首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据X射线衍射(XRD)分析发现: A Fe3(SO4)2(OH)6(A=K+、H3O+)系列铁钒的XRD数据十分相近,难以用XRD区别,需通过能谱(EDS)辅助分析,才能区分此类铁矾。另外,此类铁矾的003和107面网间距d随K+含量增大而增大,且呈一元三次方程的关系;而033和220面网间距d随K+含量增大而减小,呈一元二次方程的关系。对该现象从铁矾晶体结构方面进行解释:K+、H3O+离子位于较大空隙中,且沿着Z轴方向排列,当K+、H3O+离子之间相互替换时,会导致该铁矾晶体结构在Z轴方向有较明显的变化。  相似文献   

2.
The high temperature volume and axial parameters for six C2/c clinopyroxenes along the NaAlSi2O6–NaFe3+Si2O6 and NaAlSi2O6–CaFe2+Si2O6 joins were determined from room T up to 800°C, using integrated diffraction profiles from in situ high temperature single crystal data collections. The thermal expansion coefficient was determined by fitting the experimental data according to the relation: ln(V/V 0) = α(T T 0). The thermal expansion coefficient increases by about 15% along the jadeite–hedenbergite join, whereas it is almost constant between jadeite and aegirine. The increase is related to the Ca for Na substitution into the M2 site; the same behaviour was observed along the jadeite–diopside solid solution, which presents the same substitution at the M2 site. Strain tensor analysis shows that the major deformation with temperature occurs in all samples along the b axis; on the (010) plane the higher deformation occurs in jadeite and aegirine at a direction almost normal to the tetrahedral–octahedral planes, and in hedenbergite along the projection of the longer M2–O bonds. The orientation of the strain ellipsoid with temperature in hedenbergite is close to that observed with pressure in pyroxenes. Along the jadeite–aegirine join instead the high-temperature and high-pressure strain are differently oriented.  相似文献   

3.
1974年在一水晶矿石英脉晶洞中,发现了一种含Ba、Li的硅酸盐新矿物--纤钡锂石。我们对纤钡锂石进行了光性研究、比重测定、差热及热失重分析、红外光谱分析、X射线单晶结构分析等工作,现分述如下。  相似文献   

4.
通过密度泛函理论模拟了H_2O_2和SO_2气体在矿物氧化物(α-Fe_2O_3)表面上的非均相反应,研究了H_2O_2和SO_2在α-Fe_2O_3(001)表面的吸附机制和氧化机制。研究结果表明,SO_2、H_2O_2均在α-Fe_2O_3(001)表面通过Fe原子进行吸附,H_2O_2相比于SO_2优先吸附在α-Fe_2O_3(001)表面,且H_2O_2在表面的赋存形式趋向于两个·OH形式吸附。通过二者共吸附的局域态密度、差分电荷密度、Mulliken电荷布局分析结果发现,SO_2和H_2O_2的共吸附形式是通过H_2O_2产生的·OH吸附在α-Fe_2O_3(001)表面,同时SO_2被H_2O_2产生的·OH氧化[S(SO_2)-电荷布局:0. 79 e→1. 32 e; O(H_2O_2)-电荷布局:-0. 77 e→-1. 11 e]形成·OH+SO_2团簇。模拟结果表明大气微量气体H_2O_2能够在矿物氧化物表面介导SO_2吸附并促进SO_2的转化,为理解H_2O_2在大气中非均相氧化SO_2的反应过程提供了理论依据。  相似文献   

5.
异构比φiC4nC4 和φiC5nC5 的石油地质意义   总被引:6,自引:1,他引:6  
同分子量的正构烷烃和异构烷烃存在着物理化学性质差异,在运移过程中受围岩的物理化学性质及其它外部因素的影响必然产生分异效应,从而使二者在空间分布上具有一定的特征和规律,异构比指标可以在一定程度上反映出这种特征和规律性。用异构比φiC4nC4 和φiC5nC5 指标可以判断有机质的成熟度,研究轻烃运移的途径、方向、生成环境及轻烃的生物降解。  相似文献   

6.
柴达木盆地跃进地区E31、N1、N21碎屑岩储层特征   总被引:5,自引:0,他引:5  
通过 15口井近百个铸体片的鉴定及压汞数据的分析,对跃进地区E31、N1、N21碎屑岩储层取得如下认识 :①长石砂岩、岩屑长石砂岩、长石岩屑砂岩为主,成分成熟度和结构成熟度均较低;②储层经历压实压溶作用、成岩自生矿物胶结和溶解作用,剩余原生粒间孔占绝对优势,相同层位地层在跃东和跃西因埋藏深度不同导致成岩-孔隙演化史也不同,西区储层物性明显优于东区;③储层主要发育于水上分流河道、砂坪和辫状河道微相,碎屑的成份和结构成熟度、填隙物含量、成岩环境对储层性质有重要影响;④西区E31储层属高孔中渗的Ⅱ类储层,大孔细喉道组合特征,储集物性较佳,东区E31储层属特低孔特低渗的Ⅴ类储层,中孔微细喉道组合特征,储层物性不理想,N1储层属低孔特低渗的Ⅳ-Ⅴ类储层,大孔小喉道组合特征,渗透率不佳.  相似文献   

7.
Any progress in our understanding of low-temperature mineral assemblages and of quantitative physico-chemical modeling of stability conditions of mineral phases, especially those containing toxic elements like selenium, strongly depends on the knowledge of structural and thermodynamic properties of coexisting mineral phases. Interrelation of crystal chemistry/structure and thermodynamic properties of selenium-containing minerals is not systematically studied so far and thus any essential generalization might be difficult, inaccurate or even impossible and erroneous. Disagreement even exists regarding the crystal chemistry of some natural and synthetic selenium-containing phases. Hence, a systematic study was performed by synthesizing ferric selenite hydrates and subsequent thermal analysis to examine the thermal stability of synthetic analogues of the natural hydrous ferric selenite mandarinoite and its dehydration and dissociation to unravel controversial issues regarding the crystal chemistry. Dehydration of synthesized analogues of mandarinoite starts at 56–87?°C and ends at 226–237?°C. The dehydration happens in two stages and two possible schemes of dehydration exist: (a) mandarinoite loses three molecules of water in the first stage of the dehydration (up to 180?°C) and the remaining two molecules of water will be lost in the second stage (>180?°C) or (b) four molecules of water will be lost in the first stage up to 180?°C and the last molecule of water will be lost at a temperature above 180?°C. Based on XRD measurements and thermal analyses we were able to deduce Fe2(SeO3)3·(6-x)H2O (x?=?0.0–1.0) as formula of the hydrous ferric selenite mandarinoite. The total amount of water apparently affects the crystallinity, and possibly the stability of crystals: the less the x value, the higher crystallinity could be expected.  相似文献   

8.
9.
Biachellaite, a new mineral species of the cancrinite group, has been found in a volcanic ejecta in the Biachella Valley, Sacrofano Caldera, Latium region, Italy, as colorless isometric hexagonal bipyramidal-pinacoidal crystals up to 1 cm in size overgrowing the walls of cavities in a rock sample composed of sanidine, diopside, andradite, leucite and hauyne. The mineral is brittle, with perfect cleavage parallel to {10$ \bar 1 $ \bar 1 0} and imperfect cleavage or parting (?) parallel to {0001}. The Mohs hardness is 5. Dmeas = 2.51(1) g/cm3 (by equilibration with heavy liquids). The densities calculated from single-crystal X-ray data and from X-ray powder data are 2.515 g/cm3 and 2.520 g/cm3, respectively. The IR spectrum demonstrates the presence of SO42−, H2O, and absence of CO32−. Biachellaite is uniaxial, positive, ω = 1.512(1), ɛ = 1.514(1). The weight loss on ignition (vacuum, 800°C, 1 h) is 1.6(1)%. The chemical composition determined by electron microprobe is as follows, wt %: 10.06 Na2O, 5.85 K2O, 12.13 CaO, 26.17 Al2O3, 31.46 SiO2, 12.71 SO3, 0.45 Cl, 1.6 H2O (by TG data), −0.10 −O=Cl2, total is 100.33. The empirical formula (Z = 15) is (Na3.76Ca2.50K1.44)Σ7.70(Si6.06Al5.94O24)(SO4)1.84Cl0.15(OH)0.43 · 0.81H2O. The simplified formula is as follows: (Na,Ca,K)8(Si6Al6O24)(SO4)2(OH)0.5 · H2O. Biachellaite is trigonal, space group P3, a =12.913(1), c = 79.605(5) ?; V = 11495(1) ?3. The crystal structure of biachellaite is characterized by the 30-layer stacking sequence (ABCABCACACBACBACBCACBACBACBABC). The tetrahedral framework contains three types of channels composed of cages of four varieties: cancrinite, sodalite, bystrite (losod) and liottite. The strongest lines of the X-ray powder diffraction pattern [d, ? (I, %) (hkl)] are as follows: 11.07 (19) (100, 101), 6.45 (18) (110, 111), 3.720 (100) (2.1.10, 300, 301, 2.0.16, 302), 3.576 (18) (1.0.21, 2.0.17, 306), 3.300 (47) (1.0.23, 2.1.15), 3.220 (16) (2.1.16, 222). The type material of biachellaite has been deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, registration number 3642/1.  相似文献   

10.
纤钡锂石产于湖南临武香花岭地区一水晶矿锂云母石英脉晶洞中,与锂云母、石英等矿物共生。矿物为浅黄白色,丝绢光泽,呈针状、纤维状、放射状或平行束状集合体,纤维长达1厘米。经X射线单晶及粉晶衍射测定:该矿物属斜方晶系,空间群Ccca,晶胞参数:a=13.60(?),b=20.24(?),e=5.16(?)。最强衍射线为:10.12(?)(100) 4.05(?)(78) 3.39(?)(91) 2.605(?)(31)2.390(?)(28)。  相似文献   

11.
A new mineral eurekadumpite found at the Centennial Eureka Mine in the Tintic district of Juab County in Utah in the United States occurs in the oxidation zone along with quartz, macalpineite, malachite, Zn-bearing olivenite, goethite, and Mn oxides. Eurekadumpite forms spherulites or rosettes up to 1 mm in size and their clusters and crusts up to 1.5 cm2 in cavities. Its individuals are divergent and extremely thin (up to 0.5 mm across and less than 1 μm thick) hexagonal or roundish leaflets. The mineral is deep blue-green or turquoise-colored. Its streaks are light turquoise-colored. Its luster is satiny in aggregates and pearly on individual flakes. Its cleavage is (010) perfect and micalike. Its flakes are flexible but inelastic. Its Mohs hardness is 2.5–3.0, and D(meas) = 3.76(2) and D(calc) = 3.826 g/cm3. The mineral is optically biaxial negative, and α = 1.69(1), β ∼ γ = 1.775(5), and 2V meas = 10(5)°. Its pleochroism is strong: Y = Z = deep blue-green, and X = light turquoise-colored. Its orientation is X = b. The wavenumbers of the bands in the IR spectrum (cm−1; the strong lines are underlined, and w denotes the weak bands) are 3400, 2990, 1980w, 1628, 1373w, 1077, 1010, 860, 825, 803, 721w, 668, 622, 528, 461. The IR spectrum shows the occurrence of the tellurite (Te4+,O3)2− and arsenate (As5+,O4)3− anionic groups and H2O molecules; Cu and Zn cations are combined with OH groups. The chemical composition of eurekadumpite is as follows (wt %, average of 14 electron-microprobe analyses; H2O determined using the Alimarin method): 0.04 FeO, 36.07 CuO, 20.92 ZnO, 14.02 TeO2, 14.97 As2O5, 1.45 Cl, 13.1 H2O, O = Cl2 −0.33, total 100.24. The empirical formula based on 2 Te atoms is (Cu10.32Zn5.85Fe0.01)Σ16.18(TeO3)2(AsO4)2.97[Cl0.93(OH)0.07]Σ1(OH)18.45 · 7.29H2O. The idealized formula is (Cu,Zn)16(TeO3)2(AsO4)3Cl(OH)18 · 7H2O. Eurekadumpite is monoclinic (pseudohexagonal), and the most probable space groups are P2/m, P2, or Pm. The unit-cell parameters refined from the powder X-ray data are as follows: a = 8.28(3), b = 18.97(2), c = 7.38(2) ?, β = 121.3(6)°, V = 990(6) ?3, and Z = 1. The strongest reflections of the X-ray powder pattern (d, ? (I) [hkl]) are as follows: 18.92(100) [010], 9.45(19) [020], 4.111(13) [[`2]\bar 2 01], 3.777(24) [050, [`2]\bar 2 21, 041], 2.692(15) [[`3]\bar 3 11, 151, [`3]\bar 3 02], 2.524(41)[170, [`2]\bar 2 52, [`1]\bar 1 71], 1.558(22) [[`4]\bar 4 82, [`3]\bar 3 .10.1, 024]. The name of the mineral means, firstly, that it was found in specimens from dumps of the Centennial Eureka Mine. In addition, it could mean found in a dump (the Greek word eureka means I have found it). There is an allusion to the great role that dumps of abandoned mines have played in the discovery of new minerals. Type specimens are deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences in Moscow, at the Smithsonian National Museum of Natural History in Washington, and at the American Museum of Natural History in New York.  相似文献   

12.
冶金炉渣是在迅速冷却的条件下结晶的,铸石是在熔体的固相线以下恒温结晶的,这两种情况皆属不平衡状态。过去的硅酸盐体系的实验研究几乎仅局限于平衡状态,对非平衡状态研究甚少,只是近来才开始这方面的研究。在硅锰渣铸石和硅锰渣微晶铸石中,主要矿物为锰铸普通辉石--钙锰辉石与钙契尔马克分子(CaAlSiAlO6)以及少量的Mg2Si2O6的固溶体,其次是钙蔷薇辉石和钙长石,另外还有极少量的方锰石、硫化锰等。  相似文献   

13.
陕西长武黄土剖面L3~S6土层渗透性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
根据渗水实验、孔隙度、粒度、磁化率测定,研究了长武黄土剖面L3~S6土层的渗透性及其成因。研究结果表明,L3,L4,L5和L6黄土层渗透性较强,稳定入渗速率较高,它们的渗透系数变化在0.57~1.06mm/分之间,4层平均为0.75mm/分;S3,S4,S5和 S6古土壤渗透性较弱,稳定入渗率较低,它们的渗透系数变化在0.18~0.71mm/分之间,4层平均为0.44mm/分。红色古土壤达到稳定入渗率的时间一般比黄土层要长;   黄土层的平均空隙度比红褐色古土壤高,渗透性强,粒度成分较粗,黄土层比红褐色古土壤层更利于构成含水层;   红褐色古土壤层粒度成分细,空隙度低,渗透性弱,比黄土层利于形成隔水层。长武第4层古土壤厚度小,纵向裂隙发育强,入渗速率较大,不易形成隔水层。磁化率、粘粒含量资料表明红褐色古土壤层与黄土层渗透性、含水空间和隔水性的差异主要是当时气候冷干和温湿交替变化的结果。  相似文献   

14.
 An olivine grain from a peridotite nodule 9206 (Udachnaya kimberlite, Siberia) was investigated by TEM methods including AEM, HRTEM, SAED and EELS techniques. A previous study of the 9206 olivine sample revealed OH absorption bands in the IR spectrum and abundant nanometer-sized OH-bearing inclusions, of hexagonal-like or lamellar shape. Inclusions, which are several hundred nm in size, consist of 10 ? phase, talc and serpentine (chrysotile and lizardite). The lamellar (LI) and hexagon-like small inclusions of several ten nm in size (SI) are the topic of the present paper. AEM investigations of the inclusions reveal Mg, Fe and Si as cations only. The Mg/Si and Fe/Si atomic ratios are lower in the inclusions than in the host olivine. The Si concentration in the olivine host and both lamellar inclusions and small inclusions is the same. A pre-peak at 528eV was observed in EEL spectra of LI and SI, which is attributed to OH or Fe3+. From these data it is concluded that there is a OH- or Fe3+-bearing cation-deficient olivine-like phase present. HRTEM lattice fringe images of LI and SI exhibit modulated band-like contrasts, which are superimposed onto the olivine lattice. Diffraction patterns (Fourier-transforms) of the HREM images as well as SAED patterns show that the band-like contrasts in HRTEM images of the inclusions are caused by periodic modulations of the olivine lattice. Three kinds of superperiodicity in the olivine structure such as 2a, 3a and 3c, were observed in SAED patterns. The corresponding olivine supercells labelled here as Hy-2a, Hy-3a and Hy-3c were derived. The M1-vacancies located in the (100) and (001) octahedral layers of the olivine lattice are suggested to form ordered arrays of planar defects (PD), which cause the band-like contrasts in HRTEM patterns as well as the superperiodicity in the SAED patterns. The vacancy concentrations as well as the chemical composition of Hy-2a, Hy-3a and Hy-3c olivine supercells were calculated using crystal chemical approaches, assuming either {(OH)< O−V" Me−(OH)< O}, or {F e < Fe H Me } or {2F e < Fe V Me "} point defect associates. The calculated theoretical compositions Mg1.615Fe+2 0.135v0.25SiO4H0.5 (Hy-2a) and Mg1.54Fe2+ 0.12v0.33SiO4H0.66 (Hy-3a and Hy-3c) are in a good agreement with the AEM data on inclusions. Hy-2a, Hy-3a and Hy-3c are considered to be a hydrous olivine with the extended chemical formula (Mg1-yFe2+ y)2−xvxSiO4H2x. The crystal structure of hydrous olivine is proposed to be a modular olivine structure with Mg-vacant modules. The crystal chemical formula of hydrous olivines in terms of a modular structure can be written as [MgSiO4H2] · 3[Mg1.82Fe0.18SiO4] for Hy-2a, [MgSiO4H2] · 2[Mg1.82Fe0.18SiO4] for Hy-3a and Hy-3c. Hydrous olivine is suggested to be exsolved from the olivine 9206, which has been initially saturated by OH-bearing point defects. The olivine 9206 hydration as well as the following exsolution of hydrous olivine inclusions is suggested to occur at high pressure-high temperature conditions of the upper mantle. Received: 15 January 2001 / Accepted: 2 July 2001  相似文献   

15.
Alloriite, a new mineral species, has been found in volcanic ejecta at Mt. Cavalluccio (Campagnano municipality, Roma province, Latium region, Italy) together with sanidine, biotite, andradite, and apatite. The mineral is named in honor of Roberto Allori (b. 1933), an amateur mineralogist and prominent mineral collector who carried out extensive and detailed field mineralogical investigations of volcanoes in the Latium region. Alloriite occurs as short prismatic and tabular crystals up to 1.5 × 2 mm in size. The mineral is colorless, transparent, with a white streak and vitreous luster. Alloriite is not fluorescent and brittle; the Mohs’ hardness is 5. The cleavage is imperfect parallel to {10 0}. The density measured with equilibration in heavy liquids is 2.35g/cm3 and calculated density (D calc) is 2.358 g/cm3 (on the basis of X-ray single-crystal data) and 2.333 g/cm3 (from X-ray powder data). Alloriite is optically uniaxial, positive, ω = 1.497(2), and ɛ = 1.499(2). The infrared spectrum is given. The chemical composition (electron microprobe, H2O determined using the Penfield method, CO2, with selective sorption, wt %) is: 13.55 Na2O, 6.67 K2O, 6.23 CaO, 26.45 Al2O3, 34.64 SiO2, 8.92 SO3, 0.37 Cl, 2.1 H2O, 0.7 CO2, 0.08-O = Cl2, where the total is 99.55. The empirical formula (Z = 1) is Na19.16K6.21Ca4.87(Si25.26Al22.74O96)(SO4)4.88(CO3)0.70Cl0.46(OH)0.76 · 4.73H2O. The simplified formula (taking into account the structural data, Z = 4) is: [Na(H2O)][Na4K1.5(SO4)] · [Ca(OH,Cl)0.5](Si6Al6O24). The crystal structure has been studied (R = 0.052). Alloriite is trigonal, the space group is P31c; the unit-cell dimensions are a = 12.892(3), c = 21.340(5) ?, and V = 3071.6(15) ?3. The crystal structure of alloriite is based on the same tetrahedral framework as that of afghanite. In contrast to afghanite containing clusters [Ca-Cl]+ and chains ...Ca-Cl-Ca-Cl..., the new mineral contains clusters [Na-H2O]+ and chains ...Na-H2O-Na-H2O.... The strongest reflections in the X-ray powder diffraction pattern [d, ? (I, %)(hkl)] are: 11.3(70)(100), 4.85(90)(104), 3.76(80)(300), 3.68(70)(301), 3.33(100)(214), and 2.694(70)(314, 008). The type material of alloriite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow. The registration number is 3459/1. Original Russian Text ? N.V. Chukanov, R.K. Rastsvetaeva, I.V. Pekov, A.E. Zadov, 2007, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2007, No. 1, pp. 82–89. A new mineral alloriite and its name were accepted by the Commission on New Minerals and Mineral Names, Russian Mineralogical Society, May 8, 2006. Approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association, August 2, 2006.  相似文献   

16.
在青海湖不同盐度的四孔近代沉积物岩芯(Q-16A,QH,QE和QG)(图1)抽提物支链和环烷烃组分中检出了非常丰富的C20,C25和C30高度支链类异戊二烯烯烃(highlybranchedisoprenoidalkenes),简称HBI烯烃。这是在我国近代湖泊沉积物发现这类化合物的首次详细报导。由于C20,C25和C30HBI烯烃比正构烷烃具有较强的抵抗生物降解的能力(RobsonandRowland,1988b),因此,它们广泛分布于各种近代环境中,如湖泊、海洋和高盐环境的近代沉积物中(RowlandandRobson,1990)。并且,具有1~6个双键的C20,C25和C30烯烃经常是现代沉积物中丰富的烃类。最近在印度洋现代沉积物中又发现了一个新的具有7个双键的C35HBI烯烃(Hoefsetal,1995)。全饱和的C20(I,附图)、C25(Ⅱ,附图)和C30(Ⅲ,附图)HBI烷烃已通过标样的合成确切地确定了它们的结构。在青海湖QG孔(尕海,咸水)和QE孔(耳海,淡水)抽提物中发现了C20单烯(1号峰,图2a)。C25烯烃(2号峰,图2a、2b)和C30烯烃(主要是3号和8号峰,图2a、2b)存在于所有四孔沉积物中。  相似文献   

17.
本文介绍根据井中磷矿天然伽玛强度利用回归分析方法计算P2O5品位,顺便也谈谈在钙芒硝矿上的应用效果,以此说明统计分析方法应用在物探测井工作中的必要性和有效性。  相似文献   

18.
19.
采用CO碳化SiO2和Al3O4负载的Co(NO3)2的方法制备了SiO2和Al3O4负载的Co2C催化剂,采用N2物理吸附、X射线衍射和H2-程序升温还原技术对催化剂进行了表征,并用于催化费托合成反应中.结果显示,需要较长碳化时间才可合成负载的Co2C催化剂;所制催化剂表现出CO加氢生成高碳醇的催化性能,其原因可能在于催化剂表面存在的金属Co物种使CO解离,表面Co物种有利于CO插入,从而导致醇的生成,但体相Co2C则不具有催化活性.  相似文献   

20.
Pyrope-knorringite garnets, Mg3(Al1-X Cr3+X)2Si3O12 with X=0.25, 0.50, and 1.00, were synthesized between 9 and 16 GPa and 1300 and 1600 °C, using multianvil high-pressure techniques. The garnets with X=0.25 and 0.50 are fine-grained, pink and violet in color. The end-member knorringites with X=1.00 are black when compact and gray when coarse-grained. The fine powder is greenish gray in natural light and pale pink under a tungsten lamp. Powder remission spectra in the wavenumber range 30 000–10 000 cm–1 on finely powdered crystals were measured by two different methods: (I.) by the use of a small integrating sphere for small samples or (II.) microscope-spectrometric measurement using diffusely reflected radiation from a 45° illuminated microsample. Both methods yielded similar diffuse reflectance spectra. The following crystal-field parameters of [6]Cr3+ were determined for garnets with X=0.25, 0.50, 1.00: 10 Dq=17 856, 17 596, 17 286 cm–1; and B=654, 677, 706 cm–1; nephelauxetic ratio =(Bfield/Bfree)= 0.71, 0.74, 0.77. The -values indicate decreasing covalency of the Cr–O bond with increasing Cr content. The 10 Dq value for together with the mean Cr–O distance in end-member knorringite, 1.96 Å (Novak and Gibbs 1971), were used to calculate from the spectral data, local mean Cr–O distances (Langer 2001a) as a function of composition. The results indicate relatively strong local site relaxation with a value of =0.77.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号