首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectroscopic observations of the Be stars Eri, Oph, 66 Oph, and Ori for the period 1982–1988 are reported. The NRP hypothesis was verified on the ground of rapid line profile variability, radial velocities, and equivalent widths. The star Eri is pulsating in bothl=2 andl=8 with period 0 . d 7. Pulsation in modesl=2 andl=4 are observed in Hei profiles of Oph for May 1982. For radial velocities has been obtained a period 0 . d 913. The H and H lines of 66 Oph for April–August 1983 are in emission state with two clearly expressed components with intensity variations. All the parameters measured have the same period of variation — 0 . d 025. For Ori variations in line profiles for component Ab have been observed and a period of 0 . d 463 found for the radial velocities.  相似文献   

2.
Altrock  Richard C. 《Solar physics》2003,213(1):23-37
Synoptic photoelectric observations of the coronal Fexiv and Fex emission lines at 530.3 nm and 637.4 nm, respectively, are analyzed to study the rotational behavior of the solar corona as a function of latitude, height, time and temperature between 1976 (1983 for Fex) and 2001. An earlier similar analysis of the Fexiv data at 1.15 R over only one 11-year solar activity cycle (Sime, Fisher, and Altrock, 1989, Astrophys. J. 336, 454) found suggestions of solar-cycle variations in the differential (latitude-dependent) rotation. These results are tested over the longer epoch now available. In addition, the new Fexiv 1.15 R results are compared with those at 1.25 R and with results from the Fex line. I find that for long-term averages, both ions show a weakly-differential rotation period that may peak near 80° latitude and then decrease to the poles. However, this high-latitude peak may be due to sensing low-latitude streamers at higher latitudes. There is an indication that the Fexiv rotation period may increase with height between 40° and 70° latitude. There is also some indication that Fex may be rotating slower than Fexiv in the mid-latitude range. This could indicate that structures with lower temperatures rotate at a slower rate. As found in the earlier study, there is very good evidence for solar-cycle-related variation in the rotation of Fexiv. At latitudes up to about 60°, the rotation varies from essentially rigid (latitude-independent) near solar minimum to differential in the rising phase of the cycle at both 1.15 R and 1.25 R . At latitudes above 60°, the rotation at 1.15 R appears to be nearly rigid in the rising phase and strongly differential near solar minimum, almost exactly out of phase with the low-latitude variation.  相似文献   

3.
Using optically identical telescopes at different sites, we have measured the solar diameter with a drift-scan technique. In order to investigate the cause of the observed fluctuations, we not only compare observations made simultaneously by different observers at the same telescope, but also observations made simultaneously at two different sites. Our main results are: (a) The mean error of a single drift time measurement is ±0.08s(or ± 1.1) at Izaña and ±0.11 s (or ± 1.7) at Locarno; this closely corresponds to the angular resolution at those two sites under normal seeing conditions, (b) We find no correlation between observations at different sites; a significant correlation exists, however, between observations made simultaneously by different observers at the same site: This indicates that most of the observed fluctuations are due to atmospheric effects (image motion) rather than personality effects, (c) The mean solar semi-diameter derived from a total of 1122 observations made in 1990 (472 at Izaña, 650 at Locarno) is R = (960.56 ± 0.03) (Izaña: 960.51, Locarno: 960.59); this may be compared with R = (960.32 ± 0.02) which is obtained from a re-analysis of 1773 observations made in 1981 (Izaña: 960.16, Locarno: 960.38). Although a small residual increase of the solar diameter during the last ten years seems to be indicated, we conclude that most - if not all - of the observed variations are due to variable seeing conditions, and that there is still no conclusive evidence for a genuine solar variation with amplitudes in excess of about ±0.3.  相似文献   

4.
It is suggested that the minimum mass of a star at the time of its formation is approximately 0.01M . Making use of this fact and the stellar mass functionF(M) M , it is found that the hidden mass (or the missing mass) in the solar neighborhood may be explained by the presence of a large number of invisible stars of very low mass (0.01M M<0.07M ).  相似文献   

5.
R. Grant Athay 《Solar physics》1988,116(2):223-237
An attempt is made in this paper to determine the coefficient a in a power-law relationship of the form V ~T between the r.m.s. velocity fluctuation, V for raster images with 3 resolution and the temperature, T of line formation using SMM solar data. For T between 8000 and 105 K, the data suggest a best fit with 3/4 < 1. It is argued, however, that unresolved fine structure tends to reduce the observed value of V and that higher resolution data may yield different values for . Skylab data have shown that the non-thermal line broadening velocity, , is proportional to T 1/2. Also, for all temperatures less than 105 K, V . This latter result, however, is again dependent on spatial resolution and may not be true in observations made with sufficient spatial resolution. The magnitudes of both V and indicate that bulk motions play important roles in the structure of the solar atmosphere as well as in its energy and momentum balance. It is important, therefore, to identify the true nature of such motions with better accuracy than is possible with currently available data.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
An exact analysis of the effects of mass transfer on the flow of a viscous incompressible fluid past an uniformly accelerated vertical porous and non-porous plate has been presented on taking into account the free convection currents. The results are discussed with the effects of the Grashof number Gr, the modified Grashof number Sc, the Schmidt number Sc, and the suction parametera for Pr (the Prandtl number)=0.71 representating air at 20°C.Nomenclature a suction parameter - C species concentration - C species concentration at the free stream - g acceleration due gravity - Gc modified Grashof number (vg*(C C )/U 0 3 ) - Pr Prandtl number (C p/K) - T temperature of the fluid near the plate - T dimensionless temperature near the plate ((T-T )/(T -T )) - U(t) dimensionless velocity of the plate (U/U 0) - v normal velocity component - v 0 suction/injection velocity - x, y coordinate along and normal to the plate - v kinematic viscosity (/gr) - C p specific heat at constant pressure - C w species concentration at the plate - C non-dimensional species concentration ((C-C )/(C w -C )) - Gr Grashof number (g(T w -T )/U 0 3 ) - D chemical molecular diffusivity - K thermal conductivity - Sc Schmidt number (/D) - T w temperature of the plate - T free stream temperature - t time variable - t dimensionless time (tU 0 2 /) - U 0 reference velocity - u velocity of the fluid near the plate - u non-dimensional velocity (u/U 0) - v dimensionless velocity (v/U 0) - v 0 non-dimensionalv 0 (v 0 /U0)=–at–1/2 - y dimensionless ordinate (yU 0/) - density of the fluid - coefficient of viscosity  相似文献   

7.
As a consequence of the Taylor–Proudman balance, a balance between the pressure, Coriolis and buoyancy forces in the radial and latitudinal momentum equations (that is expected to be amply satisfied in the lower solar convection zone), the superadiabatic gradient is determined by the rotation law and by an unspecified function of r, say, S(r), where r is the radial coordinate. If the rotation law and S(r) are known, then the solution of the energy equation, performed in this paper in the framework of the ML formalism, leads to a knowledge of the Reynolds stresses, convective fluxes, and meridional motions. The ML-formalism is an extension of the mixing length theory to rotating convection zones, and the calculations also involve the azimuthal momentum equation, from which an expression for the meridional motions in terms of the Reynolds stresses can be derived. The meridional motions are expanded as U r(r,)=P 2(cos)2(r)/r 2+P 4(cos)4(r)/r 2 +..., and a corresponding equation for U (r,). Here is the polar angle, is the density, and P 2(cos), P 4(cos) are Legendre polynomials. A good approximation to the meridional motion is obtained by setting 4(r)=–H2(r) with H–1.6, a constant. The value of 2(r) is negative, i.e., the P 2 flow rises at the equator and sinks at the poles. For the value of H obtained in the numerical calculations, the meridional motions have a narrow countercell at the poles, and the convective flux has a relative maximum at the poles, a minimum at mid latitudes and a larger maximum at the equator. Both results are in agreement with the observations.  相似文献   

8.
In the theory of supergravity (N=1), the supersymmetric version of general relativity, and for the Kasner cosmological model (Bianchi type I) we find a non-trivial solution (for the metric and spinor-vector) under the most simple assumption =11 + 22; 12+21=0 and for a special choosed gaugeN=1,N j=0, 0=0. This method could be also applied to other cosmological metrics and extended to enlarged Grassmann basis.O. Obregón was partially supported by the Alexander von Humboldt Stiftung.  相似文献   

9.
The energy levels and wave functions of hydrogen and helium atoms in the presence of large (107G) magnetic fields are found by assuming that the eigenvalues and eigenvectors may be approximated by those of a truncated Hamiltonian matrix. In these atoms, fields of this size produce, in addition to the usual Paschen-Back effect, a quadratic Zeeman effect. This contributes an upward shift to the energy of all levels, which at sufficiently high fields dominates the Paschen-Back splitting.The behavior of a number of eigenvalues and wave functions as a function of magnetic field is presented. The effects of the field on the wavelengths and strengths of the components of H and the helium lines 4471, 4026 and 4120 as well as the forbidden 4025 are examined. In hydrogen the lines are split into components attributed to the now nondegenerate transitionsnlm lnlml. In helium forbidden lines are excited, which may develop strengths larger than those of the allowed lines.  相似文献   

10.
The aim of the present paper will be to present a new approach to the light changes of eclipsing binary systems. The light changes have been expanded into the Fourier-Bessel and Dini series. The coefficients of these expansions which are the Hankel transforms of the order of the loss of light (1–l) have been expressed in terms of the eclipse elements. These discrete Hankel transformsH (j m ) andH ( m ) valid for only the positive real zerosj m and m of the functionsJ and [xJ(x)+J (x)] have been generalized for any positive value of andy. Thus, these general expressions for the Hankel transforms of the light curves which are valid for all types of eclipses, for any arbitrary degree of the adopted limb-darkening law and, moreover, for any positive value of the free parameters andy, may be used for the solution of the elements of eclipsing binary systems.  相似文献   

11.
On the basis of observational data for the absolute R and relative R/R amplitudes of variations in radius of galactic classical cepheids (55 stars from Balona and Stobie (1979) and 30 stars from Sollazzoet al. (1981)), four kinds of empirical linear relations are obtained: log(P V)–logR, logP–logR, log(P V)–log(R/R), and logP–log(R/R);P, R, and V are the pulsation periods, the mean stellar radii, and the amplitudes of light variations, respectively. Three groups of stars are considered: short-period cepheids (SPC)-with logP1.1; long-period cepheids (LPC)-with logP>1.1; and s-cepheids (sC). Both the R values and the R/R values increase withP andP V, for a given group of variables. A comparison is performed with our results obtained from data in other sources (Kurochkin, 1966; Gieren, 1982; etc.). The investigated relations can be applied for determining R and R/R of galactic classical cepheids, by using their observedP and V. All studied galactic classical cepheids have R/R<0.35, R<10R for SPC and 10R <R60R for LPC. The sC have smaller R and R/R values than other classical cepheids, at the same periods (the difference is about 2 times for R and 1.4–2.8 times for R/R); the studied sC have R/R in the range 0.025–0.075 and R in the range 1–3R (only Y Oph has R8R ).  相似文献   

12.
Analytic structure of high-density steady isothermal spheres is discussed using the TOV equation of hydrostatic equilibrium which satisfies an equation of state of the kind:P = K g , = g c 2.Approximate analytical solutions to the Tolman-Oppenheimer-Volkoff (TOV) equations of hydrostatic equilibrium in (, ), (,U) and (u, v) phase planes in concise and simple form useful for short computer programmes or on small calculator, have been given. In Figures 1, 2, and 3, respectively, we display the qualitative behaviours of the ratio of gas density g to the central density gc , g / gc ; pressureP to the gc ,P/ gc ; and the metric componente , for three representative general relativistic (GR) isothermal configurations =0.1, 0.2, and 0.3. Figure 4 shows the solution curve (, ) for =0.1, 0.2, and 0.3 (=0 represents the classical (Newtonian) curve). Numerical values of physical quantitiesv (=4r 2 P *(r)), in steps ofu (=M(r)/r)=0.03, and the mass functionU, in steps of =0.2 (dimensionless radial distance), are given, respectively, in Tables I and II. Other interesting features of the configurations, such as ratio of gravitational radius 2GM/c 2 to the coordinate radiusR, mass distributionM(r)/M, pressure (or density) distributionP/P c , binding energy (B.E.), etc., have also been incorporated in the text. It has further been shown that velocity of sound inside the configurations is always less than the velocity of light.Part of the work done at Azerbaijan State University, Baku, U.S.S.R., and Mosul University, Mosul, Iraq, 1985-1986  相似文献   

13.
Patrick C. Crane 《Solar physics》1998,177(1-2):243-253
Fourier analysis (DFT/CLEAN) of the international sunspot number (R) series since 1932 has revealed two long (250–500 days) and distinct episodes of solar activity exhibiting persistent 13 -day variations. The first episode lasts 500 days near the maximum of solar cycle 20, and the second, 250 days near the end of the current solar cycle 22. The solar radio flux density (F 10_7cm) series since 1947 has also been analyzed. During the first episode both solar indices exhibit distinct 27- and 13-day variations (the first report of 13-day variations in F 10_7cm). During the second episode neither index exhibits distinct 27-day variations and only R exhibits 13-day variations. Conditions affecting the appearance of 13-day variations in F 10_7cm are discussed.  相似文献   

14.
A detailed study of classical polytropes in general relativity has been presented for O ((dP/dE)O) 1.0 and O((P/E O)O. The behaviour of various structural parameters with O/O, O and O are the values ofP/E and dP/dE at the centre) has been studied. The most important result of this study is the fact the qualitative behaviour of all the structural parameters depends only on the value of µO for the various assigned O values. The maximum value of surface red shift occurs when µO=0.6 and for O=1.0 it equals 0.618. These structures are gravitationally bound for µO0.8 and most so for µO=0.4. The maximum value of binding coefficient comes out to be 0.181 when O=1.0. These structures have been used to model neutron stars. The maximum mass of neutron star based upon such a model comes out to be 2.55M (for µO=0.4 and O=1.0) and maximum size comes out to be 15.0 km (for µO=0.2 and O=1.0). It is also seen that the structures are pulsationally stable for µ0.6.  相似文献   

15.
The exact geometry of the Roche curvilinear coordinates (, , ) in which corresponds to the zero-velocity surfaces is investigated numerically in the plane, as well as in the spatial, case for various values of the mass-ratio between the two point-masses (m 1,m 2) constituting a binary system.The geometry of zero-velocity surfaces specified by -values at the Lagrangian points are first discussed by taking their intersections with various planes parallel to thexy-, xz- andyz-planes. The intersection of the zero-velocity surface specified by the -value at the Lagrangian equilateral-triangle pointsL 4,5 with the planex=1/2 discloses two invariable curves passing through the pointsL 4,5 and situated symmetrically with respect to thexy-plane whose form is independent of the mass-ratio.The geometry of the remaining two coordinates (, ) orthogonal to the zero-velocity surfaces is investigated in thexy- andxz-planes from extensive numerical integrations of differential equations generated from the orthogonality relations among the coordinates. The curves (x, y)=constant in thexy-plane are found to be separated into three families by definite envelopes acting as boundaries whose forms depend upon the mass-ratio only: the inner -constant curves associated with the masspointm 1, the inner -constant curves associated with the mass-pointm 2 and the outer -constant curves. All the -constant curves in thexy-plane coalesce at either of the Lagrangian equilateraltriangle pointsL 4,5, except for a limiting case coincident with thex-axis. The curves (x, z)=constant in thexz-plane are also separated by definite envelopes depending upon the mass-ratio into different families: the inner -constant curves associated with the mass-pointm 1, the inner -constant curves associated with the mass-pointm 2 and the outer -constant curves on both sides out of the envelopes. For larger values ofz, the curves =constant tend asymptotically to the line perpendicular to thex-axis and passing through the centre of mass of the system, except for a limiting case coincident with thex-axis. The geometrical aspects of the envelopes for the curves (x, y)=constant in thexy-plane and the curves (x, z)=constant in thexz-plane are also discussed independently.In the three-dimensional space, the Roche coordinates can be conveniently defined in such a way as to correspond to the polar coordinates in the immediate neighbourhood of the origin, and to the cylindrical coordinates at great distances. From numerical integrations of simultaneous differential equations generating spatial curves orthogonal to the zero-velocity surfaces, the surfaces (x, y, z)=constant and the surfaces (x, y, z)=constant are constructed as groups of such spatial curves with common values of some parameters specifying the respective surfaces.On leave of absence from the University of Tokyo as an Honorary Fellow of the Victoria University of Manchester.  相似文献   

16.
We use a simple equation of state, in which the adiabatic index depends on opacity and ionization and we integrate the dynamical and thermodynamical equations for the gravitational collapse of a typical solar composition protocloud, up to the virialization of the energies. Following the evolution of the thermal energy and ionization fraction, violent bounces are obtained at the sudden hardening of the equation of state, when the material becomes ionized.We also suggest a mechanism to explain the onset of protostellar winds.We introduce radiation losses in the model, and integrate again the modified equations, studying the evolution of a 1.1M protocloud. The object's effective temperature stays in a confined small zone of the IR region throughout its fast (40 yr) evolution and its luminosity oscillates and decreases from 5000L to 500L . The radius starts from 35 AU and shrinks down to 140R , before a physical instability gives birth to a strong shock wave with consequent mass loss.  相似文献   

17.
A semi-continuous hierarchy, (i.e., one in which there are galaxies outside clusters, clusters outside superclusters etc.), is examined using an expression of the field equations of general relativity in a form due to Podurets, Misner and Sharp. It is shown (a) that for a sufficiently populous hierarchy, the thinning factor( i+1/ i [r i /r i+1] is approximately equal to the exponentN in a continuous density law (=aR –N) provided (r i /r i+1)3-1; (b) that a hierarchical Universe will not look decidedly asymmetric to an observer like a human being because such salient observers live close to the densest elements of the hierarchy (viz stars), the probability of the Universe looking spherically symmetric (dipole anisotropy0.1 to such an observer being of order unity; (c) the existence of a semi-continuous or continuous hierarchy (Peebles) requires that 2 if galaxies, not presently bound to clusters were once members of such systems; (d) there are now in existence no less than ten arguments for believing 2, though recent number counts by Sandageet al. seem to be in contradiction to such a value; (e) Hubble's law, withH independent of distance, can be proved approximately in a relativistic hierarchy provided (i)N=2, (ii)2GM(R)/c 2 R1; (iii)Rc (iv)M0 in a system of massM, sizeR (f) Hubble's law holds also in a hierarchy with density jumps; (g)H100 km s–1 Mpc–1; (h) objects forming the stellar level of the hierarchy (in a cosmology of the Wilson type) must once have had 2GM/c 2 R1; (i) there is a finite pressurep=2Ga in all astrophysical systems (a=R N ,N2); (j) for the Galaxy, theory predictsp G7×10–12 dyn cm–2, observation givesp G5×10–12 dyn cm–2; (k) if the mass-defect (or excess binding energy) hypothesis is taken as a postulate, all non-collapsed astrophysical systems must be non-static, and any non-static, p0 systems must in any case be losing mass; (1) the predicted mass-loss rate from the Sun is 1012 g s–1, compared to 1011 g s–1 in the observed solar wind; (m) the mass-loss rates known by observation imply timescales of 5×109 years for the Sun and 1010 years for other astrophysical systems; (n) degenerate superdense objects composed of fermions must haveN-2 if they were ever at their Schwarzschild radii and comprised a finite numberN B of baryons; (o)N B1057N for degenerate fermion and boson systems; (p)285-4; (q) the metric coefficients for superdense bodies give equations of motion that imply equal maximum luminosities for all evolving superdense bodies (L max1059 erg s–1); (r) larger bodies have longer time-scales of energy radiation atL max (10–5 s for stars,1 h for QSO's) (s) expansion velocities are c soon after the initial loss of equilibrium in a superdense object; (t) if the density parametera(t) in aR –N isa=a (non-atomic constants of physicsc, G, A), andA, thenN=2; (u) N2 is necessary to giveMM at the stellar level of the hierarchy;(v) systems larger than, and including, galaxies must have formed by clumping of smaller systems and not (as advocated by Wertz and others) in a multiple big bang.  相似文献   

18.
The location of H filaments is compared with maps of the photospheric line of sight velocity V and the magnetic field H . It is found that (1) H filaments are associated with regions of ¦V ¦ 300m s–1, (2) always both positive as well as negative velocities are present under H structures, (3) stable (long lasting) portion of filaments frequently occur at the position of H = 0 as well as V = 0 lines, (4) this association remains valid for the longitudes less than 50° from central meridian.  相似文献   

19.
The shifts of Fraunhofer lines of different chemical elements in a homogeneous medium with a plane monochromatic progressive adiabatic sound waves are derived. The calculations indicate that lines of neutral elements (6 0 14) with lower excitation potentials 0 i= 0–2 eV are red shifted, those with excitation potential 0 i= 4–12 eV are blue shifted, and with 0 i= 3 eV are both blue and red shifted. The lines of ions are shifted toward the blue. The shifts of Fraunhofer lines are found to decrease from the centre of the solar disk to the limb. These results agree qualitatively and quantitatively with observations.  相似文献   

20.
Neckel  Heinz 《Solar physics》2003,212(2):239-250
The coefficients A 0 of the limb-darkening functions I()/I center=P 5()=A ii (i=0,...5, =cos), published by Neckel and Labs (1994), and the corresponding disk-center intensities I center=I(=1), which were taken from the absolutely calibrated Kitt Peak FTS Atlas of the disk center (Brault et al., see Neckel and Labs, 1984, and Neckel 1999), are used to derive `limb intensities' I limb=I(=0)=A 0 I center. The corresponding `limb temperatures' T limb vary only slightly with wavelength; the mean value (4750 K) and the wavelength of maximum intensity (605 nm) conform to Wien's law (max T=0.288 cm K). Further, T limb agrees closely with that temperature, which follows from Avrett's (2000) model of the photosphere for 5000.006; for this layer the optical thickness along the line of sight is close to 1 (`the limb'; compare Unsöld, 1968). The slight variation of T limb with wavelength is presumably due to systematic errors in the Neckel and Labs intensity data: it corresponds almost precisely to the differences between their data and the more recent ones provided by, e.g., Burlov-Vasiljev, Gurtovenko, and Matvejev (1995), and Burlov-Vasiljev, Matvejev, and Vasiljeva (1998). Two simple correction functions (for 550 nm and 550 nm) are proposed, which apply to all Neckel and Labs intensity data (disk center and full disk, line spectrum and (quasi) continuum), and to the absolutely calibrated Kitt-Peak FTS Atlas (spectra of disk center and full disk) as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号