首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Recent observations of the south pole of Saturn's moon Enceladus by the Cassini spacecraft have revealed an active world, powered by internal heat. In this paper, we propose that localized subsurface melting on Enceladus has produced an internal south polar sea. Evidence for this localized sea comes from the shape of Enceladus, which does not match a differentiated body at its current orbital position. We show that melting induced by the observed heat flow at the south pole produces a large enough pit to match the shape of Enceladus with a differentiated rock and ice interior. Numerical modeling of melting and ice flow shows that the sea produced beneath the south pole is stable against inflow of ductile ice from its surroundings for the duration of the heating. The shape modification due to melting also produces a negative degree-two gravity anomaly, which can reorient the spin axis of Enceladus in order to place the sea at the pole.  相似文献   

2.
Tidal heating in Enceladus   总被引:1,自引:0,他引:1  
Jennifer Meyer  Jack Wisdom 《Icarus》2007,188(2):535-539
The heating in Enceladus in an equilibrium resonant configuration with other saturnian satellites can be estimated independently of the physical properties of Enceladus. We find that equilibrium tidal heating cannot account for the heat that is observed to be coming from Enceladus. Equilibrium heating in possible past resonances likewise cannot explain prior resurfacing events.  相似文献   

3.
Pre-Cassini images of Saturn's small icy moon Enceladus provided the first indication that this satellite has undergone extensive resurfacing and tectonism. Data returned by the Cassini spacecraft have proven Enceladus to be one of the most geologically dynamic bodies in the Solar System. Given that the diameter of Enceladus is only about 500 km, this is a surprising discovery and has made Enceladus an object of much interest. Determining Enceladus' interior structure is key to understanding its current activity. Here we use the mean density of Enceladus (as determined by the Cassini mission to Saturn), Cassini observations of endogenic activity on Enceladus, and numerical simulations of Enceladus' thermal evolution to infer that this satellite is most likely a differentiated body with a large rock-metal core of radius about 150 to 170 km surrounded by a liquid water-ice shell. With a silicate mass fraction of 50% or more, long-term radiogenic heating alone might melt most of the ice in a homogeneous Enceladus after about 500 Myr assuming an initial accretion temperature of about 200 K, no subsolidus convection of the ice, and either a surface temperature higher than at present or a porous, insulating surface. Short-lived radioactivity, e.g., the decay of 26Al, would melt all of the ice and differentiate Enceladus within a few million years of accretion assuming formation of Enceladus at a propitious time prior to the decay of 26Al. Long-lived radioactivity facilitates tidal heating as a source of energy for differentiation by warming the ice in Enceladus so that tidal deformation can become effective. This could explain the difference between Enceladus and Mimas. Mimas, with only a small rock fraction, has experienced relatively little long-term radiogenic heating; it has remained cold and stiff and less susceptible to tidal heating despite its proximity to Saturn and larger eccentricity than Enceladus. It is shown that the shape of Enceladus is not that of a body in hydrostatic equilibrium at its present orbital location and rotation rate. The present shape could be an equilibrium shape corresponding to a time when Enceladus was closer to Saturn and spinning more rapidly, or more likely, to a time when Enceladus was spinning more rapidly at its present orbital location. A liquid water layer on Enceladus is a possible source for the plume in the south polar region assuming the survivability of such a layer to the present. These results could place Enceladus in a category similar to the large satellites of Jupiter, with the core having a rock-metal composition similar to Io, and with a deep overlying ice shell similar to Europa and Ganymede. Indeed, the moment of inertia factor of a differentiated Enceladus, C/MR2, could be as small as that of Ganymede, about 0.31.  相似文献   

4.
In the present work, we study the stability of hypothetical satellites that are coorbital with Enceladus and Mimas. We performed numerical simulations of 50 particles around the triangular Lagrangian equilibrium points of Enceladus and Mimas taking into account the perturbation of Mimas, Enceladus, Tethys, Dione, Titan and the oblateness of Saturn. All particles remain on tadpole orbits after 10 000 yr of integration. Since in the past the orbit of Enceladus and Mimas expanded due to the tidal perturbation, we also simulated the system with Enceladus and Mimas at several different values of semimajor axes. The results show that in general the particles remain on tadpole orbits. The exceptions occur when Enceladus is at semimajor axes that correspond to 6:7, 5:6 and 4:5 resonances with Mimas. Therefore, if Enceladus and Mimas had satellites librating around their Lagrangian triangular points in the past, they would have been removed if Enceladus crossed one of these first-order resonances with Mimas.  相似文献   

5.
Quinn R. Passey 《Icarus》1983,53(1):105-120
High resolution Voyager II images of Enceladus reveal that some regions on its surface are highly cratered; the most heavily cratered surfaces probably date back to a period of heavy bombardment. The forms of many of the craters on Enceladus are similar to those of fresh lunar craters, but many of the craters are much shallower in depth, and the floors of some craters are bowed up. The flattering of craters and bowing up of the floors are indicative of viscous relaxation of the topography. Analysis of the forms of the flattened craters suggests that the viscosity at the top of the lithosphere, in the most heavily cratered regions, is between 1024 and 1025 P. The exact time scale for the collapse of the craters is not known, but probably was between 100 my and 4 gy. The flattened craters are located in distinct zones that are adjacent to zones, of similar age, where craters have not flattened. The zones where flattened craters occur possibly are regions in which the heat flow was (or is) higher than that in the adjacent terrains. Because the temperature at the top of the lithosphere of Enceladus would be less than or equal to that of Ganymede and Callisto, if it is covered by a thick regolith, and because the required viscosity on Enceladus is one to two orders of magnitude less than that for Ganymede and Callisto, it can be concluded that the lithospheric material on Enceladus is different from that of Ganymede and Callisto. Enceladus probably has a mixture of ammonia ice and water ice in the lithosphere, whereas the lithospheres of Ganymede and Callisto are composed primarily of water ice.  相似文献   

6.
The tenuous E ring of Saturn is found to commence abruptly at 3 Saturn radii, to peak sharply in the vicinity of the orbit of the satellite Enceladus (about 4 radii), and to spread out thinly to more than 8 radii. This distribution strongly suggests it to be associated with Enceladus and perhaps to be material ejected from Enceladus. The spread of E-ring material above and below the ring plane is greater in its tenuous outskirts than in its denser inner region, suggesting that the E ring may be at an early stage in its evolution. Thus far, our analysis reveals only a marginal variation of the ring with time or Enceladus azimuth. In this paper we describe the special instrumentation used for photometric observations of the E ring, and we present some of the data obtained in March 1980. In Paper II we shall derive the three-dimensional distribution of material in the E ring and discuss its cosmogonic implications.  相似文献   

7.
《Planetary and Space Science》2006,54(9-10):988-998
The Cassini radio and plasma wave science (RPWS) instrument is sensitive to few-micron dust grains impacting on the spacecraft at relative speeds of order 10 km/s. Through the first year or so of operations in orbit at Saturn, the RPWS has made a number of both inclined and equatorial crossings of the E ring, particularly near the orbit of Enceladus. Assuming water ice grains, the typical size particle detected by the RPWS has a radius of a few microns. Peak impact rates of about 50 s−1 are found near the orbit of Enceladus corresponding to densities of order 5×10−4 m−3. The variation of dust fluxes as a function of height above or below the equator is well described by a Gaussian distribution with a scale height of about 2800 km although there is usually some non-Gaussian variation near the peak fluxes suggesting some structure in the core of the ring. Offsets of the peak number densities are typically of the order of a few hundred km from the geometric equator. A near-equatorial radial profile through the orbit of Enceladus shows a sharply peaked distribution at the orbit of the moon. A size distribution averaged over several passes through the orbit of Enceladus is determined which varies as m−2.80. The peak in dust number density at the orbit of Enceladus is consistent with previous optical measurements and strongly supports the suggestion that Enceladus is a primary source for E ring particles.  相似文献   

8.
We consider the scenario in which the presence of ammonia in the bulk composition of Enceladus plays a pivotal role in its thermochemical evolution. Because ammonia reduces the melting temperature of the ice shell by 100 K below that of pure water ice, small amounts of tidal dissipation can power an “ammonia feedback” mechanism that leads to secondary differentiation of Enceladus within the ice shell. This leads to compositionally distinct zones at the base of the ice shell arranged such that a layer of lower density (and compositionally buoyant) pure water ice underlies the undifferentiated ammonia-dihydrate ice layer above. We then consider a large scale instability arising from the pure water ice layer, and use a numerical model to explore the dynamics of compositional convection within the ice shell of Enceladus. The instability of the layer can easily account for a diapir that is hemispherical in scale. As it rises to the surface, it co-advects the warm internal temperatures towards the outer layers of the satellite. This advected heat facilitates the generation of a subsurface ocean within the ice shell of Enceladus. This scenario can simultaneously account for the origin of asymmetry in surface deformation observed on Enceladus as well as two global features inferred to exist: a large density anomaly within the interior and a subsurface ocean underneath the south polar region.  相似文献   

9.
The Cassini Imaging Science Subsystem (ISS) acquired 377 high-resolution images (<1 km/pixel) during three close flybys of Enceladus in 2005 [Porco, C.C., et al., 2006. Cassini observes the active south pole of Enceladus. Science 311, 1393-1401.]. We combined these images with lower resolution Cassini images and four others taken by Voyager cameras to produce a high-resolution global controlled mosaic of Enceladus. This global mosaic is the baseline for a high-resolution Enceladus atlas that consists of 15 tiles mapped at a scale of 1:500,000. The nomenclature used in this atlas was proposed by the Cassini imaging team and was approved by the International Astronomical Union (IAU). The whole atlas is available to the public through the Imaging Team's website (http://ciclops.org/maps).  相似文献   

10.
The announced missions to the Saturn and Jupiter systems renewed the space community interest in simple design methods for gravity assist tours at planetary moons. A key element in such trajectories are the V-Infinity Leveraging Transfers (VILT) which link simple impulsive maneuvers with two consecutive gravity assists at the same moon. VILTs typically include a tangent impulsive maneuver close to an apse location, yielding to a desired change in the excess velocity relative to the moon. In this paper we study the VILT solution space and derive a linear approximation which greatly simplifies the computation of the transfers, and is amenable to broad global searches. Using this approximation, Tisserand graphs, and heuristic optimization procedure we introduce a fast design method for multiple-VILT tours. We use this method to design a trajectory from a highly eccentric orbit around Saturn to a 200-km science orbit at Enceladus. The trajectory is then recomputed removing the linear approximation, showing a Δv change of <4%. The trajectory is 2.7 years long and comprises 52 gravity assists at Titan, Rhea, Dione, Tethys, and Enceladus, and several deterministic maneuvers. Total Δv is only 445 m/s, including the Enceladus orbit insertion, almost 10 times better then the 3.9 km/s of the Enceladus orbit insertion from the Titan–Enceladus Hohmann transfer. The new method and demonstrated results enable a new class of missions that tour and ultimately orbit small mass moons. Such missions were previously considered infeasible due to flight time and Δv constraints.  相似文献   

11.
The sizes and shapes of six icy saturnian satellites have been measured from Cassini Imaging Science Subsystem (ISS) data, employing limb coordinates and stereogrammetric control points. Mimas, Enceladus, Tethys, Dione and Rhea are well described by triaxial ellipsoids; Iapetus is best represented by an oblate spheroid. All satellites appear to have approached relaxed, equilibrium shapes at some point in their evolution, but all support at least 300 m of global-wavelength topography. The shape of Enceladus is most consistent with a homogeneous interior. If Enceladus is differentiated, its shape and apparent relaxation require either lateral inhomogeneities in an icy mantle and/or an irregularly shaped core. Iapetus supports a fossil bulge of over 30 km, and provides a benchmark for impact modification of shapes after global relaxation. Satellites such as Mimas that have smoother limbs than Iapetus, and are expected to have higher impact rates, must have relaxed after the shape of Iapetus was frozen.  相似文献   

12.
Photometric and spectral analysis of data from the Cassini Visual and Infrared Mapping Spectrometer (VIMS) has yielded significant results regarding the properties and composition of the surface of Saturn's satellite Enceladus. We have obtained spectral cubes of this satellite, containing both spatial and spectral information, with a wavelength distribution in the infrared far more extensive than from any previous observations and at much higher spatial resolution. Using a composite mosaic of the satellite, we map the distribution of crystalline and amorphous ices on the surface of Enceladus according to a “crystallinity factor” and also the depth of the temperature- and structure-dependent 1.65 micron water-ice band. These maps show the surface of Enceladus to be mostly crystalline, with a higher degree of crystallinity at the “tiger-stripe” cracks and a larger amorphous signature between these stripes. These results suggest recent geological activity at the “tiger stripe” cracks and an intriguing atmospheric environment over the south pole where amorphous ice is produced either through intense radiative bombardment, flash-freezing of cryovolcanic liquid, or rapid condensation of water vapor particles on icy microspherules or on the surface of Enceladus.  相似文献   

13.
P.K. Haff  A. Eviatar  G.L. Siscoe 《Icarus》1983,56(3):426-438
The E ring associated with the Kronian moon Enceladus has a lifetime of only a few thousand years against sputteringly by slow corotating O ions. The existence of the ring implies the necessity for a continuous supply of matter. Possible particle source mechanisms on Enceladus include meteoroidal impact ejection and geysering. Estimates of ejection rates of particulate debris following small meteoroid impact are on the order of 3 × 10?18 g cm?2 sec?1, more than an order of magnitude too small to sustain the ring. A geyser source would need to generate a droplet supply at a rate of approximately 10?16 g cm?2 sec? in order to account for a stable ring. Enceladus and the ring particles also directly supply both plasma and vapor to space via sputtering. The absence of a 60 eV plasma at the Voyager 2 Enceladus L-shell crossing, such as might have been expected from sputtering, cannot be explained by absorption and moderation of plasma ions by ring particles, because the ring is too diffuse. Evidently, the effective sputtering yield in the vicinity of Enceladus is on the order of, or smaller than, 0.4, about an order of magnitude less than the calculated value. Small scale surface roughness may account for some of this discrepancy.  相似文献   

14.
The spatial distribution of N+ in Saturn's magnetosphere obtained from Cassini Plasma Spectrometer (CAPS) data can be used to determine the spatial distribution and relative importance of the nitrogen sources for Saturn's magnetosphere. We first summarize CAPS data from 15 orbits showing the spatial and energy distribution of the nitrogen component of the plasma. This analysis re-enforces our earlier discovery [Smith, H.T., Shappirio, M., Sittler, E.C., Reisenfeld, D., Johnson, R.E., Baragiola, R.A., Crary, F.J., McComas, D.J., Young, D.T., 2005. Geophys. Res. Lett. 32 (14). L14S03] that Enceladus is likely the dominant nitrogen source for Saturn's inner magnetosphere. We also find a sharp enhancement in the nitrogen ion to water ion ratio near the orbit of Enceladus which, we show, is consistent with the presence of a narrow Enceladus torus as described in [Johnson, R.E., Liu, M., Sittler Jr., E.C., 2005. Geophys. Res. Lett. 32. L24201]. The CAPS data and the model described below indicate that N+ ions are a significant fraction of the plasma in this narrow torus. We then simulated the combined Enceladus and Titan nitrogen sources using the CAPS data as a constraint. This simulation is an extension of the model we employed earlier to describe the neutral tori produced by the loss of nitrogen from Titan [Smith, H.T., Johnson, R.E., Shematovich, V.I., 2004. Geophys. Res. Lett. 31 (16). L16804]. We show that Enceladus is the principal nitrogen source in the inner magnetosphere but Titan might account for a fraction of the observed nitrogen ions at the largest distances discussed. We also show that the CAPS data is consistent with Enceladus being a molecular nitrogen source with a nitrogen to water ratio roughly consistent with INMS [Waite, J.H., and 13 colleagues, 2006. Science 311 (5766), 1419-1422], but out-gassing of other nitrogen-containing species, such as ammonia, cannot be ruled out.  相似文献   

15.
During Cassini’s Enceladus encounter on 12th March 2008, the Cassini Electron Spectrometer, part of the CAPS instrument, detected fluxes of negative ions in the plumes from Enceladus. It is thought that these ions include negatively charged water group cluster ions associated with the plume and forming part of the ‘plume ionosphere’. In this paper we present our observations, argue that these are negative ions, and present preliminary mass identifications. We also suggest mechanisms for production and loss of the ions as constrained by the observations. Due to their short lifetime, we suggest that the ions are produced in or near the water vapour plume, or from the extended source of ice grains in the plume. We suggest that Enceladus now joins the Earth, Comet Halley and Titan as locations in the Solar System where negative ions have been directly observed although the ions observed in each case have distinctly different characteristics.  相似文献   

16.
Voyager 2 images show parts of Enceladus' surface to be very smooth, lacking craters down to the resolution limit of 4 km. This absence of craters indicates geologically recent resurfacing, probably due to internal melting. However, calculations of current heating mechanisms, including radioactive decay and tidal heating due to Enceladus' resonance with Dione, yield heating rates too small to cause melting. The orbital mean motion of Janus (1980S1) is slightly less than twice that of Enceladus and, according to theoretical calculations, is currently decreasing as Janus' orbit evolves outward due to resonant torques from Saturn's rings. If Janus were ever locked into a stable 2:1 orbital commensurability with Enceladus, the resulting angular momentum transfer could have sufficiently enhanced the eccentricity of Enceladus' orbit for the ensuing tidal heating to have melted Enceladus' interior. The existence of a Laplace-like three-body resonance including Dione, although unlikely, would have increased heating. If Janus were indeed held in resonance with Enceladus until recently (107–108 years B.P.) when the lock was disrupted by an unspecified event (possibly a catastrophic collision which simultaneously created the coorbital pair, or by the influence of Dione) both the recent internal activity of Enceladus and the proximity of Janus to Saturn's rings may be explained. However, the predicted rapid time scale for ring evolution due to resonant torques from Saturn's inner moons remains a major problem.  相似文献   

17.
Gravity results are available from radio Doppler data acquired by the Deep Space Network during the encounter of the Cassini spacecraft with Enceladus in February 2005. We report the mass of Enceladus to be (1.0798±0.0016)×1020 kg, which implies a density of . For a core made of hydrated silicates with a density of 2500 kg m−3 the core radius is ∼190 km and the quadrupole moment C22∼1.4×10−3. If Enceladus is in hydrostatic equilibrium, the larger than previously anticipated density implies that the recently proposed secondary spin-orbit resonance cannot be present. Therefore, the source of endogenic activity of Enceladus remains unexplained.  相似文献   

18.
O.G. Franz  R.L. Millis 《Icarus》1975,24(4):433-442
UBV measurements of Dione, Tethys, and Enceladus were made with an area-scanning photometer on several nights during the 1972/1973 and 1973/1974 apparitions of Saturn. The observed brightness variations have been separated into two components—one a function of orbital position, the other a function of solar phase angle. Dione and Tethys are brightest near greatest eastern elongation and faintest near greatest western elongation. The reverse is true of Enceladus. Opposition surges are observed for Dione and Tethys.  相似文献   

19.
D. Shoji  K. Kurita  H.K.M. Tanaka 《Icarus》2012,218(1):555-560
The Cassini probe observed a young and smooth surface around the south pole of Enceladus, while around the north pole the surface was found to be relatively old and inactive (Porco, C.C. et al. [2006]. Science 311, 1393–1401). This heterogeneous surface implies that the ice thickness of Enceladus is not uniform between the north and south polar regions. Determining the thickness of the icy layer is important to confirm the existence of an internal ocean as well as to reveal the heating mechanism of Enceladus. We show that the measurement of radio waves induced by cosmic neutrinos can be an effective method to constrain the ice thickness of a localized area where conventional gravity or electromagnetic field measurements cannot be used. This method could be used to constrain the thickness of the icy layer on Enceladus even if the ice is a few tens of kilometers thick, measuring over a period of several years, which greatly exceeds the ability of radar sounding, and hence could be used in future orbiter missions.  相似文献   

20.
To explain the formation of surface features on Europa, Enceladus, and other satellites, many authors have postulated the spatial localization of tidal heating within convective plumes. However, the concept that enhanced tidal heating can occur within a convective plume has not been rigorously tested. Most models of this phenomenon adopt a tidal heating with a temperature-dependence derived for an incompressible, homogeneous (zero-dimensional) Maxwell material, but it is unclear whether this formulation is relevant to the heterogeneous situation of a warm plume surrounded by cold ice. To determine whether concentrated dissipation can occur in convective plumes, we develop a two-dimensional model to compute the volumetric dissipation rate for an idealized, vertically oriented, isolated convective plume obeying a Maxwellian viscoelastic compressible rheology. We apply the model to the Europa and Enceladus ice shells, and we investigate the consequences for partial melting and resurfacing processes on these bodies. We find that the tidal heating is strongly temperature dependent in a convective ice plume and could produce elevated temperatures and local partial melting in the ice shells of Europa and Enceladus. Our calculation provides the first quantitative verification of the hypothesis by Sotin et al. [Sotin, C., Head, J.W., Tobie, G., 2002. Geophys. Res. Lett. 29. 74-1] and others that the tidal dissipation rate is a strong function of temperature inside a convective plume. On Europa, such localized heating could help allow the formation of domes and chaos terrains by convection. On Enceladus, localized tidal heating in a thermal plume could explain the concentrated activity at the south pole and its associated heat transport of 2-7 GW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号