary to scientific practice and brings into question our understanding of science and how it can best be applied to such problems as hazardous waste characterization, remediation, and aqueous geochemistry in general. This review summarizes arguments against using the phrase model validation and examines efforts to validate models for high-level radioactive waste management and for permitting and monitoring open-pit mines. Part of the controversy comes from a misunderstanding of ‘prediction’ and the need to distinguish logical from temporal prediction. Another problem stems from the difference in the engineering approach contrasted with the scientific approach. The reductionist influence on the way we approach environmental investigations also limits our ability to model the interconnected nature of reality. Guidelines are proposed to improve our perceptions and proper utilization of models. Use of the word ‘validation’ is strongly discouraged when discussing model reliability.  相似文献   

20.
Pools,riffles, and channelization   总被引:2,自引:0,他引:2  
The addition of regularly spaced deeps (pools) and shallows (riffles) that provide a variety of flow conditions, areal sorting of stream-bed material, cover for wildlife, and a positive aesthetic experience, may be desirable in many channel projects. Such designs will reduce adverse environmental impacts of stream channel modifications. Analysis of variance for pool-to-pool spacing data suggests that there is no significant difference with respect to channel width between pools that form in natural streams and those in streams affected by a variety of human uses. Short of channelization, which changes the channel width, pools and riffles, within limits, are not particularly sensitive to environmental stress. Experiments in Gum Branch near Charlotte, North Carolina, support the hypothesis that channel form and process evolve in harmony and that manipulation of cross-channel morphology can influence the development of desired channel processes. Planned manipulation of its channel form induced Gum Branch to develop as desired. Morphologic stability consisting of incipient point bars, pools, and riffles was maintained over a period of high magnitude flood events, only to be degraded later by a wave of sediment derived from upstream construction and stream-bank failures. Thus, environmentally desirable channel morphology in urban streams cannot remain stable if changes in the sediment load or storm-water runoff exceed the limits of the stream's ability to make internal adjustments while maintaining morphologic stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号