首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A unique sapphirine + orthopyroxene + quartz granulite from Mt. Riiser-Larsen in the Tula Mountains of Enderby Land, East Antarctica, preserves two generations of coarse and texturally equilibrated orthopyroxene and sapphirine coexisting with quartz. Initial subhedral orthopyroxene porphyroblasts retain core compositions enriched in Al2O3 (12.2 ± 0.5 wt%) compared with their rims and finer orthopyroxene (9.6 ± 0.5 wt% Al2O3) that forms granoblastic textures with sapphirine. Sapphirine and quartz also form symplectites on and along cleavage planes within orthopyroxene. These compositional and textural features are consistent with the reaction [2MgAl2SiO6=Mg2Al4 SiO10 + SiO2] leading to the formation of sapphirine + quartz at the expense of aluminous orthopyroxene. Calculations in the MAS and FMAS systems and theoretical considerations involving the phases enstatite, sapphirine, sillimanite, quartz and cordierite indicate that the reaction above progresses from left to right with decreasing temperature in the orthopyroxene + sapphirine + quartz field, at pressures of ca. 8–10 kbar. The temperature difference required to account for the ca. 2.5–3 wt% decrease in Al2O3 in orthopyroxene is at least 60–80 °C, and implies peak temperatures for the initial assemblage of at least 1120 °C if the second granoblastic assemblage equilibrated at 1040 °C, the P–T conditions required by the sapphirine + quartz association and other P–T-sensitive assemblage indicators in the Napier Complex. It is not possible to distinguish whether the two assemblages are simply related by cooling and re-equilibration or reflect a polyphase evolution involving the superposition of a second UHT event on an earlier, even higher temperature, UHT metamorphism. Preliminary thermodynamic modelling of the reaction above incorporating the observed range in orthopyroxene Al2O3 zoning indicates that present estimates for the entropy of high-temperature sapphirine are potentially too high by 15–18% compared with sapphirine entropy estimates that are consistent with MAS system experiments. The Mt. Riiser-Larsen sapphirine–quartz rocks preserve the first definitive record of regional metamorphic temperatures in excess of 1120 °C in the Napier Complex, or indeed any UHT granulite terrain worldwide. Similarly high peak temperatures may be retrieved from detailed studies of sapphirine–quartz granulites from other regions, further expanding the thermal realm of crustal metamorphism, but progress will critically depend on the experimental acquisition of new entropy data for sapphirine. Received: 3 September 1998 / Accepted: 8 November 1999  相似文献   

2.
Orthopyroxene porphyroblasts zoned to interiors abnormally low in Al and Cr and containing numerous inclusions of olivine occur in some spinel peridotite xenoliths from the Colorado Plateau. Rims of these orthopyroxene grains contain 2.5–3.0 wt% Al2O3, consistent with equilibration in spinel peridotite at temperatures near 850 °C, but interiors contain as little as 0.20 wt% Al2O3 and 0.04 wt% Cr2O3. The Al-poor compositions are inferred to have equilibrated in chlorite peridotite, before porphyroblast growth during heating and consequent reactions that eliminated talc, tremolite, and chlorite. The distinctive orthopyroxene textures are inferred to have formed during reaction of talc and olivine. Rare intergrowths of orthopyroxene plus diopside are attributed to olivine-tremolite reaction. Al and Cr have gradients at grain rims that appear little modified by diffusion, but divalent elements are almost homogeneous throughout the porphyroblasts. Judging from the relative gradients, diffusion of Ca was at least 100 times faster than that of Al and Cr at the temperatures near and below 850 °C. Diffusion of Al and Cr was most effective along subgrain boundaries, and along these boundaries it appears to have been at least ten times faster than within the lattice: diffusion along such boundaries may be a dominant mechanism for re-equilibration of orthopyroxene at low mantle temperatures. Orthopyroxene with similar low Al and Cr occurs in chlorite peridotite xenoliths from the Navajo field, 300 km east of the Grand Canyon localities, and in spinel peridotite xenoliths from the Sierra Nevada, 500 km west across the extended Basin and Range province. Chlorite peridotite may therefore have been a significant minor component in much of the mantle lithosphere of western North America, although evidence for it would be erased at the higher temperatures recorded by xenoliths from the Basin and Range. Chemical changes during hydration may have been important in the evolution of these mantle volumes, and the case for addition of Sr is particularly strong. Dehydration reactions during heating could have influenced patterns of extension and crustal magmatism. Received: 1 July 1996 / Accepted: 2 December 1996  相似文献   

3.
The phase relations in the Fe2SiO4–Fe3O4 binary system have been determined between 900 and 1200 °C and from 2.0 to 9.0 GPa. At low to moderate pressures magnetite can accommodate significant Si, reaching XFe2SiO4=0.1 and 0.2 at 3.0 and 5.0 GPa respectively, with temperature having only a secondary influence. At pressures below 3.5 GPa at 900 °C and 2.6 GPa at 1100 °C magnetite-rich spinel coexists with pure fayalite. This assemblage becomes unstable at higher pressures with respect to three intermediate phases that are spinelloid polytypes isostructural to spinelloids II, III and V in the Ni-aluminosilicate system. The phase relations between the spinelloid phases are complex. At pressures above ≈8.0 GPa at 1100 °C, the spinelloid phases give way to a complete spinel solid solution between Fe3O4 and Fe2SiO4. The presence of small amounts of Fe3+ stabilises the spinel structure to lower pressures compared to the Fe2SiO4 end member. This means that the fayalite–γ-spinel transition is generally unsuitable as a pressure calibration point for experimental apparatuses. The molar volumes of the spinel solid solutions vary nearly linearly with composition, having a small negative deviation from ideal behaviour described by Wv=−0.15(6) cm3. Extrapolation yields V°(298) = 41.981(14) cm3 for the Fe2SiO4-spinel end member. The cell parameters and molar volumes of the three spinelloid polytypes vary systematically with composition. Cation disorder is an important factor in stabilising the spinelloid polytypes. Each polytype exhibits a particular solid solution range that is directly influenced by the interplay between its structure and the cation distributions that are energetically favourable. In the FeO–FeO1.5–SiO2 ternary system Fe7SiO10 (“iscorite”) coexists with the spinelloid phases at intermediate pressures on the SiO2-poor, or Fe3+-poor side of the Fe2SiO4–Fe3O4 join. On the SiO2 and Fe3+-rich side of the join, orthopyroxene or high-P clinopyroxene coexists with the spinelloids and spinel solid solutions. The assemblage pyroxene+spinel+SiO2 is stable over a wide range of bulk composition. The stability of spinelloid III is of particular petrologic interest since this phase has the same structure as (Mg,Fe)2SiO4–wadsleyite, indicating that Fe3+ can be easily incorporated in this important phase in the Earth's transition zone, in addition to silicate spinel. This has important implications for the redox state of the Earth's transition zone and for the depth at which the olivine to spinel transition occurs in the mantle, potentially leading to a shift in the “410 km” seismic discontinuity to shallower depths depending on the prevailing redox state. In addition, a coupled tetrahedral substitution of Fe3++OH for Si+O could provide a further mechanism for the incorporation of H2O in wadsleyite. Received: 10 January 2000 / Accepted: 12 May 2000  相似文献   

4.
Two kimberlite pipes in Elliott County contain rare ultramafic xenoliths and abundant megacrysts of olivine (Fo85–93), garnet (0.21–9.07% Cr2O3), picroilmenite, phlogopite, Cr-poor clinopyroxene (0.56–0.88% Cr2O3), and Cr-poor orthopyroxene (<0.03–0.34% Cr2O3) in a matrix of olivine (Fo88–92), picroilmenite, Cr-spinel, magnetite, perovskite, pyrrhotite, calcite, and hydrous silicates. Rare clinopyroxene-ilmenite intergrowths also occur. Garnets show correlation of mg (0.79–0.86) and CaO (4.54–7.10%) with Cr2O3 content; the more Mg-rich garnets have more uvarovite in solution. Clinopyroxene megacrysts show a general decrease in Cr2O3 and increase in TiO2 (0.38–0.56%) with decreasing mg (0.87–0.91). Clinopyroxene megacrysts are more Cr-rich than clinopyroxene in clinopyroxene-ilmenite intergrowths (0.06–0.38% Cr2O3) and less Cr-rich than peridotite clinopyroxenes (1.39–1.46% Cr2O3). Orthopyroxene megacrysts and orthopyroxene inclusions in olivine megacrysts form two populations: high-Ca, high-Al (1.09–1.16% CaO and 1.16–1.18% Al2O3) and low-Ca, low-Al (0.35–0.46% CaO and 0.67–0.74% Al2O3). Three orthopyroxenes belonging to a low-Ca subgroup of the high-Ca, high-Al group were also identified (0.86–0.98% CaO and 0.95–1.01% Al2O3). The high-Ca, high-Al group (Group I) has lower mg (0.88–0.90) than low-Ca, low-Al group (Group II) with mg=0.92–0.93; low mg orthopyroxenes (Group Ia) have lower Cr2O3 and higher TiO2 than high mg orthopyroxenes (Group II). The orthopyroxene megacrysts have lower Cr2O3 than peridotite orthopyroxenes (0.46–0.57% Cr2O3). Diopside solvus temperatures indicate equilibration of clinopyroxene megacrysts at 1,165°–1,390° C and 1,295°–1,335° C for clinopyroxene in clinopyroxene-ilmenite intergrowths. P-T estimates for orthopyroxene megacrysts are bimodal: high-Ca, high-Al (Group I) orthopyroxenes equilibrated at 1,165°–1,255° C and 51–53 kb (± 5kb) and the low-Ca, low-Al (Group II) orthopyroxenes equilibrated at 970°–1,020°C and 46–56 kb (± 5kb). Garnet peridotites equilibrated at 1,240°–1,360° C and 47–49 kb. Spinel peridotites have discordant temperatures of 720°–835° C (using spinel-olivine Fe/Mg) and 865°–1,125° C (Al in orthopyroxene).Megacrysts probably precipitated from a fractionating liquid at >150 km depth. They are not disaggregated peridotite because: (1) of large crystal size (up to 1.5 cm), (2) compositions are distinctly different from peridotite phases, and (3) they display fractionation trends. The high mg, low T orthopyroxenes and the clustering of olivine rims near Fo89–90 reflect liquid changes to higher MgO contents due to (1) assimilation of wall-rock and/or (2) an increase in Fe3+/Fe2+ and subsequently MgO/FeO as a result of an increase in f o.  相似文献   

5.
Experiments have been performed on the system MgO-SiO2-Cr-O at 0-2.88 GPa and 1100-1450℃,focusing on the stability of Cr^2 in olivine(O1),orthopyroxene(Opx) and spinel(Sp) and its partitioning between these phases.Analytical reagent grade chemicals,MgO,SiO2,Cr2O3.and Cr were used to make starting mixtures.Excess Cr(50%) was then added in these mixtures to ensure that the resultant phases were in equilibrium with the metal Cr.Flux of BaO B2O3(%) was added for facilitating experimental equilibrium and crystal growth.Cr was used as capsule material.All phases in the product were identified by X-ray and analyzed by electron microprobe,The contents of CrO in the different phases(O1,Opx and Sp)were calculated according to stoichiometry.The obtained results of calculation indicate that Cr^3 in Ol and Opx is negligible.The experimental results show;(a) with increasing temperature and decreasing pressure,Cr^2 solubility in Ol,Opx and Sp increases;(b) with in creasing temperature,the partitioning coefficient of Mg and Cr^2 between Ol and Opx decreases,that between Opx and Sp increases,and that between Ol and Sp remains almost unchanged;(c) the effect of pressure on all partitioning coefficients is negligible.  相似文献   

6.
Summary ?Hydrothermal experiments to synthesize pumpellyite group minerals of the pumpellyite–okhotskite series and to investigate their stability have been carried out at 200, 300 and 400 MPa P fluid and 250–500 °C by using cold-seal pressure vessels and solid buffers of MnO2–Mn2O3, Cu2O–CuO and Cu2O–Cu buffer assemblages. Okhotskite and pumpellyite rich in the okhotskite component crystallized from an oxide mixture starting material of Ca4MgMn3+ 3Al2Si6O24.5-oxide+excess H2O at P fluid of 200, 300 and 400 MPa and temperatures of 300 and 400 °C. However, a single phase of okhotskite was not produced, and associated piemontite, hausmannite, wollastonite, clinopyroxene, corundum, braunite–neltnerite solid solution and alleghanyite also formed. Mn-pumpellyite of the okhotskite–pumpellyite join occurs as aggregates of needle crystals, rounded grains or flaky crystals. Chemical compositions are variable and range from pumpellyite-(Mn2+) to okhotskite: 31–36 SiO2, 13–21 Al2O3, 12–25 total Mn2O3, 0.6–4 MgO and 20–24 wt.% CaO. Reconnaissance experiments using a starting material of synthetic Ca2Mn3+Al2Si3O12(OH)-piemontite at 300 MPa and temperatures of 250, 300, 400 and 500 °C indicate that Mn-rich pumpellyite can crystallize from piemontite at lower temperatures than the stability field of piemontite. The Mn-rich pumpellyite was accompanied by garnet, wollastonite and alleghanyite. The chemical compositions of the Mn-pumpellyites are 32–36 SiO2, 18–27 Al2O3, 8–18 total Mn2O3 and 20–23 wt.% CaO. This study shows that the stability fields of piemontite, piemontite+Mn-pumpellyite, and Mn-pumpellyite range in this order with decreasing temperature under high fO2 conditions. The maximum stability temperature of Mn-rich pumpellyite lies between 400 and 500 °C at 200–400 MPa in high fO2 conditions. Received March 3, 2000; revised version accepted December 28, 2001  相似文献   

7.
A selected set of five different kyanite samples was analysed by electron microprobe and found to contain chromium between <0.001 and 0.055 per formula unit (pfu). Polarized electronic absorption spectroscopy on oriented single crystals, R1, R2-sharp line luminescence and spectra of excitation of λ3- and λ4-components of R1-line of Cr3+-emission had the following results: (1) The Fe2+–Ti4+ charge transfer in c-parallel chains of edge connected M(1) and M(2) octahedra shows up in the electronic absorption spectra as an almost exclusively c(||Z′)-polarized, very strong and broad band at 16000 cm−1 if <, in this case the only band in the spectrum, and at an invariably lower energy of 15400 cm−1 in crystals with  ≥ . The energy difference is explained by an expansion of the Of–Ok, and Ob–Om edges, by which the M(1) and M(2) octahedra are interconnected (Burnham 1963), when Cr3+ substitutes for Al compared to the chromium-free case. (2) The Cr3+ is proven in two greatly differing crystal fields a and b, giving rise to two sets of bands, derived from the well known dd transitions of Cr3+ 4A2g4T2g(F)(I), →4T1g(F)(II), and →4T1g(P)(III). Band energies in the two sets a and b, as obtained by absorption, A, and excitation, E, agree well: I: 17300(a, A), 17200(a, E), 16000(b, A), 16200(b, E); II: 24800(a, A), 24400(a, E); 22300(b, A), 22200(b, E); III: 28800(b,A) cm−1. Evaluation of crystal field parameters from the bands in the electronic spectra yield Dq(a)=1730 cm−1, Dq(b)=1600 cm−1, B(a)=790 cm−1, B(b)=620 cm−1 (errors ca. ±10 cm−1), again in agreement with values extracted from the λ3, λ4 excitation spectra. The CF-values of set a are close to those typical of Cr3+ substituting for Al in octahedra of other silicate minerals without constitutional OH as for sapphirine, mantle garnets or beryl, and are, therefore, interpreted as caused by Cr3+ substituting for Al in some or all of the M(1) to M(4) octaheda of the kyanite structure, which are crystallographically different but close in their mean Al–O distances, ranging from 1.896 to 1.919 A (Burnham 1963), and slight degrees of distortion. Hence, band set a originates from substitutive Cr3+ in the kyanite structural matrix. The CF-data of Cr3+ type b, expecially B, resemble those of Cr3+ in oxides, especially of corundum type solid solutions or eskolaite. This may be interpreted by the assumption that a fraction of the total chromium contents might be allocated in a precursor of a corundum type exsolution. Received: 3 January 1997 / Revised, accepted: 2 May 1997  相似文献   

8.
The best known cause for colors in insulating minerals is due to transition metal ions as impurities. As an example, Cr3+ is responsible for the red color of ruby (α-Al2O3:Cr3+) and the green color of eskolaite (α-Cr2O3). Using X-ray absorption measurements, we connect the colors of the Cr x Al2−x O3 series with the structural and electronic local environment around Cr. UV–VIS electronic parameters, such as the crystal field and the Racah parameter B, are related to those deduced from the analysis of the isotropic and XMCD spectra at the Cr L2,3-edges in Cr0.07Al1.93O3 and eskolaite. The Cr–O bond lengths are extracted by EXAFS at the Cr K-edge in the whole Cr x Al2−x O3 (0.07≤x< 2) solid solution series. The variation of the mean Cr–O distance between Cr0.07Al1.93O3 and α-Cr2O3 is evaluated to be 0.015 Å (≈1%). The variation of the crystal field in the Cr x Al2−x O3 series is discussed in relation with the variation of the averaged Cr–O distances.  相似文献   

9.
Summary. ?Ca-tourmaline has been synthesized hydrothermally in the presence of Ca(OH)2 and CaCl2-bearing solutions of different concentration at T = 300–700 °C at a constant fluid pressure of 200 MPa in the system CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl. Synthesis of tourmaline was possible at 400 °C, but only above 500 °C considerable amounts of tourmaline formed. Electron microprobe analysis and X-ray powder data indicate that the synthetic tourmalines are essentially solid solutions between oxy-uvite, CaMg3- Al6(Si6O18)(BO3)3(OH)3O, and oxy-Mg-foitite, □(MgAl2)Al6(Si6O18)(BO3)3(OH)3O. The amount of Ca ranges from 0.36 to 0.88 Ca pfu and increases with synthesis temperature as well as with bulk Ca-concentration in the starting mixture. No hydroxy-uvite, CaMg3(MgAl5)(Si6O18)(BO3)3(OH)3(OH), could be synthesized. All tourmalines have < 3 Mg and > 6 Al pfu. The Al/(Al + Mg)-ratio decreases from 0.80 to 0.70 with increasing Ca content. Al is coupled with Mg and Ca via the substitutions Al2□Mg−2Ca−1 and AlMg−1H−1. No single phase tourmaline could be synthesized. Anorthite ( + quartz in most runs) has been found coexisting with tourmaline. Other phases are chlorite, tremolite, enstatite or cordierite. Between solid and fluid, Ca is strongly fractionated into tourmaline ( + anorthite). The concentration ratio D = Ca(fluid)/Ca(tur) increases from 0.20 at 500 °C up to 0.31 at 700 °C. For the assemblage turmaline + anorthite + quartz + chlorite or tremolite or cordierite, the relationship between Ca content in tourmaline and in fluid with temperature can be described by the equation (whereby T = temperature in °C, Ca(tur) = amount of Ca on the X-site in tourmaline, Ca( fluid) = concentration of Ca2+ in the fluid in mol/l). The investigations may serve as a first guideline to evaluate the possibility to use tourmaline as an indicator for the fluid composition.
Zusammenfassung. ?Synthese von Ca-Turmelin im System CaO-MgO-Al 2 O 3 -SiO 2 -B 2 O 3 -H 2 O-HCl Im System CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl wurde Ca-Turmalin hydrothermal aus Ca(OH)2 and CaCl2-haltigen L?sungen bei T = 300–700 °C und einem konstanten Fluiddruck von 200 MPa synthetisiert. Die Synthese von Turmalin war m?glich ab 400 °C, aber nur oberhalb von 500 °C bildeten sich deutliche Mengen an Turmalin. Elektronenstrahl-Mikrosondenanalysen und R?ntgenpulveraufnahmen zeigen, da? Mischkristalle der Reihe Oxy-Uvit, CaMg3Al6(Si6O18)(BO3)3(OH)3O, und Oxy-Mg-Foitit, □(MgAl2)Al6(Si6O18)(BO3)3(OH)3O gebildet wurden. Der Anteil an Ca variiert zwischen 0.36 und 0.88 Ca pfu und nimmt mit zunehmender Synthesetemperatur und zunehmender Ca-Konzentration im System zu. Hydroxy-Uvit, CaMg3(MgAl5) (Si6O18)(BO3)3(OH)3(OH), konnte nicht synthetisiert werden. Alle Turmaline haben < 3 Mg und > 6 Al pfu. Dabei nimmt das Al/(Al + Mg)- Verh?ltnis mit zunehmendem Ca-Gehalt von 0.80 auf 0.70 ab. Al ist gekoppelt mit Mg und Ca über die Substitutionen Al2□Mg−2Ca−1 und AlMg−1H−1. Einphasiger Turmalin konnte nicht synthetisiert werden. Anorthit (+ Quarz in den meisten F?llen) koexistiert mit Turmalin. Andere Phasen sind Chlorit, Tremolit, Enstatit oder Cordierit. Ca zeigt eine deutliche Fraktionierung in den Festk?rpern Turmalin (+ Anorthit). Das Konzentrationsverh?ltnis D = Ca(fluid)/Ca(tur) nimmt von 0.20 bei 500 °C auf 0.31 bei 700 °C zu. Für die Paragenese Turmalin + Anorthit + Quarz mit Chlorit oder Tremolit oder Cordierit gilt folgende Beziehung zwischen Ca-Gehalt in Turmalin und Fluid und der Temperatur: (wobei T = Temperatur in °C, Ca(tur) = Anteil an Ca auf der X-Position in Turmalin, Ca(fluid) = Konzentration von Ca2+ im Fluid in mol/l). Die Untersuchungen dienen zur ersten Absch?tzung, ob Turmalin als Fluidindikator petrologisch nutzbar ist.


Received July 24, 1998;/revised version accepted October 21, 1999  相似文献   

10.
A thermodynamic solution model is developed for minerals whose compositions lie in the two binary systems Mg2SiO4-Fe2SiO4 and Mg2Si2O6-Fe2Si2O6. The formulation makes explicit provision for nonconvergent ordering of Fe2+ and Mg2+ between M1 and M2 sites in orthopyroxenes and non-zero Gibbs energies of reciprocal ordering reactions in both olivine and orthopyroxene. The calibration is consistent with (1) constraints provided by available experimental and natural data on the Fe-Mg exchange reaction between olivine and orthopyroxene ± quartz, (2) site occupancy data on orthopyroxenes including both crystallographic refinements and Mössbauer spectroscopy, (3) enthalpy of solution data on olivines and orthopyroxenes and enthalpy of disordering data on orthopyroxene, (4) available data on the temperature and ordering dependence of the excess volume of orthopyroxene solid solutions, and (5) direct activity-composition determinations of orthopyroxene and olivine solid solutions at elevated temperatures. Our analysis suggests that the entropies of the exchange [Mg(M2)Fe(M1)Fe(M2)Mg(M1)] and reciprocal ordering reactions [Mg(M2)Mg(M1)+ Fe(M2)Fe(M1)Fe(M2)Mg(M1)+Mg(M2)Fe(M1)] cannot differ significantly (± 1 cal/K) from zero over the temperature range of calibration (400°–1300° C). Consideration of the mixing properties of olivine-orthopyroxene solid solutions places tight constraints on the standard state thermodynamic quantities describing Fe-Mg exchange reactions involving olivine, orthopyroxene, pyralspite garnets, aluminate spinels, ferrite spinels and biotite. These constraints are entirely consistent with the standard state properties for the phases-quartz,-quartz, orthoenstatite, clinoenstatite, protoenstatite, fayalite, ferrosilite and forsterite which were deduced by Berman (1988) from an independent analysis of phase equilibria and calorimetric data. In conjunction with these standard state properties, the solution model presented in this paper provides a means of evaluating an internally consistent set of Gibbs energies of mineral solid solutions in the system Mg2SiO4-Fe2SiO4-SiO2 over the temperature range 0–1300° C and pressure interval 0.001–50 kbars. As a consequence of our analysis, we find that the excess Gibbs energies associated with mixing of Fe and Mg in (Fe, Mg)2SiO4 olivines, (Fe, Mg)3Al2Si3O12 garnets, (Fe, Mg)Al2O4 and (Fe, Mg)Fe2O4 spinels, and K(Mg, Fe)3AlSi3O10(OH)2 biotites may be satisfactory described, on a macroscopic basis, with symmetric regular solution type parameters having values of 4.86±0.12 (olivine), 3.85±0.09 (garnet), 1.96±0.13 (spinel), and 3.21±0.29 kcals/gfw (biotite). Applications of the proposed solution model demonstrate the sensitivity of petrologic modeling to activity-composition relations of olivine-orthopyroxene solutions. We explore the consequences of estimating the activity of silica in melts forming in the mantle and we develop a graphical geothermometer/geobarometer for metamorphic assemblages of olivine+orthopyroxene+quartz. Quantitative evaluation of these results suggests that accurate and realistic estimates of silica activity in melts derived from mantle source regions,P-T paths of metamorphism and other intensive variables of petrologic interest await further refinements involving the addition of trace elements (Al3+ and Fe3+) to the thermodynamic formulation for orthopyroxenes.  相似文献   

11.
We present results from low-temperature heat capacity measurements of spinels along the solid solution between MgAl2O4 and MgCr2O4. The data also include new low-temperature heat capacity measurements for MgAl2O4 spinel. Heat capacities were measured between 1.5 and 300 K, and thermochemical functions were derived from the results. No heat capacity anomaly was observed for MgAl2O4 spinel; however, we observe a low-temperature heat capacity anomaly for Cr-bearing spinels at temperatures below 15 K. From our data we calculate standard entropies (298.15 K) for Mg(Cr,Al)2O4 spinels. We suggest a standard entropy for MgAl2O4 of 80.9 ± 0.6 J mol−1 K−1. For the solid solution between MgAl2O4 and MgCr2O4, we observe a linear increase of the standard entropies from 80.9 J mol−1 K−1 for MgAl2O4 to 118.3 J mol−1 K−1 for MgCr2O4.  相似文献   

12.
Low-temperature heat capacity measurements for MgCr2O4 have only been performed down to 52 K, and the commonly quoted third-law entropy at 298 K (106 J K−1 mol−1) was obtained by empirical extrapolation of these measurements to 0 K without considering the magnetic or electronic ordering contributions to the entropy. Subsequent magnetic measurements at low temperature reveal that the Néel temperature, at which magnetic ordering of the Cr3+ ions in MgCr2O4 occurs, is at ∼15 K. Hence a substantial contribution to the entropy of MgCr2O4 has been missed. We have determined the position of the near-univariant reaction MgCr2O4+SiO2=MgSiO3+Cr2O3. The reaction, which has a small positive slope in P-T space, has been bracketed at 100 K intervals between 1273 and 1773 K by reversal experiments. The reaction is extremely sluggish, and lengthy run times with a flux (H2O, BaO-B2O3 or K2O-B2O3) are needed to produce tight reversal brackets. The results, combined with assessed thermodynamic data for Cr2O3, MgSiO3 and SiO2, give the entropy and enthalpy of formation of MgCr2O4 spinel. As expected, our experimental results are not in good agreement with the presently available thermodynamic data. We obtain Δ f H 298=−1759.2±1.5 kJ mol−1 and S 298=122.1±1.0 J K−1 mol−1 for MgCr2O4. This entropy is some 16 J K−1 mol−1 more than the calorimetrically determined value, and implies a value for the magnetic entropy of MgCr2O4 consistent with an effective spin quantum number (S') for Cr3+ of 1/2 rather than the theoretical 3/2, indicating, as in other spinels, spin quenching. Received: 9 May 1997 / Accepted: 28 July 1997  相似文献   

13.
Diffusion coefficients of Cr and Al in chromite spinel have been determined at pressures ranging from 3 to 7 GPa and temperatures ranging from 1,400 to 1,700°C by using the diffusion couple of natural single crystals of MgAl2O4 spinel and chromite. The interdiffusion coefficient of Cr–Al as a function of Cr# (=Cr/(Cr + Al)) was determined as D Cr–AlD 0 exp {−(Q′ + PV*)/RT}, where D 0 = exp{(10.3 ± 0.08) × Cr#0.54±0.02} + (1170 ± 31.2) cm2/s, Q′ = 520 ± 81 kJ/mol at 3 GPa, and V* = 1.36 ± 0.25 cm3/mol at 1,600°C, which is applicable up to Cr# = 0.8. The estimation of the self-diffusion coefficients of Cr and Al from Cr–Al interdiffusion shows that the diffusivity of Cr is more than one order of magnitude smaller than that of Al. These results are in agreement with patterns of multipolar Cr–Al zoning observed in natural chromite spinel samples deformed by diffusion creep.  相似文献   

14.
Subsolidus phase relations have been determined in the systems SiO2-Cr-O and MgO-SiO2-Cr-O in equilibrium with metallic Cr, at 1100 to 1500℃ and 0 to 2.88 GPa. The results show that there are no ternary phases in the SiO2-Cr-O system at these conditions, i.e., only the assemblage eskolaite-Cr-metal-quartz (or tridymite) is found. In the MgO-containing system, however, extensive substitution of Cr2+ for Mg is observed in (Mg, Cr2+)2SiO4 olivine, (Mg, Cr2+)2Si2O6 pyroxene, and (Mg, Cr2+)Cr2O4 spinel. Cr3+ levels in olivine and pyroxene are below detection limits. The pyroxene is orthohombic at XCrPx2+ < 0.2, monoclinic at higher XCrPx2+ . Thestructure of the spinels becomes tetragonally distorted at XCr2+Sp >0.2. The experimental datahave been fitted to a thermodynamic model, and the authors obtained the mixing parameter (W) of Mg-Cr2+ in olivine, pyroxene and spinel, and the relation between temperatures and free energies of formation for the end-members: Cr2+-olivine (Cr2SiO4), Cr2+-pyroxene (Cr2Si2O6)  相似文献   

15.
Mineral inclusions in pyrope crystals from Garnet Ridge in the Navajo Volcanic Field on the Colorado Plateau are investigated in this study with emphasis on the oxide minerals. Each pyrope crystal is roughly uniform in composition except for diffusion halos surrounding some inclusions. The pyrope crystals have near constant Ca:Fe:Mg ratios, 0.3 to 5.7 wt% Cr2O3, and 20 to 220 ppm H2O. Thermobarometric calculations show that pyrope crystals with different Cr contents formed at different depths ranging from 50 km (where T ≈ 600 °C and P = 15 kbar) to 95 km (where T ≈ 800 °C and P = 30 kbar) along the local geotherm. In addition to previously reported inclusions of rutile, spinel and ilmenite, we discovered crichtonite series minerals (AM21O38, where A = Sr, Ca, Ba and LREE, and M mainly includes Ti, Cr, Fe and Zr), srilankite (ZrTi2O6), and a new oxide mineral, carmichaelite (MO2−x(OH)x, where M = Ti, Cr, Fe, Al and Mg). Relatively large rutile inclusions contain a significant Nb (up to 2.7 wt% Nb2O5), Cr (up to ∼6 wt% Cr2O3), and OH (up to ∼0.9 wt% H2O). The Cr and OH contents of rutile inclusions are positively related to those of pyrope hosts, respectively. Needle- and blade-like oxide inclusions are commonly preferentially oriented. Composite inclusions consisting mainly of carbonate, amphibole, phlogopite, chlorapatite, spinel and rutile are interpreted to have crystallized from trapped fluid/melt. These minerals in composite inclusions commonly occur at the boundaries between garnet host and large silicate inclusions of peridotitic origin, such as olivine, enstatite and diopside. The Ti-rich oxide minerals may constitute a potential repository for high field strength elements (HFSE), large ion lithophile elements and light rare earth elements (LREE) in the upper mantle. The composite and exotic oxide inclusions strongly suggest an episode of metasomatism in the depleted upper mantle beneath the Colorado Plateau, contemporaneous with the formation of pyrope crystals. Our observations show that mantle metasomatism may deplete HFSE in metasomatic fluids/melts. Such fluids/melts may subsequently contribute substantial trace elements to island arc basalts, providing a possible mechanism for HFSE depletion in these rocks. Received: 20 December 1997 / Accepted: 15 October 1998  相似文献   

16.
The temperature effect on the exchange reaction Cr2O3(ol)=Cr2O3(px) was studied for coexisting olivine and both clino and ortho pyroxenes. The distribution of Cr between olivine and clinopyroxene in 31 coarse garnet lherzolites and 10 porphyroclastic garnet lherzolites from kinberlites, and in 17 coarse spinel lherzolites from basalts, obeys a van't Hoff relation (c.f. Stosch 1981) with the Wells two-pyroxene temperature: T(Kelvin)=8,787 (In D Cr+ 2.87) where D Cr(opx/ol)=wt.% Cr(clinopyroxene)/Cr(olivine). An analogous exchange for olivine and orthopyroxene with 0.7–1.6 wt.% Al2O3 in 41 garnet lherzolites from kimberlites shows considerable scatter about the following relation: T(Kelvin)=5,540/(ln D cr+1.86) where D cr(opx/ol)= wt.% Cr(orthopyroxene)/Cr(olivine). Spinel lherzolites and a garnet lherzolite from the Malaita alnöite do not obey the second relation. For orthopyroxene with 2.5–5.1 wt.% Al2O3, D cr(opx/ol) is 1.7 to 3 times higher, and for 0.1 wt.% Al2O3 is 2 times lower than for the garnet lherzolites. Experimental calibration is needed, especially to check the possible effect of Al on D cr(opx/ol).  相似文献   

17.
 The spinel solid solution was found to exist in the whole range between Fe3O4 and γ-Fe2SiO4 at over 10 GPa. The resistivity of Fe3− x Si x O4 (0.0<x<0.288) was measured in the temperature range of 80∼300 K by the AC impedance method. Electron hopping between Fe3+ and Fe2+ in the octahedral site of iron-rich phases gives a large electric conductivity at room temperature. The activation energy of the electron hopping becomes larger with increasing γ-Fe2SiO4 component. A nonlinear change in electric conductivity is not simply caused by the statistical probability of Fe3+–Fe2+ electron hopping with increasing the total Si content. This is probably because a large number of Si4+ ions occupies the octahedral site and the adjacent Fe2+ keeping the local electric neutrality around Si4+ makes a cluster, which generates a local deformation by Si substitution. The temperature dependence of the conductivity of solid solutions indicates the Verwey transition temperature, which decreases from 124(±2) K at x=0 (Fe3O4) to 102(±5) K at x=0.288, and the electric conductivity gap at the transition temperature decreases with Si4+ substitution. Received: 15 March 2000 / Accepted: 4 September 2000  相似文献   

18.
Stichtite, a rare (14 known localities worldwide) hydrated carbonate-hydroxide of Mg and Cr with ideal formula Mg6Cr2 (OH)16 CO3 · 4H2O, occurs exclusively in Cr-rich serpentinites of ophiolites or greenstone belts. Physical properties (hardness = 1.5–2, specific gravity = 2.16–2.2, perfect basal [0001] cleavage, grain size commonly < 100 μm) resemble talc, but the mineral has an attractive purple to lilac color; chemical analyses demonstrate it to be a non-silicate. Stichtite generally occurs as irregular to rounded masses (< 1 cm – 30 cm across) and as veinlets (< 1 mm – > 2 cm wide) within serpentinite. Macroscopic and microscopic textures, such as crosscutting veinlets and stringers, demonstrate that stichtite formation invariably post-dated serpentinization. In some specimens stichtite surrounds relict grains of Cr-rich spinel; in others stichtite has completely replaced euhedral or subhedral chromites. Chemical analyses of stichtites reveal substantial substitution of Al and Fe3+ for Cr in specimens from many localities, reflecting a possible compositional continuum between stichtite and rhombohedral polymorphs hydrotalcite (Mg6Al2 (OH)16 CO3 · 4H2O) and pyroaurite (Mg6Fe2 (OH)16 CO3 · 4H2O). We report the first electron microprobe analyses of stichtites from seven localities, and summarize all available published chemical data. Stichtites very likely inherited part of their trivalent cation chemistry from precursor Cr-rich spinels, but stichtite growth apparently post-dated characteristic “ferritchromit” alteration, as demonstrated by the depletion of Al and enrichment in Fe3+ in stichtite relative to primary chromite core compositions. Stichtite appears to form by reaction between serpentine and altered chromite, during addition of substantial fluid, either as separate H2O and CO2 phases, or as a mixed volatile phase. Such reactions must involve removal of substantial SiO2, possibly by transport and remote deposition of silica by throughgoing aqueous and carbonic fluid. Received: 4 April 1996 / Accepted: 16 September 1996  相似文献   

19.
In order to explore possible quantitative relations between crystal field stabilization energy, CFSE, and partitioning behaviour of the 3d6-configured Fe2+ ion, a suite of 29 paragenetic rock-forming minerals from 12 high-grade metamorphic rock samples of the Ukrainian shield, including the parageneses garnet/orthopyroxene/clinopyroxene (2x), orthopyroxene/clinopyroxene, garnet/clinopyroxene, garnet/orthopyroxene/biotite, garnet/biotite, garnet/cordierite, garnet/cordierite/biotite, garnet/orthopyroxene/clinopyroxene/Ca-amphibole, Ca-amphibole/biotite (retrograde), was studied by electron microprobe analysis to obtain the respective K D Fe2+ (Ph1/Ph2) values and by polarized single crystal electronic absorption spectroscopy to evaluate the respective CFSEFe2+ values. Other than in the case of Cr3+, a clear quantitative relation between K D (Ph1/Ph2) and the ΔCFSE(Ph1/Ph2) was only observed when geometrical factors, mainly the volume of crystallographic sites and ionic radii of ions competing in the partitioning process, are similar in the respective two paragenetic phases to within 15–20%. In such cases, the ΔCFSEFe2+ contribution to K D (Ph1/Ph2) amounts to 0.1 to 0.2 log K D per 100 cm−1ΔCFSE. The conclusion is that ΔCFSEFe2+ plays only a secondary role after geometrical factors, in the partitioning behaviour of Fe2+. The reason for this is seen in the facts that, compared to the 3d  3-configured Cr3+ ion, CFSE of the 3d6-configured Fe2+ amounts only to 20–25%, and that the former ion enters only octahedral sites with similar geometrical properties in the paragenetic mineral phases. Received: 17 November 1998 / Accepted: 28 June 1999  相似文献   

20.
Experiments ranging from 2 to 3 GPa and 800 to 1300 °C and at 0.15 GPa and 770 °C were performed to investigate the stability and mutual solubility of the K2ZrSi3O9 (wadeite) and K2TiSi3O9 cyclosilicates under upper mantle conditions. The K2ZrSi3O9–K2TiSi3O9 join exhibits complete miscibility in the P–T interval investigated. With increasing degree of melting the solid solution becomes progressively enriched in Zr, indicating that K2ZrSi3O9 is the more refractory end member. At 2 GPa, in the more complex K2ZrSi3O9–K2TiSi3O9–K2Mg6Al2Si6O20(OH)4 system, the presence of phlogopite clearly limits the extent of solid solution of the cyclosilicate to more Zr-rich compositions [Zr/(Zr + Ti) > 0.85], comparable to wadeite found in nature, with TiO2 partitioning strongly into the coexisting mica and/or liquid. However, at 1200 °C, with increasing pressure from 2 to 3 GPa, the partitioning behaviour of TiO2 changes in favour of the cyclosilicate, with Zr/(Zr + Ti) of the K2(Zr,Ti)Si3O9 phase decreasing from ∼0.9 to ∼0.6. The variation in the Ti content of the coexisting phlogopite is related to its degree of melting to forsterite and liquid, following the major substitution VITi+VI□=2VIMg. Received: 26 January 1999 / Accepted: 10 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号