共查询到20条相似文献,搜索用时 698 毫秒
1.
《Icarus》1969,11(2):212-217
Analysis of 10 years of observations confirms Duncan's conclusion that the commencement times of Jupiter's decametric noise storms define a constant planetary rotation period, the value for which in the present investigation is 9h55m29s37. However, the study indicates that the apparent 12-year oscillation in the longitudes of the centers of the conventional sources does not result from a simple variation in storm length. 相似文献
2.
An extensive study of the IMP-6 and IMP-8 plasma and radio wave data has been performed to try to find electron plasma oscillations associated with type III radio noise bursts and low-energy solar electrons. This study shows that electron plasma oscillations are seldom observed in association with solar electron events and type III radio bursts at 1.0 AU. In nearly four years of observations only one event was found in which electron plasma oscillations are clearly associated with solar electrons. For this event the plasma oscillations appeared coincident with the development of a secondary maximum in the electron velocity distribution functions due to solar electrons streaming outwards from the Sun. Numerous cases were found in which no electron plasma oscillations with field strengths greater than 1 μV m?1 could be detected even though electrons from the solar flare were clearly detected at the spacecraft. For the one case in which electron plasma oscillations are definitely produced by the electrons ejected by the solar flare the electric field strength is relatively small, only about 100 μV m?1. This field strength is about a factor of ten smaller than the amplitude of electron plasma oscillations generated by electrons streaming into the solar wind from the bow shock. Electromagnetic radiation, believed to be similar to the type III radio emission, is also observed coming from the region of the more intense electron plasma oscillations upstream of the bow shock. Quantitative calculations of the rate of conversion of the plasma oscillation energy to electromagnetic radiation are presented for plasma oscillations excited by both solar electrons and electrons from the bow shock. These calculations show that neither the type III radio emissions nor the radiation from upstream of the bow shock can be adequately explained by a current theory for the coupling of electron plasma oscillations to electromagnetic radiation. Possible ways of resolving these difficulties are discussed. 相似文献
3.
Radio noise storms show that suprathermal electrons (a few tens of keV) are present in the vicinity of active regions during several hours or even a few days. Where and how these electrons are energized is not yet well known. A flare-like sudden energy release in the active region is in general observed at the onset of noise storms, either as a fully developed flare or, more often, as a soft X-ray brightening without conspicuous H signature. In order to investigate to what extent electrons energized in the active region contribute to the noise-storm emission in the overlying coronal structures, we combine radio imaging (Nançay radioheliograph) with X-ray spectral observations at photon energies of a few keV (GOES) and - for the first time - around 10 keV (WATCH/GRANAT). In two of four studied events the WATCH data show a significant excess of the deka-keV count rate above the expectation from an isothermal fit to the GOES fluxes. Although the electron population producing the deka-keV X-ray emission would be energetic enough to power the simultaneous radio noise storm, the much longer duration of the radio emission requires time-extended particle acceleration. The acceleration probably occurs in the corona overlying the X-ray emitting region, triggered by the processes which give rise to the X-ray brightenings. 相似文献
4.
The radiation of solar noise storms (NS) traverses the same regions of the outer corona which are responsible for the scintillation of remote radio sources when eclipsed by the Sun. It is shown that the observed intensity distribution of NS (as a function of time) is compatible with the distribution of scattered signal. Therefore, there is an alternative explanation of the `burst' component of NS due to coronal scattering, without assuming an impulsive source. 相似文献
5.
Kunitomo Sakurai 《Solar physics》1971,16(1):198-207
The generation of energetic electrons is always associated with the solar flares which occur within the sunspot groups that are highly active in emitting type I noise storms. The number of the solar flares which are associated with the distinct electron events observed at the earth tends to increase in association with the westward movement of these active groups. This tendency is not contradictory to the close association between electron producing solar flares and type I active regions if we take into account the limited directivity of type I noise storms associated with these sunspot groups.The acceleration of the energetic electrons associated with solar flares seems to be closely related to the type I active regions where the enormous numbers of suprathermal electrons exist and play a role in generating these radio noise storms.NAS-NRC Associate with NASA. 相似文献
6.
We reanalyze histograms of durations and frequency bandwidths of individual bursts during solar radio noise storms. We find that the well-known maxima these histograms exhibit towards small durations and bandwidths actually correspond to a constant burst emission probability over the whole range of observed durations and bandwidths. 相似文献
7.
A prime objective of this experiment was to determine whether type I or IV sources at 333 MHz contain features of small (arc sec) scale. With the VLA, our resolution was better than 4. However, we never observed any structure of size smaller than about 30, with the typical source sizes being between about 40 and 90.Many observations were simultaneous with the Trieste Astronomical Observatory records at 327 MHz. The observations were made on two days in November 1988. On 8 November the observations were of a type I storm about two hours after a major flare. On 14 November they were mostly of the main phase of a type IV event, including pulsations of a kind rarely seen, strongly circularly polarized, and having a well-defined period of about 12 s. The size of the pulsating source was about 40 by 60, and the brightness temperature was about 109 K. We compare these pulsations with those observed earlier. 相似文献
8.
The fundamental of type III bursts is only partially polarized, yet all theory for emission near the plasma frequency predicts pure o-mode emission. I argue depolarization is inherent in the burst itself. The o-mode radiation is intensely scattered and mode-converted when it temporarily falls behind its own source and finds itself in the medium that is already disturbed by the electron beam. In particular, mode conversion is very efficient and yet causes only modest angular scattering at the height were
p
+ 0.5.The predicted minimum polarization nearly equals the polarization of the harmonic, as observed. Spike polarization is naturally explained by the earlier arrival of the scattered o-mode. Additional residual polarization depends on the refraction at the site of emission; larger beam velocities imply higher polarization, as observed, because a larger fraction of the radiation escapes without mode-conversion. The polarization at the frequencies where U-bursts reverse is of particular interest.Support is acknowledged from the NSF Solar-Terrestrial Research Program. 相似文献
9.
The Ulysses Unified Radio and Plasma Wave Experiment (URAP) has observed Langmuir, ion-acoustic and associated solar type
III radio emissions in the interplanetary medium. Bursts of 50–300 Hz (in the spacecraft frame) electric field
signals, corresponding to long-wavelength ion-acoustic waves are often observed coincident in time with the most intense Langmuir
wave spikes, providing evidence for the electrostatic decay instability. Langmuir waves often occur as envelope solitons,
suggesting that strong turbulence processes, such as modulational instability and soliton formation, often coexist with weak
turbulence processes, such as electrostatic decay, in a few type III burst source regions. 相似文献
10.
Dean F. Smith 《Solar physics》1973,33(1):213-223
An approximate numerical solution is given to the quasilinear equations governing the interaction of the electron streams exciting type III solar radio bursts and the background plasma. The density and temperature variations are taken into account and the stream is studied from r =1 to 20 R
. The method used is to level any positive slopes in the distribution function as they develop and record the energy released. None of the energy released is allowed to return to the stream and since no other damping mechanisms are taken into account, the solution is only applicable to the initial rise of the burst. Even then, the solution gives more decleration of the leading edge of the burst than observed which indicates that letting some of the energy released return to the stream is necessary. At the same time the solution does show that depletion of high velocity electrons is an important process and calls into question any analysis which neglects this process by, for example, integrating over the spectrum of plasma waves such as Zaitsev et al. (1972). It is shown that the case considered here is an opposite limiting case to the one considered by Zaitsev et al. and what needs to be done to find the more realistic solution in between these two limiting cases is indicated.The National Center for Atmospheric Research is sponsored by the National Science Foundation. 相似文献
11.
The comparison of solar radio type III bursts measured at 169 MHz with K corona observations leads to the conclusion that about 75% of the active regions over which type III bursts occur are associated with low density coronal structures. The comparison with X-ray maps of the solar disk shows that all these regions are located in low intensity regions.It is concluded that the idea generally accepted that the type III bursts are associated with dense coronal structures and travel in these structures is not at all proven for a large number of cases. 相似文献
12.
D. B. Melrose 《Solar physics》1980,67(2):357-375
A theory for type I emission is developed based on fundamental plasma emission due to coalescence of Langmuir waves with low-frequency waves. The Langmuir waves are attributed to energetic electrons trapped in a magnetic loop over an active region. It is argued that the low-frequency waves should be generated in connection with the heating of the region. The continuum can be explained in terms of Langmuir waves generated by a gap distribution formed through collisional losses over a timescale of several tens of minutes. Bursts are attributed to local enhancements in the Langmuir turbulence associated with a loss-cone instability. No triggering mechanism for the bursts is identified. It is predicted that if the continuum is due to a large source then its brightness temperature should rise over several tens of minutes to a value which is roughly independent of frequency and of position across the source and which should not exceed 3 × 109 K. For bursts, it is predicted that a fainter second harmonic component should accompany bright bursts. 相似文献
13.
Decametric storm radiation during the period July–August 1970 has been observed simultaneously with a high sensitivity spectrograph at Arecibo Observatory and with the log-periodic, swept-frequency array of the Clark Lake Radio Observatory. The observations complement each other; different types of fine structure emissions can be easily identified on the spectrograph records and their position can be determined from the swept-frequency recordings. We study the relative positions of the different emissions which have been observed during the storms. Four distinct sources appeared to be present. The continuum emission, the type I bursts and the flare-related type III's were all emitted at different locations. The storm type III bursts, type IIIb's and drift pairs overlapped in position, but appeared at different locations than the previously mentioned sources.On leave of absence from Instituto Argentino de Radioastronomia, Argentina. 相似文献
14.
The radio azimuths for many kilometric type III bursts that originate near or behind the limb of the Sun are observed to drift far to the east or far to the west of the spacecraft-Sun line. It is shown that the behavior of the observed burst parameters for these events corresponds to the response of a spinning dipole antenna to halo-like sources of radiation around the Sun. Our results provide evidence for a previous suggestion that behind-the-limb type III events should appear as halo-like sources of radiation to an observer on the opposite side of the Sun, due to scattering of the radiation from the primary source back around the Sun. 相似文献
15.
Simultaneous observations of type III radio bursts from spacecraft separated by 0.43 AU have been made using the solar orbiters HELIOS-A and HELIOS-B. The burst beginning at 19:22 UT on March 28, 1976 has been located from the intersection of the source directions measured at each spacecraft, and from burst arrival time differences. The source positions range from 0.03 AU from the Sun at 3000 kHz to 0.08 AU at 585 kHz. The electron density along the burst trajectory, and the exciter velocity (=0.13c) were determined directly, without the need to assume a density model as has been done with single-spacecraft observations. The separation of HELIOS-A and -B has also provided the first measurements of burst directivity at low frequencies. For the March 28 burst the intensity observed from near the source longitude (HELIOS-B) was 3–10 dB greater than that from 60° west of the source (HELIOS-A). 相似文献
16.
Richard R. Weber 《Solar physics》1978,59(2):377-385
Flux density spectra have been determined for ninety-one simple type III solar bursts observed by the Goddard Space Flight Center radio astronomy experiment on the IMP-6 spacecraft during 1971 and 1972. Spectral peaks were found to occur at frequencies ranging from 44 kHz up to 2500 kHz. Half of the bursts peaked between 250 kHz and 900 kHz, corresponding to emission at solar distances of about 0.3 to 0.1 AU. Maximum burst flux density sometimes exceeds 10–14 W m–2 Hz–1. The primary factor controlling the spectral peak frequency of these bursts appears to be variation in intrinsic power radiated by the source as the exciter moves outward from the Sun, rather than radio propagation effects between the source and IMP-6. Thus, a burst spectrum strongly reflects the evolution of the properties of the exciting electron beam, and according to current theory, beam deceleration could help account for the observations. 相似文献
17.
Yu. F. Yurovskii 《Kinematics and Physics of Celestial Bodies》2007,23(5):191-195
Scattering of radio waves on irregularities in the coronal electron density is inevitably accompanied by variations of scattered signal intensity. According to the probability theory, the scattered signal intensity distribution is described by an exponential law. The empirical intensity distribution in the majority of the observed noise storms is also adequately described by an exponential law, and this fact counts in favor of the hypothesis that the burst component of noise storms is formed as a result of the scattering of the radio radiation from quasi-stable point sources on coronal irregularities. 相似文献
18.
Both individual and collective motions of electron and proton streams in the current sheet which is thought to exist near the center of a coronal streamer are considered. Unlike previous analyses, closed field lines which must exist when finite conductivity is taken into account as well as a B
ø field due to solar rotation are present. It is shown on the basis of individual particle motions that neither electrons nor protons could move in most of the sheet in the manner required to explain type III bursts since they are effectively tied to the closed field lines.The possibility that the stream could collectively drag the closed field lines out with itself is considered. It is shown that impossibly high densities are required for electron streams and improbable densities for proton streams. Thus the particles responsible for type III bursts cannot travel in the densest part of a coronal streamer, but presumably travel close to this region. Moreover, the current sheet cannot act as a channeling agent to help explain the transverse coherency of type III burst sources.The National Center for Atmospheric Research is sponsored by the National Science Foundation. 相似文献
19.
20.
Type III solar radio bursts are investigated by modelling the propagation of the electron beam and the generation and subsequent propagation of waves to the observer. Predictions from this model are compared in detail with particle, Langmuir wave, and radio data from the ISEE-3 spacecraft and with other observations to clarify the roles of fundamental and harmonic emission in type III radio bursts. Langmuir waves are seen only after the arrival of the beam, in accord with the standard theory. These waves persist after a positive beam slope is last resolved, implying that sporadic positive slopes persist for some time, unresolved but in accord with the predictions of stochastic growth theory. Local electromagnetic emission sets in only after Langmuir waves are seen, in accord with the standard theory, which relies on nonlinear processes involving Langmuir waves. In the events investigated here, fundamental radiation appears to dominate early in the event, followed and/or accompanied by harmonic radiation after the peak, with a long-lived tail of multiply scattered fundamental or harmonic emission extending long afterwards. These results are largely independent of, but generally consistent with, the conclusions of earlier works. 相似文献