首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple quasi-geostrophic coupled ocean-atmosphere model   总被引:1,自引:0,他引:1  
The quasi-geostrophic atmospheric and oceanic equations of momentum and thermodynamics with dissipation factors are used to create a simple coupled ocean-atmosphere model describing the large-scale shallow-water mo-tion. We discuss the ocean-atmosphere coupling effect in mid-high and low latitudes separately and analyze charac-teristics of which the oscillatory periods of coupled low-frequency modes (ocean mode) vary with the coupling fre-quency and latitudinal number. This can interpret the correlation between low-frequency oscillation and ocean-at-mosphere interaction. Then from the dispersion curves of atmosphere and ocean, we reveal effect of the coupling strength on the propagation of Rossby waves. The convection mechanism between the two modes is also discussed in view of the slowly varying wave train.The results show that Newtonian cooling and Rayleigh friction play a stable rule in oceanic Rossby waves, the period of coupled low-frequency mode grows with the increment of the coupling frequency. The larger the latitudinal number is, the more rapidly it grows. When the coupling frequency tends to critical value, the oceanic Rossby waves become static. When the ocean-atmosphere coupling strength grows to some degree, the propagation of oceanic Rossby waves will become opposite to its original direction. One part of the oceanic Rossby waves is converted into atmospheric Rossby waves, the energy conversion coefficient is also solved out.  相似文献   

2.
Coupled ocean-atmosphere models with flux correction   总被引:11,自引:3,他引:11  
A method is proposed for removing the drift of coupled atmosphere-ocean models, which in the past has often hindered the application of coupled models in climate response and sensitivity experiments. The ocean-atmosphere flux fields exhibit inconsistencies when evaluated separately for the individual sub-systems in independent, uncoupled mode equilibrium climate computations. In order to balance these inconsistencies a constant ocean-atmosphere flux correction field is introduced in the boundary conditions coupling the two sub-systems together. The method ensures that the coupled model operates at the reference climate state for which the individual model subsystems were designed without affecting the dynamical response of the coupled system in climate variability experiments. The method is illustrated for a simple two component box model and an ocean general circulation model coupled to a two layer diagnostic atmospheric model.  相似文献   

3.
A conceptual coupled ocean-atmosphere model was used to study coupled ensemble data assimilation schemes with a focus on the role of ocean-atmosphere interaction in the assimilation. The optimal scheme was the fully coupled data assimilation scheme that employs the coupled covariance matrix and assimilates observations in both the atmosphere and ocean. The assimilation of synoptic atmospheric variability that captures the temporal fluctuation of the weather noise was found to be critical for the estimation of not only the atmospheric, but also oceanic states. The synoptic atmosphere observation was especially important in the mid-latitude system, where oceanic variability is driven by weather noise. The assimilation of synoptic atmospheric variability in the coupled model improved the atmospheric variability in the analysis and the subsequent forecasts, reducing error in the surface forcing and, in turn, in the ocean state. Atmospheric observation was able to further improve the oceanic state estimation directly through the coupled covariance between the atmosphere and ocean states. Relative to the mid-latitude system, the tropical system was influenced more by ocean-atmosphere interaction and, thus, the assimilation of oceanic observation becomes more important for the estimation of the ocean and atmosphere.  相似文献   

4.
Climate changes during the next 100 years caused by anthropogenic emissions of greenhouse gases have been simulated for the Intergovernmental Panel on Climate Change Scenarios A (business as usual) and D (accelerated policies) using a coupled ocean-atmosphere general circulation model. In the global average, the near-surface temperature rises by 2.6 K in Scenario A and by 0.6 K in Scenario D. The global patterns of climate change for both IPCC scenarios and for a third step-function 2 x CO2 experiment were found to be very similar. The warming delay over the oceans is larger than found in simulations with atmospheric general circulation models coupled to mixed-layer models, leading to a more pronounced land-sea contrast and a weaker warming (and in some regions even an initial cooling) in the Southern Ocean. During the first forty years, the global warming and sea level rise due to the thermal expansion of the ocean are significantly slower than estimated previously from box-diffusion-upwelling models, but the major part of this delay can be attributed to the previous warming history prior to the start of present coupled ocean-atmosphere model integration (cold start).  相似文献   

5.
6.
Four time-dependent greenhouse warming experiments were performed with the same global coupled atmosphere-ocean model, but with each simulation using initial conditions from different snapshots of the control run climate. The radiative forcing — the increase in equivalent CO2 concentrations from 1985–2035 specified in the Intergovernmental Panel on Climate Change (IPCC) scenario A — was identical in all four 50-year integrations. This approach to climate change experiments is called the Monte Carlo technique and is analogous to a similar experimental set-up used in the field of extended range weather forecasting. Despite the limitation of a very small sample size, this approach enables the estimation of both a mean response and the between-experiment variability, information which is not available from a single integration. The use of multiple realizations provides insights into the stability of the response, both spatially, seasonally and in terms of different climate variables. The results indicate that the time evolution of the global mean warming signal is strongly dependent on the initial state of the climate system. While the individual members of the ensemble show considerable variation in the pattern and amplitude of near-surface temperature change after 50 years, the ensemble mean climate change pattern closely resembles that obtained in a 100-year integration performed with the same model. In global mean terms, the climate change signals for near surface temperature, the hydrological cycle and sea level significantly exceed the variability among the members of the ensemble. Due to the high internal variability of the modelled climate system, the estimated detection time of the global mean temperature change signal is uncertain by at least one decade. While the ensemble mean surface temperature and sea level fields show regionally significant responses to greenhouse-gas forcing, it is not possible to identify a significant response in the precipitation and soil moisture fields, variables which are spatially noisy and characterized by large variability between the individual integrations.  相似文献   

7.
B. Wang  Z. Fang 《Climate Dynamics》2000,16(9):677-691
 We describe a coupled tropical ocean-atmosphere model that represents a new class of models that fill the gap between anomaly coupled models and fully coupled general circulation models. Both the atmosphere and ocean are described by two and half layer primitive equation models, which emphasize the physical processes in the oceanic mixed layer and atmospheric boundary layer. Ocean and atmosphere are coupled through both momentum and heat flux exchanges without explicit flux correction. The coupled model, driven by solar radiation, reproduces a realistic annual cycle and El Nino-Southern Oscillation (ENSO). In the presence of annual mean shortwave radiation forcing, the model exhibits an intrinsic mode of ENSO. The oscillation period depends on the mean forcing that determines the coupled mean state. A perpetual April (October) mean forcing prolongs (shortens) the oscillation period through weakening (enhancing) the mean upwelling and mean vertical temperature gradients. The annual cycle of the solar forcing is shown to have fundamental impacts on the behavior of ENSO cycles through establishing a coupled annual cycle that interacts with the ENSO mode. Due to the annual cycle solar forcing, the single spectral peak of the intrinsic ENSO mode becomes a double peak with a quasi-biennial and a low-frequency (4–5 years) component; the evolution of ENSO becomes phase-locked to the annual cycle; and the amplitude and frequency of ENSO become variable on an interdecadal time scale due to interactions of the mean state and the two ENSO components. The western Pacific monsoon (the annual shortwave radiation forcing in the western Pacific) is primarily responsible for the generation of the two ENSO components. The annual march of the eastern Pacific ITCZ tends to lock ENSO phases to the annual cycle. The model's deficiencies, limitations, and future work are also discussed. Received: 15 June 1999 / Accepted: 11 December 1999  相似文献   

8.
Adjustment and feedbacks in a global coupled ocean-atmosphere model   总被引:2,自引:1,他引:2  
 We report the analysis of two 20-year simulations performed with the low resolution version of the IPSL coupled ocean-atmosphere model, with no flux correction at the air-sea interface. The simulated climate is characterized by a global sea surface temperature warming of about 4 °C in 20 years, driven by a net heat gain at the top of the atmosphere. Despite this drift, the circulation is quite realistic both in the ocean and the atmosphere. Several distinct periods are analyzed. The first corresponds to an adjustment during which the heat gain weakens both at the top of the atmosphere and at the ocean surface, and the tropical circulation is slightly modified. Then, the surface warming is enhanced by an increase of the greenhouse feedback. We show that the mechanisms involved in the model share common features with sensitivity experiments to greenhouse gases or to SST warming. At the top of the atmosphere, most of the longwave trapping in the atmosphere is driven by the tropical circulation. At the surface, the reduction of longwave cooling is a direct response to increased temperature and moisture content at low levels in the atmospheric model. During the last part of the simulation, a regulation occurs from evaporation at the surface and longwave cooling at TOA. Most of the model drift is attributed to a too large heating by solar radiation in middle and high latitudes. The reduction of the north–south temperature gradient, and the related changes in the meridional equator-to-pole ocean heat transport lead to a warming of equatorial and subtropical regions. This is also well demonstrated by the difference between the two simulations which differ only in the parametrization of sea-ice. When the sea-ice cover is not restored to climatology the model does not maintain sea-ice at high latitudes. The climate warms more rapidly and the water vapor and clouds feedback occurs earlier. Received: 24 May 1996 / Accepted: 29 November 1996  相似文献   

9.
J. Egger 《Climate Dynamics》1999,15(8):595-604
 An ocean-atmosphere box model is presented where the polar ocean box is of variable extent and may be covered with ice. Ice thickness and temperature are predicted on the basis of a simple thermodynamic sea-ice model. The stimulation of internal variability by sea-ice is explored. Experiments are conducted with the full model but also with model versions where atmospheric and oceanic transport processes are partly suppressed. Moreover, reduced versions of the sea-ice model are tested. Some of the resulting climate states exhibit little internal variability and a steady growth of ice thickness. However, a wide range of internal fluctuations is generated in other runs. These include quasiperiodic oscillations where ice-free phases alternate with ice-covered states and chaotic behaviour. It is a key result that the choice of the sea-ice model has a profound impact on the fluctuations. Received: 23 February 1998 / Accepted: 1 May 1999  相似文献   

10.
The Interannual Variability of Climate in a Coupled Ocean-Atmosphere Model   总被引:2,自引:0,他引:2  
In this paper, the interannual variability simulated by the coupled ocean-atmosphere general circulation model of the Institute of Atmospheric Physics (IAP CGCM) in 40 year integrations is analyzed, and compared with that by the corresponding IAP AGCM which uses the climatic sea surface temperature as the boundary condition in 25 year integrations.The mean climatic states of January and July simulated by IAP CGCM are in good agreement with that by IAP AGCM, i.e., no serious ‘climate drift’ occurs in the CGCM simulation. A comparison of the results from AGCM and CGCM indicates that the standard deviation of the monthly averaged sea level pressure simulated by IAP CGCM is much greater than that by IAP AGCM in tropical region. In addition, both Southern Oscillation (SO) and North Atlantic Oscillation (NAO) can be found in the CGCM simulation for January, but these two oscillations do not exist in the AGCM simulation.The interannual variability of climate may be classified into two types: one is the variation of the annual mean, another is the variation of the annual amplitude. The ocean-atmosphere interaction mainly increases the first type of variability. By means of the rotated EOF, the most important patterns corresponding to the two types of interannual variability are found to have different spatial and temporal characteristics.  相似文献   

11.
一个灵活的海洋——大气耦合环流模式   总被引:20,自引:13,他引:20  
Based on the National Center for Atmospheric Research (NCAR) Climate System Model version 1(CSM-1), a Flexible coupled General Circulation Model version 0 (FGCM-0) is developed in this study through replacing CSM-1's oceanic component model with IAP L30T63 global oceanic general circulation model and some necessary modifications of the other component models. After the coupled model FGCM--0 is spun up for dozens of years, it has been run for 60 years without flux correction. The model does not only show the reasonable long-term mean climatology, but also reproduce a lot of features of the interannual variability of climate, e.g. the ENSO-like events in the tropical Pacific Ocean and the dipole mode pattern in the tropical Indian Ocean. Comparing FGCM-0 with the NCAR CSM-1, some common features are found, e.g. the overestimation of sea ice in the North Pacific and the simulated double ITCZ etc.The further analyses suggest that they may be attributed to errors in the atmospheric model.  相似文献   

12.
Spatial patterns of mid-latitude large-scale ocean-atmosphere interaction on monthly to seasonal time scales have been observed to exhibit a similar structure in both the North Pacific and North Atlantic basins. These patterns have been interpreted as a generic oceanic response to surface wind anomalies, whereby the anomalous winds give rise to corresponding anomalous regions of surface heat flux and consequent oceanic cooling. This mechanistic concept is investigated in this study using numerical models of a global atmosphere and a mid-latitude ocean basin (nominally the Atlantic). The models were run in both coupled and uncoupled mode. Model output was used to generate multi-year time series of monthly mean fields. Empirical orthogonal function (EOF) and singular value decomposition (SVD) analyses were then used to obtain the principal patterns of variability in heat flux, air temperature, wind speed, and sea surface temperature (SST), and to determine the relationships among these variables. SVD analysis indicates that the turbulent heat flux from the ocean to the atmosphere is primarily controlled by the surface scalar wind speed, and to a lesser extent by air temperature and SST. The principal patterns of air-sea interaction are closely analogous to those found in observational data. In the atmosphere, the pattern consists of a simultaneous strengthening (or weakening) of the mid-latitude westerlies and the easterly trades. In the ocean there is cooling (warming) under the anomalously strong (weak) westerlies and trade winds, with a weaker warming (cooling) in the region separating the westerly and easterly wind regimes. These patterns occur in both coupled and uncoupled models and the primary influence of the coupling is in localizing the interaction patterns. The oceanic patterns can be explained by the principal patterns of surface heat flux and the attendant warming or cooling of the ocean mixed layer.  相似文献   

13.
Summary The result of a 100-year integration of a coupled ocean-atmosphere general circulation model (CGCM) is analyzed, and compared with that of a 25-year integration of the corresponding uncoupled atmospheric general circulation model (AGCM) and observed data. The large-scale circulation patterns of mean climate state simulated by the CGCM are in good agreement with the observed ones, although differences exit in the positions and intensities between the simulated and the observed patterns. Having compared the standard deviations of monthly mean sea level pressure simulated by the CGCM to those by the AGCM, we found that the interaction between ocean and atmosphere mainly increases the interannual variability in the tropics especially in summer. The CGCM can also produce El Niño and Southern Oscillation (ENSO) events, whereas the AGCM cannot reproduce the main features of the Southern Oscillation. This implies that the air-sea interaction may be a principal mechanism for the occurrence of ENSO phenomena. The fundamental features of simulated regional climates are also analyzed. The CGCM can reproduce principal characteristics of surface air temperature and precipitation at five selected typical regions (desert region, plain region, monsoon region etc.). The distributions of annual mean surface ait temperature and precipitation in East Asia can also be reasonably simulated.With 9 Figures  相似文献   

14.
Summary By using a coupled ocean-atmosphere model with an oceanic surface boundary layer, including linear atmospheric and oceanic dynamics and linearized SST prognostic equation with respect to spatially varying climatological background states, we have investigated the eigenvalue problem of the linearized coupled system in the tropical Pacific, including the characteristic periods, horizontal structures, temporal-spatial evolution and instability of the unstable interannual oscillation characteristic modes and their associations with ENSO. The main results show that the quasi-biennial (QB) oscillation was found to act as the most unstable mode in the tropical Pacific coupled air-sea system. Only the most unstable QB mode displays the ENSO-like structure and temporalspatial evolution, and its existence seems likely to have no essential dependence on the climatological annual cycle (AC). Unfortunately, from the linearized coupled system we have not derived a most unstable mode relevant to the observed principle mode with the preferred 3–4 year lower-frequency (LF) oscillation period in the real world ENSO variability. Therefore, we infer that the LF mode would likely result from certain nonlinear interaction, in which the QB mode that acts as the shortest ENSO cycle could be fundamentally important. Also, we believe that the results in present work could be helpful to fully understand the multiple time scales and the associated mechanism responsible for the real world ENSO variability.With 7 Figures  相似文献   

15.
Summary A coupled ocean-atmosphere anomaly model has been developed for simulating ENSO cycle and its mechanism-study in this paper. After a long model run, the coupled model is successful in demonstrating ENSO-like irregular interannual variability and corresponding horizontal spatial structures. Based on the simulated results, the dynamics and the thermodynamics of the model ENSO cycle have been investigated, and in particular the negative feedback mechanisms that act to oppose instability of air-sea interaction, inducing termination of warm and cold events, have been examined. A detailed analysis of the oceanic wave dynamical properties and heat budget of the SST changes in a representative cycle suggest that the negative feedback mechanism to check the unstable growth of a warm event obviously differs from that of a cold event. The mechanism that induces decay and termination of a cold event is closely related to the negative, delayed feedback effect produced by the oceanic dynamical wave reflection at the western boundary. However, independent of the wave reflection effect, the negative feedback mechanism by which the coupled system returns from a warm event is associated with a slowly eastward-propagating coupling mode. Accompanied with the strong unstable development of the equatorial positive SST anomaly, the anomalous upwelling of cold water generated off the equator and the nonlinear anomalous meridional advection generated in the equator west of instability area jointly restrain the instability and finally plunge the system from a mature warm phase into a weak cold phase. A comparison between the results from the present model and the previous works is also discussed in this paper.With 16 Figures  相似文献   

16.
The mean climatology and the basic characteristics of the ENSO cycle simulated by a coupled model FGCM-1.0 are investigated in this study. Although with some common model biases as in other directly coupled models, FGCM-1.0 is capable of producing the interannual variability of the tropical Pacific, such as the ENSO phenomenon. The mechanism of the ENSO events in the coupled model can be explained by “delayed oscillator” and “recharge-discharge” hypotheses. Compared to the observations, the simulated ENSO events show larger amplitude with two distinctive types of phase-locking: one with its peak phase-locked to boreal winter and the other to boreal summer. These two types of events have a similar frequency of occurrence, but since the second type of event is seldom observed, it may be related to the biases of the coupled model. Analysis show that the heat content anomalies originate from the central south Pacific in the type of events peaking in boreal summer, which can be attributed to a different background climatology from the normal events. The mechanisms of their evolutions are also discussed.  相似文献   

17.
Techniques of numerical bifurcation theory are used to study stationary and periodic solutions of an intermediate coupled model for tropical ocean-atmosphere interaction. The qualitative dynamical behavior is determined for a volume in parameter space spanned by the atmospheric damping length, the coupling parameter, the surface layer feedback strength and the relative adjustment time coefficient. Time integration methods have previously shown much interesting dynamics, including multiple steady states, eastward- or westward-propagating orbits and relaxation oscillations. The present study shows how this dynamics arises in parameter space through the interaction of the different branches of equilibrium solutions and the singularities on these branches. For example, we show that westward-propagating periodic orbits arise through an interaction of two unstable stationary modes and that relaxation oscillations occur through a limit cycle-saddle node interaction. There are several dynamical regimes in the coupled model which are determined by the primary bifurcation structure; this structure depends strongly on the parameters in the model. Although much of the dynamics may be studied in the fast-wave limit, it is shown that ocean wave dynamics introduces additional oscillatory instabilities and how these relate to propagating oscillations.  相似文献   

18.
This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM-FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the first two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular ValueDecomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimatedeast-west gradient of SST in the equatorial Pacific in the ocean spin-up process, and (2) the underestimatedamount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, VersionThree). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, affected by the Coriolis force in the Southern Hemisphere, turns into an anomalouswesterly in a broad area south of the equator and is enhanced by atmospheric anomalous circulationdue to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. Theanomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Pacific.The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustmentprocesses in the coupled system, which can be traced to the uncoupled models, oceanic component, andatmospheric component. The zonal gradient of the equatorial SST is too large in the ocean componentand the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component.  相似文献   

19.
20.
A simple nonlinear three-box ocean model of the North Atlantic Ocean including the rudiments of eddy mixing, vertical stratification and thermohaline circulation is first presented. It is subject to uniform latitudinal differential heating, q, and net evaporation m e , and includes a linear equation of state. Two quite different limiting steady-state solutions exist. The first has a warm saline surface water and a cold, low-salinity deep ocean; deep water is primarily formed in higher latitudes by the prevalence of differential heating. A second limiting solution consists of a warm saline deep ocean underlying a cool, low-salinity surface ocean; deep water is formed primarily in lower latitudes as a consequence of large differential evaporation. A coupled ocean-atmosphere model, in which the oceanic surface heat fluxes are determined internally but with differential evaporation at the ocean surface m e remaining an external parameter, is next presented. The atmosphere component is a simple energy balance model that emphasizes the vertical fluxes of radiative, sensible and latent heat fluxes but does not include temperature-albedo feedback. Model response depends on the external parameters m e and , controlling the magnitude of the thermohaline-driven circulation, and on the magnitudes of the eddy mixing coefficients and the solar constant. For small m e , a steady-state solution corresponding to a cold fresh deep ocean is found, qualitatively similar to the modern ocean. For large m e , a steady-state solution with a warm saline deep ocean occurs; this solution resembles conceptual models that have been proposed for the warm saline Cretaceous ocean. There exists an intermediate region of values of m e for which the solutions are more complex. On the lower end of this region, both the cold fresh deep-ocean and warm saline deep-ocean circulations coexist as stable equilibria. On the upper end, the cold-deep ocean becomes unstable, manifesting oscillations with growing amplitude, and ultimately reaches the warm saline deep-ocean solution. In the neighborhood of a cusp on the , m e plane, that is, for relatively small , more complex behaviour occurs, which has not yet been fully analyzed. The model response in the region of complexity is not sensitive to changes in the solar constant but is sensitive to the eddy mixing coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号