首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Digital simulation of the scale effect in hydraulic conductivity   总被引:1,自引:1,他引:0  
 Measured hydraulic conductivity increases with the scale of testing, but the reason for this increase is not clear. Possibly, high-conductivity heterogeneities are more effective in raising hydraulic conductivity over the regional scale than at the local scale. Alternatively, borehole skin and storage effects, among others, can systematically bias the results of small-scale tests; thus, the increase may simply be an artifact of the test method. Radial-flow tests were simulated at various scales in digital models of fractured double-porosity media. The mean hydraulic conductivity increases until the radius of influence in the test exceeds the fracture spacing. Therefore, under radial flow, hydraulic conductivity is indeed dependent on measurement scale. The increase in hydraulic conductivity with scale is a natural consequence of heterogeneity. Over short distances, water converging toward a borehole must generally flow across heterogeneities. Therefore, small-scale tests tend to measure a weighted harmonic mean of the hydraulic-conductivity field. Over a large area, however, flow is primarily along high-conductivity heterogeneities. Therefore, large-scale tests approach a weighted arithmetic mean where high-conductivity heterogeneities have a greater influence. Received, April 1997 Revised, January 1998 Accepted, December 1997  相似文献   

2.
Sedimentological processes often result in complex three-dimensional subsurface heterogeneity of hydrogeological parameter values. Variogram-based stochastic approaches are often not able to describe heterogeneity in such complex geological environments. This work shows how multiple-point geostatistics can be applied in a realistic hydrogeological application to determine the impact of complex geological heterogeneity on groundwater flow and transport. The approach is applied to a real aquifer in Belgium that exhibits a complex sedimentary heterogeneity and anisotropy. A training image is constructed based on geological and hydrogeological field data. Multiple-point statistics are borrowed from this training image to simulate hydrofacies occurrence, while intrafacies permeability variability is simulated using conventional variogram-based geostatistical methods. The simulated hydraulic conductivity realizations are used as input to a groundwater flow and transport model to investigate the effect of small-scale sedimentary heterogeneity on contaminant plume migration. Results show that small-scale sedimentary heterogeneity has a significant effect on contaminant transport in the studied aquifer. The uncertainty on the spatial facies distribution and intrafacies hydraulic conductivity distribution results in a significant uncertainty on the calculated concentration distribution. Comparison with standard variogram-based techniques shows that multiple-point geostatistics allow better reproduction of irregularly shaped low-permeability clay drapes that influence solute transport.  相似文献   

3.
沉积盆地动力学与模拟研究   总被引:20,自引:0,他引:20  
沉积盆地动力学过程与模拟研究是当前地球科学研究的前沿领域。盆地形成演化的动力学机制、盆地沉积充填过程与模拟、盆地规模的流体动力学等方面的研究近年来取得了重要进展。从定性的静态描述分析转向定量的动态过程研究是当前盆地动力学研究的主要发展趋势。盆地形成机制研究在深部过程控制、多重机制联合作用、幕式裂陷和反转过程等方面取得显著进展。前陆盆地构造—充填过程和模拟、构造活动盆地层序地层学、盆地充填过程分析与模拟等研究代表了盆地充填动力学研究的最新成果。盆地流体过程和模拟是当前的一个研究热点,盆地流体的识别、追踪和盆地规模的流体动力学分析与模拟获得突出性进展。  相似文献   

4.
沉积盆地成岩作用系统及其时空属性   总被引:14,自引:7,他引:14  
含油气盆地的勘探开发对认识沉积成岩作用和储层发育规律提出了很高的要求。然而,迄今为止沉积学家和石油工程师还很难如认识沉积过程及其结构那样认识盆地尺度或宏观尺度上成岩作用的时空分带。为此,本文探讨了成岩作用类型的时空属性和主控因素等理论问题,提出了成岩系统分级(类)的有关准则,试图以此探索成岩作用时空分布与演变研究的新思路。结合中国东、西部有关中-新生代沉积盆地实例分析,阐述了盆地域(尺度)、层序域、亚层序域、层内域等成岩作用系统的客观存在,并对盆地域、层序域成岩作用系统动力学研究的思路和方法作了进一步阐释。在盆地尺度上成岩作用的时空分布主要与盆地大地构造位置及其控制的温压场、物源、剥蚀-搬运气候背景、埋藏历史、水文体制叠置方式密切关联;层序域成岩作用系统的时空分异则主要取决于埋藏深度、层序结构与宏观物理-化学障、沉积体系(配置)、水文体制。研究认为,成岩系统的层次分析是认识不同类型沉积盆地成岩结构的重要基础,而对于确定的盆地类型而言,盆地尺度水文体制与流体-岩石相互作用研究是解析成岩作用时空属性的关键。成岩系统研究目前还面临许多关键问题亟待解决,如成岩系统及其边界条件的划分:成岩作用系统关键要素及其制约机制的厘定;盆地尺度上精细构造演化和温压历史恢复;盆地流体属性和活动期次的准确鉴别;盆地尺度上成岩作用数值模拟和动力学过程研究。  相似文献   

5.
中国西北部盆地岩石热导率和生热率特征   总被引:19,自引:0,他引:19       下载免费PDF全文
邱楠生 《地质科学》2002,37(2):196-206
本文根据大量实测数据,首次系统地报道了中国西北地区塔里木盆地、准噶尔盆地和柴达木盆地内的岩石热导率、岩石放射性生热率数据及其分布特征.对600多个岩石热导率和100多个实测岩石生热率的统计分析表明,沉积盆地中岩石的热物理性质与其岩性、埋藏深度和地层时代密切相关.随深度和地层时代的加大,岩石热导率增大;塔里木盆地的岩石热导率的总体平均值最大,而柴达木盆地的最小.岩石生热率在上地壳的分布是随深度的增加而减小的,但在沉积盆地的深度范围内几乎不变,其分布是均匀的,仅不同岩性的生热率差别较大.估算的岩石放射性生热产生的热量可以占到盆地地表热流的25%~45%.因此,岩石热物理性质的参数不仅与盆地的地温分布和大地热流特征密切相关,还可以为该地区盆地热历史恢复及深部地球物理的研究提供有效的参数和边界条件.  相似文献   

6.
The task of 3-D modeling of the thermal field of a sedimentary basin during sedimentation is considered. The aim of the modeling is to determine the temperature at any point of the basin at a given moment of geological time. The mathematical model is based on a system of equations of thermal conductivity for a heterogeneous layered medium with dynamic boundaries. The conditions of the continuous temperature and thermal flow are given at the boundaries of the adjacent layers. The temperature values, which are determined by the values of the secular course of the earth temperature, are given at the upper boundary coinciding with the sedimentation surface. The thermal flow value is considered to be given at the lower boundary. The medium is approximated using a vertical triangle prism, which is accepted in algorithms of interpretation of the gravitation field and characterized by random upper and lower basements and given values of the thermal physical parameters. The equations of thermal conductivity are solved on the basis of potential theory. The precision of this algorithm is demonstrated by calculation of a test example. The thermal evolution of the sedimentary complexes and dynamics of the major zone of oil formation are reconstructed and possible errors of paleotemperature interpretations caused by ignored 3-D modeling medium are determined on the example of the sedimentary basin of the Lunskaya depression of Sakhalin.  相似文献   

7.
In the previous paper (Zijl and Stam, 1992), a theory has been developed to calculate the nine components of the three-dimensional intrinsic permeability tensor on the scale of a grid-block from a local-scale, predominantly layered subsurface. The resulting block-scale expressions can be written as a perturbation series of which the first term, or zeroth-order solution, coincides with the conventionally applied arithmetic and harmonic averages over the layers of the subsurface. The derived expressions permit the calculation of the diagonal and off-diagonal terms of the permeability tensor. In the present paper, these expressions will be applied in some numerical examples. Two basic two-dimensional hypothetical permeability distributions are adopted, and the various terms of the theoretical expressions are calculated. The results will be used to derive guidelines to discern the situations where higher order solutions can be neglected, and where conventional harmonic and arithmetic averages give a good estimate of the permeability on grid-block scale.  相似文献   

8.
In the paper the one-equation model of humidity transfer in unsaturated macroscopically heterogeneous porous media is presented. The homogenization method by two-scale asymptotic expansions is used to derive the upscaled form of the Richard equation, which is commonly used when the medium is considered as macroscopically homogeneous. This equation is highly non-linear due to the pressure-dependence of the hydrodynamic characteristics of the porous medium. The domain of validity of the model is explicitly given, namely: the length-scales separation, the characteristic time scale condition and the ratio of the hydrodynamic characteristics being of the same orders of magnitude. The effective capillary capacity and the effective hydraulic conductivity for an equivalent continuum are defined in terms of geometry and local hydrodynamic characteristics of the porous medium. A procedure of determination of the effective suction curve and the effective hydraulic conductivity curve as functions of the average water content for any type of the macroscopic heteregeneity for which the method can be applied, is provided. Since the problem is non-linear this procedure involves the resolution of a local boundary value problem formulated over a period for each value of suction. In two or three-dimensional cases, this problem can be solved using the numerical methods for any geometry of the medium. In a one-dimensional case it was shown that the analytical solution gives the well-known results of harmonic and arithmetic mean.  相似文献   

9.
The role of heterogeneity and uncertainty in hydraulic conductivity on hillslope runoff production was evaluated using the fully integrated hydrologic model ParFlow. Simulations were generated using idealized high-resolution hillslopes configured both with a deep water table and a water table equal to the outlet to isolate surface and subsurface flow, respectively. Heterogeneous, correlated random fields were used to create spatial variability in the hydraulic conductivity. Ensembles, generated by multiple realizations of hydraulic conductivity, were used to evaluate how this uncertainty propagates to runoff. Ensemble averages were used to determine the effective runoff for a given hillslope as a function of rainfall rate and degree of subsurface heterogeneity. Cases where the water table is initialized at the outlet show runoff behavior with little sensitivity to variance in hydraulic conductivity. A technique is presented that explicitly interrogates individual realizations at every simulation timestep to partition overland and subsurface flow contributions. This hydrograph separation technique shows that the degree of heterogeneity can play a role in determining proportions of surface and subsurface flow, even when effective hillslope outflow is seen. This method is also used to evaluate current hydrograph separation techniques and demonstrates that recursive filters can accurately proportion overland and base-flow for certain cases.  相似文献   

10.
A two-dimensional modelling study of sedimentation, fluid flow, and heat flow in the Baikal rift basin undergoing flank uplift and basin subsidence has been performed in order to understand the impact of these processes on the surface heat flow signal. Heat flow anomalies of different scales and magnitudes have been observed at the sediment surface of the lake Baikal basin, and the presence of a hydrothermal vent suggests that fluids play an important role in the regional distribution of heat flow. The BASIN-code applied for this study allows to simulate topographically and compaction-driven hydrodynamical fluid flow and coupled heat transfer.The flank uplift history provides the basis for a regional groundwater circulation towards the central basin area, with predicted Darcy velocities at present-day situation in the basement varying between 1 and 100 cm/year. Within the basin, the presence of aquifers and the pinch-out layering has a major control on the flow field, and compaction-driven flow velocities are strongly altered when combined with topography-driven flow. When velocities in the basement are larger than several centimeters per year, the regional fluid circulation is an effective mechanism of heat redistribution. Heat is brought from the flanks towards the basin area, with largest heat transported at a depth of 1–2 km at both sides. During the flank uplift, heat advection increases, with secondary variation related to the deposition of sedimentary layers. The heat flow is increased over the basin and reduced in the flanks, with a total heat output balance always positive. The extra heat output over the modelled transection is 2–10% of the initial heat output. The maximum computed heat fluxes are smaller than measured in the heat flow anomalies of the lake Baikal basin. Nevertheless, the model suggests that flow in the sedimentary basin combined with a topographically driven heat advection in the surrounding basement is a sufficient mechanism to account for the increased heat flow over the basin and the main features of the heat flow distribution.  相似文献   

11.
咸化湖盆混积岩成因机理研究   总被引:12,自引:0,他引:12  
关于海相及淡水湖盆混积岩的研究已相对完善,而针对咸化湖盆混积岩理论的形成及实践应用却鲜有报道,本文旨在系统地阐述咸化湖盆混积岩的成因机理、沉积模式、分布规律,对比其与一般混积岩沉积特征的异同点,并探讨其与油气富集特征的相关性。本文采用矿物学、微观岩石学分析方法进行混积岩矿物组成、沉积特征、储集空间类型研究,采取地质统计分析方法明确混积岩分布规律,并运用物性分析方法对比不同类型混积岩的储集性能。结合柴达木盆地西北区新近系混积岩研究实例,本文创新性地提出了欠补偿咸化湖盆的混积岩成因类型:机械成因的相混合混积岩和生物成因的藻混合混积岩。相混合又可划分为两种亚类:互层型混合、组构型混合;藻混合亦可划分为两种亚类:藻粘结混合、滑塌再混合。建立了咸化湖盆混积岩的沉积模式:混积岩主要发育于三角洲、水下扇、滩坝等碎屑岩沉积体系与湖相碳酸盐岩沉积体系的过渡相带以及藻灰岩发育区。明确了混积岩的分布规律,可归纳为“盆缘互层型、盆内组构型、藻混合局限分布”。混积岩沉积特征对比分析结果表明,任何环境下混积岩形成的先决条件均为碳酸盐岩的生长和聚集,而不同于淡水湖盆及海相混积岩沉积厚度大,生物含量高等特点,咸化湖盆混积岩单层厚度极薄,并发育特殊的藻混积岩类。综合研究认为,藻混合混积岩与油气储层的相关性要大于相混合混积岩。以上成果可为咸化湖盆混积岩,乃至陆相湖泊混合沉积物的成因类型及油气地质意义研究提供借鉴与参考。  相似文献   

12.
The thermal regime of the Northeastern-German Basin from 2-D inversion   总被引:2,自引:0,他引:2  
The thermal regime and the distribution of heat flow at the base of sedimentary basins is fundamental to the understanding of the process of basin evolution and the associated mobilization and migration of hydrocarbon and other fluids. For the Northeastern-German sedimentary basin, available information on structure, temperature, and thermal properties along a seismic DEKORP reflection profile allow high resolution 2-D forward and inverse simulations. This approach is attractive in situations where much information is available, if only with considerable uncertainty. In particular, this allows to introduce “soft” information into the analysis. In our case, forward simulations yield initial a priori estimates of the parameters while inversion calculations yield a posteriori estimates of the parameters and their uncertainty. The a priori parameters as well as their assumed uncertainty are input for a Bayesian parameter estimation scheme. In respect to the Northeastern-German sedimentary basin, the inverse analysis postulates a significant and characteristic a posteriori variation of thermal conductivity of the Zechstein unit along the entire profile as well as a generally large a posteriori thermal conductivity of the (pre-Permian) basement in the northern part of the basin. For inverse calculations, we used two alternative scenarios: One assumes the thermal conductivity of the Zechstein unit to be homogeneous along the profile while the other allows a lateral variation. A posteriori heat flow across the base of the model varies from 40 to 60 and 50 to 65 mW m−2 for models in which values for thermal conductivity and radiogenic heat generation rate were either based on literature values or direct measurements, respectively.  相似文献   

13.
确定中、新生代沉积盆地大地热流的方法   总被引:1,自引:1,他引:1       下载免费PDF全文
陈墨香 《地质科学》1989,(2):151-161
用传统的方法于年青的沉积盆地测试大地热流,存在的问题多且难度大,因而这些盆地一直是世界热流测试研究最薄弱的地区之一。本文在符合热流测试原理的前提下,尝试用一种较容易确定热流值的方法,虽然这种方法获得的数据是近似值,但是可以接受的,并有地质、地球物理意义。也简要论述在新生界盖层地温梯度图的基础上,确定一个合理的系数,即盖层的平均热导率值,将地温梯度图转换为热流图,用以反映盆地地热的基本面貌。  相似文献   

14.
The integration of surface geological and geomorphological information with borehole point-data and geophysical (e.g., geoelectrical) images of the subsurface yields spatially consistent representations of alluvial aquifers heterogeneity at different scales, from depositional systems to basin fills. Such an approach requires a conceptual framework to match the stratigraphic units with their evidence from ground-based DC resistivity methods to effectively fill the gaps between sparse borehole data and to obtain valid representations of sedimentary heterogeneities. Such an approach is applied to characterize two sites of the Quaternary aquifers of the central Po Plain (Italy), which represent (1) the middle-upper Pleistocene braided to meandering river depositional systems sitting on Southalpine crust and (2) their down-current counterparts, where they are involved by the latest uplift and deformation due to the tectonic activity of the Apennine frontal thrusts. Electrical resistivity was considered as a proxy of the litho-textural properties of hydrofacies and their major hierarchical association at depth and was interpreted in accordance with the depth-decreasing resolution of ground-based resistivity methods. Thus, it was possible to identify the geophysical signature of hydrostratigraphic units through “Electrostratigraphic Units”, i.e., sedimentary volumes identified by resistivity contrasts that spatially preserve the vertical polarity. Hydrostratigraphy and electrostratigraphy were then joined together through a site-specific relationship between electrical resistivity and hydraulic conductivity, which takes into account the prevailing process of current conduction, the litho-textural properties of hydrofacies and the groundwater electrical conductivity. At the scales of aquifer systems and complexes, this approach permitted to establish the conceptual framework to match hydrostratigraphy, electrostratigraphy, average hydrodynamic properties and distribution of heterogeneities.  相似文献   

15.
Basin‐scale models are required to interpret ancient continental sedimentary successions, and reduce uncertainty in assessing geological resources in basins. Recently, modern studies show distributive fluvial systems to comprise a substantial proportion of modern sedimentary basins, but their role in ancient basin fills has yet to be quantitatively documented at the basin scale. This study analysed key fluvial characteristics to construct a detailed basin‐wide model of the Palaeogene Fort Union and Willwood formations (Bighorn Basin, Wyoming), using observations from modern studies, and ancient system scale studies of distributive fluvial systems, to guide interpretations. Mapping showed these formations to be highly heterogeneous with channel‐body proportion (from 12 to 81%) and geometry types (large amalgamated bodies to isolated channels), grain size (silt to conglomerate), average channel‐body thickness (4 to 20 m) and average storey thickness (3 to 10 m) varying significantly across the basin. Distributive fluvial systems in the form of alluvial and fluvial fans in transverse configurations were recognized as well as a wide axial system, with heterogeneity in the formations being closely aligned to these interpretations. Furthermore, numerous individual depositional systems were identified within the formations (Beartooth Absaroka, Washakie, Owl Creek and axial). Predicted downstream distributive fluvial system trends (i.e. downstream decrease in channel proportion, size and grain size) were identified in the Beartooth, Absaroka and Owl Creek systems. However, predicted trends were not identified in the Washakie system where intrabasinal thrusting disturbed the sequence. Importantly, a wide axial fluvial system was identified, where reverse downstream distributive fluvial system trends were present, interpreted to be the result of the input of transverse systems of variable size. This study provides a new level of detail in the application of basin‐scale models, demonstrating their usefulness in trying to understand and predict alluvial architecture distribution and heterogeneity, with important implications for economic resources and palaeogeographic reconstructions.  相似文献   

16.
Subsurface flows are affected by geological variability over a range of length scales. The modeling of well singularity in heterogeneous formations is important for simulating flow in aquifers and petroleum reservoirs. In this paper, two approaches in calculating the upscaled well index to capture the effects of fine scale heterogeneity in near-well regions are presented and applied. We first develop a flow-based near-well upscaling procedure for geometrically flexible grids. This approach entails solving local well-driven flows and requires the treatment of geometric effects due to the nonalignment between fine and coarse scale grids. An approximate coarse scale well model based on a well singularity analysis is also proposed. This model, referred to as near-well arithmetic averaging, uses only the fine scale permeabilities at well locations to compute the coarse scale well index; it does not require solving any flow problems. These two methods are systematically tested on three-dimensional models with a variety of permeability distributions. It is shown that both approaches provide considerable improvement over a simple (arithmetic) averaging approach to compute the coarse scale well index. The flow-based approach shows close agreement to the fine scale reference model, and the near-well arithmetic averaging also offers accuracy for an appropriate range of parameters. The interaction between global flow and near-well upscaling is also investigated through the use of global fine scale solutions in near-well scale-up calculations.  相似文献   

17.
盆地流体动力学及其研究进展   总被引:11,自引:2,他引:11  
盆地流体动力学是综合利用地质、地球物理、地球化学手段和计算机模拟等技术 ,通过对温度场、压力场和化学场等各种物理化学场的综合研究 ,在流体输导网络的格架下 ,再现盆地内流体运动过程及其活动规律的多学科综合的研究领域。流体是控制盆地中物质演变和能量再分配的主导因素 ,它对沉积盆地的油气生成、运移和成藏过程与成矿作用等都可起到重要的控制作用。因此受到国内外地学界高度重视。近十多年来 ,盆地流体研究在盆地流体流动样式、流体输导网络、流体与岩石相互作用、流体示踪技术、流体模拟技术等方面取得了长足的进展。随着盆地流体领域的新理论和新技术的应用将会给资源勘查带来更大的发展。  相似文献   

18.
探讨了土壤水非均匀流动特性和描述方法,通过染色示踪剂调查了三种试验尺度条件下非均匀流动模式,并采用随机层叠模型对不同实验尺度条件下非均匀流动模式进行了模拟。随机层叠模型中具有对数正态分布性质的随机层叠发生器被用来描述水流入渗过程,不同的方法被用于模型参数求解。试验观测和模拟计算结果均表明,尺度特性是非均匀流动的重要影响因素之一,准确的描述不同研究尺度下的非均匀流动特征,须同时考虑流动在水平和垂直方向的变异性。随着研究尺度的增加,流动的非均匀性变异程度更加明显。  相似文献   

19.
利用成熟探区翔实的岩芯、录井和测井等资料,研究了辽河盆地西部凹陷曙二区大凌河油层湖底扇沉积特征与沉积模式。研究表明,大凌河油层湖底扇具有较为发育的水道体系(主沟道或辫状沟道),平面上相带展布、扇体的分布面积、砂体延伸方向和分布模式受水道及古地貌变化的控制。水道体系及其控制的沉积体呈顺源、带状展布。主沟道向前延伸逐渐变为规模较大的辫状沟道沉积,两侧发育辫状沟道侧缘,呈条带-舌形展布,向湖方向逐渐演变为多支小型末端辫状沟道沉积。湖底扇内部平面微相序列表现为“主沟道→主沟道堤→深湖泥”或“辫状沟道→辫状沟道侧缘→辫状沟道间(或末梢)→深湖泥”的变化特征。每支辫状沟道控制形成的带状沉积体间均为明显深湖-半深湖泥岩沉积分割,呈带状-舌状沉积体向湖盆中心延伸较远。  相似文献   

20.
李忠  刘嘉庆 《沉积学报》2009,27(5):837-848
对成岩作用的物理—化学—生物过程的系统认识已经成为国际成岩作用研究的学术热点,而对沉积盆地尤其是化石能源盆地成岩作用重要性认识的加强,使得对成岩作用时空属性及其界定的精度要求愈来愈高。为此本文明确提出了在盆地动力学演化框架内,基于盆地沉积层序(岩石—矿物—化学体系配置)、埋藏、构造、流体格架分析,开展成岩作用时空分布研究的思路。进一步讨论了成岩作用的动力机制与时空分布研究若干问题和发展趋向,提出了应重视和开展地表温度变化对埋藏成岩作用,沉积结构及其矿物—化学体系对后期成岩改造的制约机理,断裂相、变形条带及其与碎屑岩储层裂缝或强压实改造关系,构造—流体活动耦合机制与流体—岩石相互作用效应等的研究建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号