共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
时间序列分析在变形监测数据处理中的应用 总被引:6,自引:0,他引:6
从时间序列分析的基本原理及方法出发,详细论述了如何使用这种方法对变形监测数据进行识模、建模、与预报.并通过实例计算验证了此种方法具有较高的拟合和预报精度,较好地描述了变形监测点的变化规律. 相似文献
4.
通过对某地铁监测点小波去噪后的数据建立灰色预测模型,分析了灰色预测的优缺点,针对灰色预测对波动性数据预测的不足,建立了灰色-时序组合模型。首先,利用灰色模型提取时间序列中的趋势项;然后,用时序模型对残差项进行建模分析,兼顾了数据的趋势性和波动性,弥补了灰色预测的不足,提高了预报精度。 相似文献
6.
介绍分形学理论中的非倾向性振荡分析法(DFA)分析时间序列数据的方法。应用该方法对某变形数据进行分析,分析其变形的相关性以及对后续建模分析时的作用。最后说明定标指数可以从整体上描述变形数据序列的动态变化特征。 相似文献
7.
采用时间序列分析方法,对长春市地铁一号线——繁荣路站基坑变形监测点连续28期的数据进行分析处理,建立自回归模型,并对后4期数据进行预报,其一步拟合中误差为σ=±0.2 mm,具有较高精度。通过对数据的分析,论证了时间序列分析方法在地铁沉降监测中的可行性与有效性。 相似文献
8.
将模糊时间序列模型引入到滑坡预测预报中。简要介绍了模糊时间序列建模的步骤,并用实例验证了模糊时间序列模型用于滑坡预测预报的可行性。 相似文献
9.
变形数据分析与预报是变形监测数据处理的重要内容。基于时间序列分析的特性,研究了应用AR模型对建筑物沉降数据进行分析处理和预报的方法步骤,并通过实例计算证明,该模型具有较好的拟合效果和预报精度。 相似文献
10.
静态神经网络模型用于在线时间序列的预报时具有局限性,即网络的泛化能力有限,且模型不能不断地适应新增样本的变化。如果每增加一个样本对神经网络重新训练,需要大量的计算时间。针对该问题,提出了动态神经网络预报模型。在获得新增样本数据之后,通过比较预报值与实际值之差的绝对值是否大于ε敏感因子,决定模型是否需要修正。为了降低模型修正的计算时间,提出了在线动态修正方法,实现了增加样本而矩阵阶数不增加,且避免了矩阵求逆运算,理论上可以提高计算效率。通过实例表明,该方法在计算时间和预报精度两个方面都具有一定优势,可应用于在线实时变形预报及相关领域。 相似文献
11.
12.
13.
14.
15.
对地铁监测数据建立相应的预测模型,对变形可进行前瞻性预测,从而保证地铁安全的施工和运营。本文以北京市地铁某基坑工程为研究对象,首先以某一监测点为例,利用小波分析对原始监测数据进行去噪处理;然后分别利用时间序列分析模型和BP神经网络模型对去噪后的数据进行建模分析,得到原数据的拟合值和对未来变形的预测值;最后利用同期Sentinel-1A卫星影像进行相干点时序InSAR处理,得到形变结果。通过分析两个模型的预测值与实际值,并与InSAR结果进行对比,验证了两个预测模型在地铁形变监测中应用的优劣性。 相似文献
16.
17.
18.