首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The North Anatolian Fault (NAF) extends for about 1500 km from Karliova to the east, to the Egean Sea in the west. The Marmara region, located near the western end of the NAF, is a tectonically active zone characterized by the transition between a strike slip stress regime and an extensional one in the Aegean Sea. Microseismic studies performed around the Marmara Sea in 1995 [Tectonophysics 316, 2000, 1], and just before the 1999 Izmit Earthquake Bull. Seism. Soc. Am. 92, 2002a, 361;J. Seismol. 6, 2002b, 287) permitted the analysis of the evolution of seismicity connected to this destructive earthquake and its sequels. Several observations indicate that the aftershock distribution fits well the EW orientation of the NAF, but the ruptures are not simple and linear as a first glance would suggest. Instead they are segmented in at least five pieces as shown by the slip variation and aftershock clusters, showing complexity at different scales (Bull. Seism. Soc. Am. 92, 2002a, 361). There is still a gap, across the northern border of the Marmara Sea that has not ruptured, and this is the only sector that did not break on the NAF since the 1939 great Erzincan earthquake. Will it rupture as a whole with a large magnitude earthquake, or by segments with smaller magnitude events? The Hurst analysis of the overall behaviour of the seismicity in the Marmara region since historical times shows that if a large earthquake occurs in the near future, it might break the complete gap. The Hurst character of the time variation of seismicity is persistent with H= 0.82. The aftershocks of the 1999 Izmit earthquake can be analyzed by using the Hurst method, showing an exceptionally high persistent memory.  相似文献   

2.
An intraplate earthquake doublet, with 11-min delay between the events, devastated the city of Varzeghan in northwestern Iran on August 11, 2012. The first Mw 6.5 strike-slip earthquake, which occurred after more than 200 years of low seismicity, was followed by an Mw 6.4 oblique thrust event at an epicentral separation of about 6 km. While the first event can be associated with a distinct surface rupture, the absence of a surface fault trace and no clear aftershock signature makes it challenging to identify the fault plane of the second event. We use teleseismic body wave inversion to deduce the slip distribution in the first event. Using both P and SH waves stabilize the inversion and we further constrain the result with the surface rupture extent and the aftershock distribution. The obtained slip pattern shows two distinct slip patches with dissimilar slip directions where aftershocks avoid high-slip areas. Using the estimated slip for the first event, we calculate the induced Coulomb stress change on the nodal planes of the second event and find a preference for higher Coulomb stress on the N-S nodal plane. Assuming a simple slip model for the second event, we estimate the combined Coulomb stress changes from the two events on the focal planes of the largest aftershocks. We find that 90% of the aftershocks show increased Coulomb stress on one of their nodal planes when the N-S plane of the second event is assumed to be the correct fault plane.  相似文献   

3.
Approximately 4000 people were killed due to collapse of buildings in downtown Adapazari during the 1999 Izmit, Turkey earthquake (Mw = 7.4). The downtown is located on a deep sedimentary basin, so-called Adapazari basin. We study site effects of the Adapazari basin based on strong- and weak-motion data obtained by a temporary array observation deployed in and around the Adapazari basin after the earthquake. Four moderate-size aftershocks (M4.6–M5.8) are selected in our study. We evaluate the S-wave amplifications in the basin by using the traditional spectral ratio method. The spectral ratios show that the S waves are considerably amplified in the frequency range of 0.5 to about 5 Hz at the basin sites, but are apparently de-amplified at frequencies higher than about 10 Hz. We make a quantitative interpretation of the empirical amplifications based on the S-wave velocity structures at the stiff-soil reference site as well as at the basin sites; these structures were estimated by the microtremor array measurements. Through the interpretation, we confirm that the amplifications at low frequencies are attributed to the thick sedimentary layers in the Adapazari basin and that the apparent de-amplifications at high frequencies are partly due to the reference site response. In addition to the considerable S-wave amplifications, the basin site records show long-period (about 2 sec) later phases after the S-wave arrival; these later phases are basin-transduced surface waves that are originated from the source and transmitted into the basin. The predominant period of these waves apparently depends on the earthquake magnitude. We conclude that heavy damage in downtown Adapazari during the 1999 Izmit earthquake was caused not only by strongly amplified S-waves but also by long-period basin surface waves of long duration.  相似文献   

4.
采用双差定位方法,利用中国地震台网的数据对2017年8月9日精河6.6级地震的余震序列进行了重新定位。截至2017年8月14日16时,共获得209个余震的重新定位结果。结果显示,余震主要呈近EW向或NWW向分布,余震区长约50km,宽约17km。余震分布在主震的西侧,推断此次地震单侧破裂。余震震源深度为1~25km,其中,震级较大余震深度为8~17km。精河地震序列的余震活动随时间呈起伏状衰减,震后2天内比较活跃,此后出现较快衰减。随时间推移,余震区呈现中西部衰减慢、东部衰减快的特点。此次地震震中距2011年精河5.0级地震震中21km,相比2011年精河地震,其震源更深,震级更大,但震源机制解相近,均为逆冲型。结合区域构造背景分析认为,库松木契克山前断裂为此次地震发震构造的可能性较大。  相似文献   

5.
陈晨  胥颐 《地球物理学报》2013,56(12):4028-4036
利用四川省地震台网的震相数据和双差定位方法对芦山MS7.0级地震及其余震序列进行了精确定位,根据余震分布确定了发震断层的位置和断层面的几何特征,并对余震活动进行了分析.结果显示,芦山MS7.0级地震的震中位于30.28°N、102.99°E,震源深度为16.33 km.余震沿发震断层向主震两侧延伸,主要分布在长约32 km、宽约15~20 km、深度为5~24 km的范围内.地震破裂带朝西南方向扩展范围较大,东北方向略小,余震震级随时间迅速衰减.震源深度剖面清晰地显示出发震断层的逆冲破裂特征,推测发震断层为大川—双石断裂东侧约10 km的隐伏断层.该断层走向217°、倾向北西,倾角约45°,产状与大川—双石断裂相比略缓,它们同属龙门山前山断裂带的叠瓦状逆冲断层系.受发震断裂影响,部分余震沿大川—双石断裂分布,西北方向的余震延伸至宝兴杂岩体的东南缘,与汶川地震的破裂带之间存在50 km左右的地震空区,有可能成为未来发生强震的潜在危险区.  相似文献   

6.
A shallow earthquake ofM S=6.2 occurred in the southern part of the Peloponnesus, 12 km north of the port of the city of Kalamata, which caused considerable damage. The fault plane solution of the main shock, geological data and field observations, as well as the distribution of foci of aftershocks, indicate that the seismic fault is a listric normal one trending NNE-SSW and dipping to WNW. The surface ruptures caused by the earthquake coincide with the trace of a neotectonic fault, which is located 2–3 km east of the city of Kalamata and which is related to the formation of Messiniakos gulf during the Pliocene-Quaternary tectonics. Field observations indicate that the earthquake is due to the reactivation of the same fault.A three-days aftershock study in the area, with portable seismographs, recorded many aftershocks of which 39 withM S1.7 were very well located. The distribution of aftershocks forms two clusters, one near the epicenter of the main shock in the northern part of the seismogenic volume, and the other near the epicenter of the largest aftershock (M S=5.4) in the southern part of this volume. The central part of the area lacks aftershocks, which probably indicates that this is the part of the fault which slipped smoothly during the earthquake.  相似文献   

7.
At GMT time 13:19, August 8, 2017, an Ms7.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China, causing severe damages and casualties. To investigate the source properties, seismogenic structures, and seismic hazards, we systematically analyzed the tectonic environment, crustal velocity structure in the source region, source parameters and rupture process, Coulomb failure stress changes, and 3-D features of the rupture plane of the Jiuzhaigou earthquake. Our results indicate the following: (1) The Jiuzhaigou earthquake occurred on an unmarked fault belonging to the transition zone of the east Kunlun fault system and is located northwest of the Huya fault. (2) Both the mainshock and aftershock rupture zones are located in a region where crustal seismic velocity changes dramatically. Southeast to the source region, shear wave velocity at the middle to lower crust is significantly low, but it rapidly increases northeastward and lies close to the background velocity across the rupture fault. (3) The aftershock zone is narrow and distributes along the northwest-southeast trend, and most aftershocks occur within a depth range of 5–20 km. (4) The focal mechanism of the Jiuzhaigou earthquake indicates a left-lateral strike-slip fault, with strike, dip, and rake angles of 152°, 74° and 8°, respectively. The hypocenter depth measures 20 km, whereas the centroid depth is about 6 km. The co-seismic rupture mainly concentrates at depths of 3–13 km, with a moment magnitude (Mw) of 6.5. (5) The co-seismic rupture also strengthens the Coulomb failure stress at the two ends of the rupture fault and the east segment of the Tazang fault. Aftershocks relocation results together with geological surveys indicate that the causative fault is a near vertical fault with notable spatial variations: dip angle varies within 66°–89° from northwest to southeast and the average dip angle measures ~84°. The results of this work are of fundamental importance for further studies on the source characteristics, tectonic environment, and seismic hazard evaluation of the Jiuzhaigou earthquake.  相似文献   

8.
A simplified multiple source model was constructed for the 1975 HawaiiM s=7.2 earthquake by matching synthetic signals with three component accelerograms at two stations located approximately 45 km from the epicenter. Six major subevents were identified and located approximately. The signals of these are larger by factors of 1.4 to 3.2 than that of theM L=5.9 foreshock which occurred 70 minutes before the main rupture and also triggered the SAM-1 recorders at the two stations. Dividing the rupture length (40 km) by the duration of strong ground shaking ( 50 sec) an, average rupture velocity of 0.8 km/sec (about 25% of S-velocity) is obtained. Thus it is likely that the rupture stopped between subevents. The approximate epicenters of the 6 major subevents, and of the foreshock, support the hypothesis that they were located in high stress asperities which rupture during the main shock, except for the last events which is interpreted as a stopping phase generated at a barrier. These asperities have been previously defined on the basis of differences in the precursor pattern before the mainshock. Thus, it appears that both the details of the precursors and of the main rupture depended critically on the heterogeneous tress distribution in the source volume. This suggests that main rupture initiation points and locations of high rupture accelerations may be identified before the mainshock occurs, based on precursor anomaly patterns. A satisfactory match of synthetic signals with the observations could be obtained only if the aximuth of the fault plane of subevents was rotated from N60°E to N90°E and back to N30°E. These orientations are approximately parallel to the nearest Kilauea rift segments. Hence the slip directions and greatest principal stresses were oriented perpendicular to the rifts everywhere. From this analysis and other work, it is concluded that this fault surface consisted of three types of segments with different strength: hard asperities (radius 5 km), soft but brittle segments between the asperities (radius 5 km), and a viscous half (10×40 km) which slipped during the mainshock, but where microearthquakes and aftershocks are not common.  相似文献   

9.
An earthquake with local magnitude (ML) 5.2 occurred February 18, 1996 in the eastern Pyrenees (France) near the town of Saint-Paul de Fenouillet. This event is the first of this magnitude in France to be well recorded instrumentally. Less than 24 hours after the main shock, we installed a temporary network of 30 seismological stations in the epicentral area to record the aftershock sequence. In this paper, we analyse the main shock and present the 37 largest aftershocks (1.8 Ml 3.4) in the two months following the main shock. These events are located using data from the permanent Pyrenean seismological network and the temporary network when available. We also determined eight fault plane solutions using the P-wave first motions. The main shock and the aftershocks are located inside the small Agly massif. This Hercynian structure sits some 8 km north of the North Pyrenean Fault, which is usually considered to be the suture between the Iberian and Eurasian plates. The mechanism of the main shock is a left-lateral strike-slip on an E–W trending fault. The fault plane solutions of the aftershocks are mostly E–W striking reverse faults, in agreement with the general north-south shortening of the Pyrenees. The aftershocks located down to 11 km depth, indicating that the Agly massif is deeply fractured. The main interpretations of these results are: (i) The main shock involved an E–W trending fault inside the highly fractured Agly massif, relaying the North Pyrenean Fault which had, at least in the last 35 years, a poor seismic activity along this segment; (ii) The Saint-Paul de Fenouillet syncline to the north and the North Pyrenean Fault to the south delimit a 15 km wide senestral shear zone. Such a structure is also suggested by the highly fractured pattern of the Agly massif and by small en echelon faults and secondary folds in the Saint-Paul de Fenouillet syncline; (iii) we suggest that the North Pyrenean Frontal Thrust, located less than 10 km north of the Agly massif, has a ramp geometry at depth below the Agly massif.  相似文献   

10.
The western border of South America is one of the most important seismogenic regions in the world. In this region the most damaging earthquake ever recorded occurred. In June 23rd, 2001, another very strong earthquake (Mw = 8.1–8.2) occurred and produced death and damages in the whole southern region of Peru. This earthquake was originated by a friction process between Nazca and South American plates and affected an area of about 300 km × 120 km defined by the distribution of more than 220 aftershocks recorded by a local seismic network that operated 20 days. The epicenter of the main shock was localized in the northwestern extremity of the aftershock area, which suggests that the rupture propagated towards the SE direction. The modeling of P-wave for teleseismic distances permitted to define a focal mechanism of reverse type with NW-SE oriented nodal planes and a possible fault plane moving beneath almost horizontally in NE direction. The source time function (STF) suggests a complex process of rupture during 85 sec with 2 successive sources. The second one of greater size, and located approximately 100–120 km toward the SE direction was estimated to have a rupture velocity of about 2 km/sec on a 28°-dipping plane to the SE (N135°). A second event happened 45 sec after the first one with an epicenter 130km farther to the SE and a complex STF. This event and the second source of the main shock caused a Tsunami with waves from 7 to 8 meters that propagated almost orthogonally to the coast line, by affecting mainly the Camaná area.Three of all the aftershocks presented magnitudes greater or equal to Mw = 6.6, two of them occurred in front of the cities of Ilo and Mollendo (June 26th and July 7th) with focal mechanisms similar to the main seismic event. The aftershock of July 5th shows a normal mechanism at a depth of 75 km, and is therefore most likely located within the subducting Nazca plate and not in the coupling. The aftershocks of June 26th (Mw = 6.6) and July 5th (Mw = 6.6) show simple short duration STF. The aftershock of July 7th (Mw = 7.5) with 27-second duration suggests a complex process of energy release with the possible occurrence of a secondary shock with lower focal depth and focal mechanism of inverse type with a great lateral component. Simple and composed focal mechanisms were elaborated for the aftershocks and all have similar characteristics to the main earthquake.The earthquake of June 23rd caused major damages in the whole southern Peru. The damage in towns of Arequipa, Moquegua allow to consider maximum intensities from 6 to 7 (MSK79). In Alto de la Alianza and Ciudad Nueva zones from Tacna, the maximum intensity was of 7 (MSK79).  相似文献   

11.
本文采用双差定位法对2017年8月8日至10月31日期间四川九寨沟MS7.0主震及5200个余震序列进行相对定位,得到4036个重定位地震事件.采用中国区域地震台网观测到的宽频带垂直分向波形数据和W震相反演方法,得到了主震震源机制解.重定位结果显示,余震序列分别沿NNW和SSE两个方向扩展,展布长度约58 km,且这些余震主要集中在22 km深度之上.余震分布的另一个重要特点是具有分区特性,即在主震NNW方向约5 km处存在明显的西北和东南两区余震活动分界线;西北区的余震由深至浅具有较好连续性,而东南区却在约10 km深度处存在不连续性.余震分布的这种分区特征,说明九寨沟地震震源区的地壳结构存在强烈的不均匀性.余震分布与主震破裂特征的一致性,证实了我们定位结果的可靠性.主震的震源机制解展示出节面Ⅰ的走向/倾角/滑动角分别为246°/83.7°/-177°,而节面Ⅱ的走向/倾角/滑动角为155.7°/87.1°/-6.3°,最佳质心深度为15.5 km,矩震级MW为6.5.根据余震分布较为垂直和主震震源机制解两节面的倾角均在80°以上,并结合野外地质调查结果,推测此次九寨沟地震为与节面Ⅱ参数相近的一次高角度的左旋走滑型事件.  相似文献   

12.
The North Anatolian fault zone that ruptured during the mainshock of theM 7.4 Kocaeli (Izmit) earthquake of 17 August 1999 has beenmonitored using S wave splitting, in order to test a hypothesisproposed by Tadokoro et al. (1999). This idea is based on the observationof the M 7.2 1995 Hyogo-ken Nanbu (Kobe) earthquake, Japan.After the Hyogo-ken Nanbu earthquake, a temporal change was detectedin the direction of faster shear wave polarization in 2–3 years after the mainshock (Tadokoro, 1999). Four seismic stations were installed within andnear the fault zone at Kizanlik where the fault offset was 1.5 m, about80 km to the east of the epicenter of the Kocaeli earthquake. Theobservation period was from August 30 to October 27, 1999. Preliminaryresult shows that the average directions of faster shear wave polarization attwo stations were roughly parallel to the fault strike. We expect that thedirection of faster shear wave polarization will change to the same directionas the regional tectonic stress reflecting fault healing process. We havealready carried out a repeated aftershock observation at the same site in2000 for monitoring the fault healing process.  相似文献   

13.
2022年1月8日青海省海北州门源县发生MS6.9地震,震后产生了长约22 km的地表破裂带,青海、甘肃和宁夏等多地震感强烈。本文基于区域地震台网资料,通过多阶段定位方法对门源MS6.9地震早期序列(2022年1月8日至12日)进行了重定位,并利用gCAP方法反演了主震和MS≥3.4余震的震源机制和震源矩心深度,计算了现今应力场体系在门源MS6.9地震震源机制两个节面产生的相对剪应力和正应力。结果表明:门源MS6.9地震的初始破裂深度为7.8 km,震源矩心深度为4 km,地震序列的优势初始破裂深度主要介于7—8 km之间,而MS≥3.4余震的震源矩心深度为3—7 km;该地震序列的震源深度剖面显示震后24个小时内的地震序列长度约为25 km,与地表破裂带的长度大体一致,整体地震序列长度约为30 km,其中1月8日MS6.9主震和MS5.1余震位于余震区西段,1月12日MS5.2余震位于余震区东段。2022年1月8日门源MS6.9主震的震源机制解节面Ⅰ为走向290°、倾角81°、滑动角16°,节面Ⅱ为走向197°、倾角74°、滑动角171°,根据余震展布的总体趋势估计断层面走向为290°,表明此次地震为近乎直立断层面上的一次左旋走滑型事件;MS≥3.4余震的震源机制解显示这些地震主要为走滑型地震,P轴走向从余震区西段到东段之间大体呈现NE向到EW向的变化。现今应力场体系在门源MS6.9主震震源机制解节面Ⅰ上产生的相对剪应力为0.638,而在节面Ⅱ上的相对剪应力为0.522,表明这两个节面均非构造应力场的最大释放节面,这与2016年门源MS6.4地震逆冲型震源机制为构造应力场的最优释放节面有着明显差异。结合地质构造、震源机制和余震展布,2022年1月8日门源MS6.9主震的发震构造可能为冷龙岭断裂西段,其地震断层错动方式为左旋走滑。根据重定位结果、震级-破裂关系以及剪应力结果,本文认为门源地区存在一定的应力积累且应力未得到充分释放,该地区仍存在发生强震的危险。   相似文献   

14.
We conducted moment tensor inversion and studied source rupture process for M S=7.9 earthquake occurred in the border area of China, Russia and Mongolia on September 27 2003, by using digital teleseismic P-wave seismograms recorded by long-period seismograph stations of the global seismic network. Considering the aftershock distribution and the tectonic settings around the epicentral area, we propose that the M S=7.9 earthquake occurred on a fault plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of M S=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tensor is M 0=0.97×1020 N·m. Rupture mainly occurred on the shallow area with 110 km long and 30 km wide, the location in which the rupture initiated is not where the main rupture took place, and the area with slip greater than 0.5 m basically lies within 35 km deep middle-crust under the earth surface. The maximum static slip is 3.6 m. There are two distinct areas with slip larger than 2.0 m. We noticed that when the rupture propagated towards northwest and closed to the area around the M S=7.3 hypocenter, the slip decreased rapidly, which may indicate that the rupture process was stopped by barriers. The consistence of spatial distribution of slip on the fault plane with the distribution of aftershocks also supports that the rupture is a heterogeneous process owing to the presence of barriers.  相似文献   

15.
We study source properties of the main earthquakes of the 1997–98 Umbria-Marche (central Italy) sequence by analysis of regional-distanceand teleseismic long period and broadband seismograms recorded by MedNet and IRIS/GSN stations. We use a modified Harvardcentroid-moment tensor (CMT) algorithm to allow inversion of long period waveforms, primarily Rayleigh and Love waves, for small earthquakes (4.2 MW 5.5) at local to regional distances (<15°). For the seven largest earthquakes (MW>5.2) moment tensors derived from local and regional data agree well with those determined using teleseismic waveforms and standard methods of analysis. We also determine moment tensors for a foreshock and 12 other aftershocks, that were too small for global analysis. Focal depth and rupture propagation are analyzed for three largest shocks by inversion of teleseismic broadband body waves. The earthquakes are generally located at shallow depth (5 km or shallower) and are characterized by normal faulting mechanisms, with a NE-SW tension axis. The presumed principal fault plane dips at a shallow angle towards the SW. Only one of the events analyzed has an entirely different faulting geometry, indicating instead right-lateral strike-slip motion on a plane approximately E-W, or left-lateral faulting on a N-S plane. The other significant exception to the regular pattern of mechanisms is represented by the March 26, 1998, event, located at 51 km depth. Its connection with the shallow earthquake sequence is unclear and intriguing. The time evolution of the seismic sequence is unusual,with the mainshock accounting for only approximately 50% of the total moment release. The broadband teleseismic waveforms of the main, September 26, 09:40, earthquake are very complicated for the size of the event and suggest a complex rupture. In our favored source model, rupture initiated at 5 km depth, propagated updip and was followed, 3 seconds later, by a shallower subevent with a slightly rotated mechanism.  相似文献   

16.
More than 1000 aftershocks were recorded within a month after the occurrence of the ML 5.5, 5 August 2014 Orkney earthquake. The events were relocated using the double difference method as part of an effort to identify the fault which might be the source of the events. A north–south trend of seismicity was revealed by the relocated events, with a diffuse cluster to the north of the main event. A depth profile shows these two clusters: one at a depth of about 2 km to the north of the main event and the other at depth between 3 and 6 km south of the main event. Focal mechanism solutions of 18 aftershocks were determined using first motion polarities from seismic stations of the Council for Geoscience cluster networks. Stress inversion analysis results from the focal mechanism solutions show a dominant extensional stress field in the region; the main event had a strike-slip fault plane solution. This is consistent with the regional stress field which is predominantly related to the East African rift system. It is possible that the occurrence of the main event triggered seismicity on shallower faults within the mining horizons oriented in a different direction to the fault on which the main event occurred. The area has a complex heterogeneous faulting structure as indicated by the observed low p values and complex focal mechanism solutions.  相似文献   

17.
2014年8月3日云南鲁甸6.5级地震序列破裂过程研究   总被引:2,自引:0,他引:2       下载免费PDF全文
本文利用主地震相对定位法,对2014年鲁甸MS6.5地震序列中的8月3日—9月30日地震进行了重新定位,借助于时空图像分析方法,对本次地震破裂过程进行了分析,得到如下结果:(1)2014年鲁甸MS6.5地震主要沿NW向破裂,存在沿NE向破裂的成分,但是NE向破裂并不明显;(2)地震破裂时,主要从主震震中处往ES方向传播,破裂带长度大约为10km,破裂面近乎直立;(3)余震活动主要集中于主震上方区域,震源深度大于主震的余震稀少.根据上述结果,结合当地的地震构造情况和本次地震的震源机制解,分析表明,本次地震的破裂面为NW向,其发震断层为包谷垴—小河断裂的可能性很大.  相似文献   

18.
利用IRIS全球地震台网30°—90°的长周期P波记录, 反演了2008年3月21日新疆于田MS7.3地震的破裂过程, 得到了此次地震的破裂时空图像, 并初步分析了余震分布与主震断层滑动量分布的关系. 结果表明, 此次地震是一个破裂尺度长100 km、 宽20 km的破裂过程; 破裂持续时间约为40 s, 在第13 s时地震矩释放速率达到峰值, 断层面上一次大的破裂行为几乎构成了整个地震的破裂过程. 地震所释放的标量地震矩为4.23×1019 N·m, 其矩震级为MW7.02. 由主震断层静态滑动量分布图可以看出, 整个破裂区以正断左旋走滑为主, 显示出双侧破裂特征, 最大滑动量为151 cm, 位于初始破裂点沿断层出露地表处. 精定位后的余震在断层面上的投影结果显示, 80%以上ML4.0—4.9余震和全部ML≥5.0余震均发生在初始破裂点附近区域及其南西方向, 位于主震破裂滑动位移量迅速减小的区域, 反映了震源区介质强度的不均匀性.   相似文献   

19.
2015年7月3日皮山6.5级地震发震构造初步研究   总被引:11,自引:1,他引:10       下载免费PDF全文
李金  王琼  吴传勇  向元 《地球物理学报》2016,59(8):2859-2870
基于新疆区域数字地震台网记录,采用CAP(Cut and Paste)方法反演了2015年7月3日皮山6.5级主震和部分MS3.6以上余震的震源机制解和震源深度;采用HypoDD方法重新定位了序列中ML2.5以上地震序列的震源位置,并利用小震分布和区域应力场拟合了可能存在的发震断层面参数.基于上述研究,综合分析了皮山6.5级地震序列的震源深度、震源机制和震源破裂面特征,探讨可能的发震构造.结果显示,利用CAP方法得到的最佳双力偶机制解节面I:走向280°/倾角60°/滑动角90°;节面Ⅱ:走向100°/倾角30°/滑动角90°,矩心深度19 km,表明该地震为一次逆冲型地震事件.大部分MS3.6以上余震震源机制与主震具有一定的相似性.双差定位结果显示,ML2.5以上的余震序列主要分布在主震的西南方向,深度主要分布在0~15 km范围内,余震分布显示出与发震构造泽普隐伏断裂一致的倾向南西的特征.利用小震分布和区域应力场拟合得到发震断层参数为走向104°/倾角34°/滑动角94°,该结果与主震震源机制解中节面Ⅱ的滑动角较为接近,绝大多数余震发生在断层面附近10 km左右的区域.根据本研究得到的震源机制、精定位结果以及利用小震分布和区域应力场拟合得到的断层面的参数,结合震源区地质构造情况,初步给出了此次皮山6.5级地震的发震模式.  相似文献   

20.
基于InSAR技术,利用欧空局升降轨Sentinel-1A/IW宽幅数据,获取了2017年8月8日四川九寨沟7.0级地震InSAR同震形变场,并以升降轨InSAR观测结果为约束,反演了断层滑动分布,基于三种不同接收断层计算了同震库仑应力变化.结果表明,同震形变场发生在塔藏断裂、岷江断裂和虎牙断裂交汇的三角地带,升降轨干涉位移均显示本次地震的形变场影响范围约为50 km×50 km,形变场长轴方向为NW向,升降轨观测的形变量相反,反映断层运动性质以走滑运动为主,升降轨数据观测得到的最大LOS (Line of Sight,视线向)形变量分别为~22 cm和~14 cm.非对称形变场反映出断层两侧的运动差异.反演结果显示,最大滑动量约为1 m,平均滑动角为-9°,矩震级为MW6.5,地震破裂主要集中在地下1~15 km深度范围内,但整体而言本次地震破裂较为充分,基本将该区域1973年及1976年4次 > MW6.0地震的破裂空区完全破裂.考虑到塔藏断裂和虎牙断裂的运动性质,可初步判定发震断层为虎牙断裂北侧延伸分支.基于三种不同接收断层模型的同震库仑应力变化计算结果反映出该区域以应力释放为主,进一步触发较大走滑型余震的可能性不大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号