首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Integrating stable isotope tracers into rainfall‐runoff models allows investigation of water partitioning and direct estimation of travel times and water ages. Tracer data have valuable information content that can be used to constrain models and, in integration with hydrometric observations, test the conceptualization of catchment processes in model structure and parameterization. There is great potential in using tracer‐aided modelling in snow‐influenced catchments to improve understanding of these catchments' dynamics and sensitivity to environmental change. We used the spatially distributed tracer‐aided rainfall‐runoff (STARR) model to simulate the interactions between water storage, flux, and isotope dynamics in a snow‐influenced, long‐term monitored catchment in Ontario, Canada. Multiple realizations of the model were achieved using a combination of single and multiple objectives as calibration targets. Although good simulations of hydrometric targets such as discharge and snow water equivalent could be achieved by local calibration alone, adequate capture of the stream isotope dynamics was predicated on the inclusion of isotope data in the calibration. Parameter sensitivity was highest, and most local, for single calibration targets. With multiple calibration targets, key sensitive parameters were still identifiable in snow and runoff generation routines. Water ages derived from flux tracking subroutines in the model indicated a catchment where runoff is dominated by younger waters, particularly during spring snowmelt. However, resulting water ages were most sensitive to the partitioning of runoff sources from soil and groundwater sources, which was most realistically achieved when isotopes were included in the calibration. Given the paucity of studies where hydrological models explicitly incorporate tracers in snow‐influenced regions, this study using STARR is an important contribution to satisfactorily simulating snowpack dynamics and runoff generation processes, while simultaneously capturing stable isotope variability in snow‐influenced catchments.  相似文献   

2.
Land cover changes associated with urbanization have negative effects on downstream ecosystems. Contemporary urban development attempts to mitigate these effects by designing stormwater infrastructure to mimic predevelopment hydrology, but their performance is highly variable. This study used in situ monitoring of recently built neighbourhoods to evaluate the catchment‐scale effectiveness of landscape decentralized stormwater control measures (SCMs) in the form of street connected vegetated swales for reducing runoff volumes and flow rates relative to curb‐and‐gutter infrastructure. Effectiveness of the SCMs was quantified by monitoring runoff for 8 months at the outlets of 4 suburban catchments (0.76–5.25 ha) in Maryland, USA. Three “grey” catchments installed curb‐and‐gutter stormwater conveyances, whereas the fourth “green” catchment built parcel‐level vegetated swales. The catchment with decentralized SCMs reduced runoff, runoff ratio, and peak runoff compared with the grey infrastructure catchments. In addition, the green catchment delayed runoff, resulting in longer precipitation–runoff lag times. Runoff ratios across the monitoring period were 0.13 at the green catchment and 0.37, 0.35, and 0.18 at the 3 grey catchments. Runoff only commenced after 6 mm of precipitation at the decentralized SCM catchment, whereas runoff occurred even during the smallest events at the grey catchments. However, as precipitation magnitudes reached 20 mm, the green catchment runoff characteristics were similar to those at the grey catchments, which made up 37% of the total precipitation in only 10 of 72 events. Therefore, volume‐based reduction goals for stormwater using decentralized SCMs such as vegetated swales require additional redundant SCMs in a treatment train as source control and/or end‐of‐pipe detention to capture a larger fraction of runoff and more effectively mimic predevelopment hydrology for the relatively rare but larger precipitation events.  相似文献   

3.
Polar Bear Pass is a large High Arctic low‐gradient wetland (100 km2) bordered by low‐lying hills which are notched by a series of v‐shaped valleys. The spring and summer hydrology of two High Arctic hillslope‐wetland catchments, a first‐order stream, 0·2 km2 Landing Strip Creek (LSC) and a larger second‐order basin, 4·2 km2 Windy Creek (WC), is described here. A water balance framework was employed in 2008 to examine the movement of water from upland reaches into the low‐lying wetland. Snowcover was low in both basins (<50 mm in water equivalent units), but they both exhibited nival‐type regimes. After the main snowmelt season ended, runoff ceased in the smaller catchment (LSC), but not at the larger basin (WC) which continued to flow throughout the summer. Both basins responded to summer rains in different ways. At LSC, late‐summer continuous streamflow occurred only when rainfall satisfied the large soil moisture deficit in the upper bowl‐shaped zone of the basin. At WC, the presence of thinly thawed, ice‐rich polygonal terrain within the stream channel and in the upper reaches of the catchment likely limited infiltration in these near‐stream zones and enhanced runoff in response to both moderate and high rainfall. Subsequently, seasonal runoff ratios differed between the two sites (0·19 vs 0·68) as did the seasonal storage + residual (+16 vs ?50 mm). This suggests that the post‐snowmelt season runoff response to summer precipitation is very much modified by the unique basin characteristics (soil‐type, vegetation, ground ice) and their location within each stream order type. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Use of isotopes to quantify the temporal dynamics of the transformation of precipitation into run‐off has revealed fundamental new insights into catchment flow paths and mixing processes that influence biogeochemical transport. However, catchments underlain by permafrost have received little attention in isotope‐based studies, despite their global importance in terms of rapid environmental change. These high‐latitude regions offer limited access for data collection during critical periods (e.g., early phases of snowmelt). Additionally, spatio‐temporal variable freeze–thaw cycles, together with the development of an active layer, have a time variant influence on catchment hydrology. All of these characteristics make the application of traditional transit time estimation approaches challenging. We describe an isotope‐based study undertaken to provide a preliminary assessment of travel times at Siksik Creek in the western Canadian Arctic. We adopted a model–data fusion approach to estimate the volumes and isotopic characteristics of snowpack and meltwater. Using samples collected in the spring/summer, we characterize the isotopic composition of summer rainfall, melt from snow, soil water, and stream water. In addition, soil moisture dynamics and the temporal evolution of the active layer profile were monitored. First approximations of transit times were estimated for soil and streamwater compositions using lumped convolution integral models and temporally variable inputs including snowmelt, ice thaw, and summer rainfall. Comparing transit time estimates using a variety of inputs revealed that transit time was best estimated using all available inflows (i.e., snowmelt, soil ice thaw, and rainfall). Early spring transit times were short, dominated by snowmelt and soil ice thaw and limited catchment storage when soils are predominantly frozen. However, significant and increasing mixing with water in the active layer during the summer resulted in more damped steam water variation and longer mean travel times (~1.5 years). The study has also highlighted key data needs to better constrain travel time estimates in permafrost catchments.  相似文献   

5.
Over a period of 12 months, soil moisture content and potential was monitored in an annual‐grass‐dominated 20 ha catchment in order to determine flow paths leading to exfiltration at the catchment outlet. Water was found to enter the catchment valley either through flow originating in the slopes or through surface infiltration during rainfall events. Although subsurface flow from the slopes to the catchment outlet occurred throughout the year, surface recharge was restricted to a few events during the wet season. In the deeper saturated profile of the valley, flow was directed upwards along the valley edges and gradually became horizontal towards the central axis of the valley. During the peak of the rainfall season, horizontal flow close to the catchment outlet intercepted the gradually sloping surface, resulting in exfiltration. Plants influenced the hydrology of the catchment by removing moisture from the root zone during spring and early summer, resulting in evapotranspiration losses from the vadose zone. Heterogeneities within the valley soil were evident as variable‐permeability layers that resulted in a seasonally confined water table within the valley. This investigation shows that the vadose zone plays an important role in redistributing surface recharge and emphasizes the importance of accounting for effective moisture in low‐yielding catchments with ephemeral surface runoff. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
We examined how and why dominant peak-flow runoff-generation mechanisms differ among neighbouring headwater catchments. We monitored runoff and groundwater levels and performed terrain analyses in a granitic second-order catchment and its four neighbouring subcatchments in the Kiryu Experimental Watershed in Japan. Our analysis of lag times from peak rainfall to peak runoff suggests differences in the dominant peak-flow runoff-generation mechanisms among the five catchments. For two of the three zero-order catchments, with few perennial groundwater bodies, subsurface flow from hillslopes was the dominant mechanism at some events. However, the dominant mechanisms were channel precipitation and riparian runoff at almost all events in first- and second-order catchments and in the third zero-order catchment, which has a large perennial groundwater body over a bedrock depression in the riparian zone. In this zero-order catchment, the quick-flow ratio was the smallest of the five catchments because subsurface flow from the hillslope was buffered at the riparian zone. These facts suggest that the channel length, riparian buffering, and hillslope connectivity were the factors governing the different dominant peak-flow runoff-generation mechanisms among the catchments. Riparian buffering was affected, not only by surface topography, but also by bedrock topography and bedrock groundwater (BGW) dynamics. Our findings indicate that both of BGW dynamics and topography are important for catchment classification, and the relative importance of topography increases with the change from baseflow to stormflow. Furthermore, mismatching between a geographic source and a flow path resulted in different catchment classifications depending on the approach. Therefore, multiple approaches during both baseflow and stormflow periods are necessary for catchment classification to apply information obtained from one headwater catchment to other headwater catchments within the same region.  相似文献   

7.
Continuous wavelet analyses of hourly time series of air temperature, stream discharge, and precipitation are used to compare the seasonal and inter‐annual variability in hydrological regimes of the two principal streams feeding Bow Lake, Banff National Park, Alberta: the glacial stream draining the Wapta Icefields, and the snowmelt‐fed Bow River. The goal is to understand how water sources and flow routing differ between the two catchments. Wavelet spectra and cross‐wavelet spectra were determined for air temperature and discharge from the two streams for summers (June–September) 1997–2000, and for rainfall and discharge for the summers of 1999 and 2000. The diurnal signal of the glacial runoff was orders of magnitude higher in 1998 than in other years, indicating that significant ice exposure and the development of channelized glacial drainage occurred as a result of the 1997–98 El Niño conditions. Early retreat of the snowpack in 1997 and 1998 led to a significant summer‐long input of melt runoff from a small area of ice cover in the Bow River catchment; but such inputs were not apparent in 1999 and 2000, when snow cover was more extensive. Rainfall had a stronger influence on runoff and followed quicker flow paths in the Bow River catchment than in the glacial catchment. Snowpack thickness and catchment size were the primary controls on the phase relationship between temperature and discharge at diurnal time scales. Wavelet analysis is a fast and effective means to characterize runoff, temperature, and precipitation regimes and their interrelationships and inter‐annual variability. The technique is effective at identifying inter‐annual and seasonal changes in the relative contributions of different water sources to runoff, and changes in the time required for routing of diurnal meltwater pulses through a catchment. However, it is less effective at identifying changes/differences in the type of the flow routing (e.g. overland flow versus through flow) between or within catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Testing competing conceptual model hypotheses in hydrology is complicated by uncertainties from a wide range of sources, which result in multiple simulations that explain catchment behaviour. In this study, the limits of acceptability uncertainty analysis approach used to discriminate between 78 competing hypotheses in the Framework for Understanding Structural Errors for 24 catchments in the UK. During model evaluation, we test the model's ability to represent observed catchment dynamics and processes by defining key hydrologic signatures and time step‐based metrics from the observed discharge time series. We explicitly account for uncertainty in the evaluation data by constructing uncertainty bounds from errors in the stage‐discharge rating curve relationship. Our study revealed large differences in model performance both between catchments and depending on the type of diagnostic used to constrain the simulations. Model performance varied with catchment characteristics and was best in wet catchments with a simple rainfall‐runoff relationship. The analysis showed that the value of different diagnostics in constraining catchment response and discriminating between competing conceptual hypotheses varies according to catchment characteristics. The information content held within water balance signatures was found to better capture catchment dynamics in chalk catchments, where catchment behaviour is predominantly controlled by seasonal and annual changes in rainfall, whereas the information content in the flow‐duration curve and time‐step performance metrics was able to better capture the dynamics of rainfall‐driven catchments. We also investigate the effect of model structure on model performance and demonstrate its (in)significance in reproducing catchment dynamics for different catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
We investigated the role of different hillslope units with different topographic characteristics on runoff generation processes based on field observations at two types of hillslopes (0·1 ha): a valley‐head (a convergent hillslope) and a side slope (a planar hillslope), as well as at three small catchments having two types of slopes with different drainage areas ranging from 1·9 to 49·7 ha in the Tanakami Mountains, central Japan. We found that the contribution of the hillslope unit type to small catchment runoff varied with the magnitude of rainfall. When the total amount of rainfall for a single storm event was < 35 mm, runoff in the small catchment was predominantly generated from the side slope. As the amount of rainfall increased (>35 mm), the valley‐head also began to contribute to the catchment runoff, adding to runoff from the side slope. Although the direct runoff from the valley‐head was greater than that from the side slope, the contribution from the side slope was quantitatively greater than that from the valley‐head due to the proportionally larger area occupied by the side slope in the small catchment. The storm runoff responses of the small catchments reflected the change in the runoff components of each hillslope unit as the amount of rainfall increased and rainfall patterns changed. However, similar runoff responses were found for the small catchments with different areas. The similarity of the runoff responses is attributable to overlay effects of different hillslope units and the similar composition ratios of the valley‐head and side slope in the catchments. This study suggests that the relative roles of the valley‐head and side slope are important in runoff generation and solute transport as the catchment size increases from a hillslope/headwater to a small catchment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents an application of a long-term, large catchment-scale, water balance model developed to predict the effects of forest clearing in the south-west of Western Australia. The conceptual model simulates the basic daily water balance fluxes in forested catchments before and after clearing. The large catchment is divided into a number of sub-catchments (1–5 km2 in area), which are taken as the fundamental building blocks of the large catchment model. The responses of the individual subcatchments to rainfall and pan evaporation are conceptualized in terms of three inter-dependent subsurface stores A, B and F, which are considered to represent the moisture states of the subcatchments. Details of the subcatchment-scale water balance model have been presented earlier in Part 1 of this series of papers. The response of any subcatchment is a function of its local moisture state, as measured by the local values of the stores. The variations of the initial values of the stores among the subcatchments are described in the large catchment model through simple, linear equations involving a number of similarity indices representing topography, mean annual rainfall and level of forest clearing. The model is applied to the Conjurunup catchment, a medium-sized (39·6 km2) catchment in the south-west of Western Australia. The catchment has been heterogeneously (in space and time) cleared for bauxite mining and subsequently rehabilitated. For this application, the catchment is divided into 11 subcatchments. The model parameters are estimated by calibration, by comparing observed and predicted runoff values, over a 18 year period, for the large catchment and two of the subcatchments. Excellent fits are obtained.  相似文献   

11.
Snowmelt is an important source of runoff in high mountain catchments. Snowmelt modelling for alpine regions remains challenging with scarce gauges. This study simulates the snowmelt in the Karuxung River catchment in the south Tibetan Plateau using an altitude zone based temperature‐index model, calibrates the snow cover area and runoff simulation during 2003–2005 and validates the model performance via snow cover area and runoff simulation in 2006. In the snowmelt and runoff modelling, temperature and precipitation are the two most important inputs. Relevant parameters, such as critical snow fall temperature, temperature lapse rate and precipitation gradient, determine the form and amount of precipitation and distribution of temperature and precipitation in hydrological modelling of the sparsely gauged catchment. Sensitivity analyses show that accurate estimation of these parameters would greatly help in improving the snowmelt simulation accuracy, better describing the snow‐hydrological behaviours and dealing with the data scarcity at higher elevations. Specifically, correlation between the critical snow fall temperature and relative humidity and seasonal patterns of both the temperature lapse rate and the precipitation gradient should be considered in the modelling studies when precipitation form is not logged and meteorological observations are only available at low elevation. More accurate simulation of runoff involving snowmelt, glacier melt and rainfall runoff will improve our understanding of hydrological processes and help assess runoff impacts from a changing climate in high mountain catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Boreal mire landscapes are rich in soil carbon and significantly contribute to the carbon input of aquatic ecosystems. They are composed of different mesoscale ecohydrological subunits, whose individual contributions to the water and carbon export of mire catchments are not well understood. The spring snowmelt period is the major hydrological event in the annual water cycle of the boreal regions and strongly influences the carbon flux between the terrestrial and aquatic systems. The aim of this study was (1) to provide a conceptual understanding of the spatial and temporal dynamics of the surface water chemistry along a swamp forest‐fen‐bog gradient during the snowmelt period, (2) to quantify the exported dissolved organic carbon (DOC) content in the runoff and (3) to identify the ecohydrological landscape unit that contributes most to DOC export during the snowmelt period in a heterogeneous mire complex in Northwest Russia. The highest DOC concentrations were detected in the swamp forest, and the lowest concentrations were observed at the treeless bog by the end of the snowmelt period (swamp forest: 37–43 mg l?1, bog: 13–17 mg l?1). During the spring snowmelt period, a significant amount (~1.7 g C m?2) of DOC was transferred by the ~74 mm of runoff from the catchment into the river. Variability in the thawing periods led to differences in the relative contributions of each ecohydrological zone to the carbon export measured at a stream channel draining the studied part of the mire complex. An increased understanding of the variation in DOC concentrations and contributions from the mesoscale ecohydrological subunits to carbon export can help to predict the potential regional loss of DOC based on land cover type under climate change. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Catchments in many parts of the world are either ungauged or poorly gauged, and the dominant processes governing their streamflow response are still poorly understood. The analysis of runoff coefficients provides essential insight into catchment response, particularly if both range of catchments and a range of events are compared. This paper investigates how well the hydrological runoff of 11 small, poorly gauged catchments with ephemeral streams (0·1‐0·6 km2) can be compared using estimated runoff with the associated uncertainty. Data of rainfall and water depth at a catchment's outlet were recorded using automatic logging equipment during 2008‐2009. The hydrological regime is intermittent and the annual precipitation ranged between 569 and 727 mm. Discharge was estimated using Manning's equation and channel cross‐section measurements. Innovative work has been performed under controlled experimental conditions to estimate Manning's coefficient values for the different cover types observed in studied streams: non‐aquatic vegetations (giant reed, bramble and thistle), grass and coarse granular deposits. The results show that estimates derived using roughness coefficients differ from those previously established for larger streams with aquatic vegetation. Catchment runoff was compared at both the event and the annual scale. The results indicate significant variability between the catchment's responses. This variability allows for classification in spite of all the uncertainty associated with runoff estimation. This study highlights the potential of using a network of poorly gauged catch ments. From almost no catchment understanding the proposed methodology allows to compare poorly gauged catchments and highlights similarity/dissimilarity between catchment responses. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Summer flows in experimental catchments with different forest covers, Chile   总被引:7,自引:0,他引:7  
Runoff and peak flows in four experimental catchments with different land uses are analyzed for summer periods. The catchments have a rainy temperate climate with annual precipitations between 2000 and 2500 mm, 70% of which is concentrated in the winter period between May and August. The final harvest of the forest plantation in one of these catchments generated increases in summer runoff. Also, differences between the maximum instantaneous discharge and the flow at the beginning of the storm then almost duplicated those registered in rainfall events of similar magnitude when the catchment was fully forested. Runoff analysis in this catchment is difficult because the two post-harvesting summer periods are much wetter than the two pre-harvesting ones but a double mass analysis shows the effect of harvesting clearly. In a paired catchment study, low cover in one of the two neighbour catchments explains higher direct runoff and base flows although lower maximum instantaneous specific discharge occurred in the less vegetated but larger catchment. Low vegetation cover explains increases in summer flows, although the size, topography, rainfall conditions, road density, extent of affected area and runoff generation processes play an important role in the hydrological effects of different land uses.  相似文献   

15.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Understanding rainfall‐runoff processes is crucial for prevention and prediction of water‐related natural disasters. Sulfur hexafluoride (SF6) is a potential tracer, but few researches have applied it for rainfall‐runoff process studies. We observed multiple tracers including SF6 in spring water at 1‐ to 2‐hr intervals during rainstorm events to investigate the effectivity of SF6 tracer in rainfall–runoff studies through the clarification of rainfall–runoff process. The target spring is a perennial spring in a forested headwater catchment with an area of 0.045 km2 in Fukushima, Japan. The relationship between the SF6 concentration in spring water and the spring discharge volume was negative trend; the SF6 concentration in spring water becomes low as the spring discharge volume increases especially during rainstorms. The hydrograph separation using SF6 and chloride ion tracers was applied for determining the contribution of principal sources on rainfall–runoff water. It suggested more than 60% contribution of bedrock groundwater at the rainfall peak and high percentage contribution continued even in the hydrograph recession phase. Based on observed low SF6 concentration in groundwater after heavy rainfall, the replacement of groundwater near the spring with bedrock groundwater is indicated as a mechanism for water discharge with low SF6 concentration during rainfall events. Consequently, rainstorm events play an important role as triggers in discharging water stored in the deeper subsurface area. In addition, SF6 tracer is concluded as one of the strongest tracers for examining rainfall–runoff process studies. And, therefore, this study provided new insights into the dynamics of groundwater and its responses to rainfall in terms of SF6 concentration variance in water in headwater regions.  相似文献   

17.
Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two‐component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0–73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new‐water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high‐intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new–old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including:
  • 1. topographically controlled increase in surface‐saturated area with increasing catchment size;
  • 2. direct runoff over frozen ground;
  • 3. low infiltration in agriculturally compacted soils;
  • 4. differences in soil transmissivity, which may be more relevant under dry antecedent conditions.
These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
The Brixenbach valley is a small Alpine torrent catchment (9.2 km2, 820–1950 m a.s.l., 47.45°, 12.26°) in Tyrol, Austria. Intensive hydrological research in the catchment since more than 12 years, including a hydrogeological survey, pedological and land use mapping, measurements of precipitation, runoff, soil moisture and infiltration as well as the conduction of rainfall simulations, has contributed to understand the hydrological response of the catchment, its subcatchments and specific sites. The paper presents a synthesis of the research in form of runoff process maps for different soil moisture states and precipitation characteristics, derived with the aid of a newly developed Soil-hydrological model. These maps clearly visualize the differing runoff reaction of different subcatchments. The pasture dominated areas produce high surface flow rates during short precipitation events (1 h, 86 mm) with high rainfall intensity, whilst the forested areas often develop shallow subsurface flow. Dry preconditions lead to a slight reduction of surface flow, long rainfall events (24 h, 170 mm) to a dominance of deep subsurface flow and percolation.  相似文献   

19.
This paper analyses the spatial and temporal variability of the hydrological response in a small Mediterranean catchment (Cal Rodó). The first part of the analysis focuses on the rainfall–runoff relationship at seasonal and monthly scale, using an 8‐year data set. Then, using storm‐flow volume and coefficient, the temporal variability of the rainfall–runoff relationship and its relationship with several hydrological variables are analysed at the event scale from hydrographs observed over a 3‐year period. Finally, the spatial non‐linearity of the hydrological response is examined by comparing the Cal Rodó hydrological response with the Can Vila sub‐catchment response at the event scale. Results show that, on a seasonal and monthly scale, there is no simple relationship between rainfall and runoff depths, and that evapotranspiration is a factor that introduced some non‐linearity in the rainfall–runoff relationship. The analysis of monthly values also reveals the existence of a threshold in the relationship between rainfall and runoff depths, denoting a more contrasted hydrological response than the one usually observed in humid catchments. At the event scale, the storm‐flow coefficient has a clear seasonal pattern with an alternance between a wet period, when the catchment is hydrologically responsive, and a dry summer period, when the catchment is much less reactive to any rainfall. The relationship between the storm‐flow coefficient and rainfall depth, rainfall maximum intensity and base‐flow shows that observed correlations are the same as those observed for humid conditions, even if correlation coefficients are notably lower. Comparison with the Can Vila sub‐catchment highlights the spatial heterogeneity of the rainfall‐runoff relationship at the small catchment scale. Although interpretation in terms of runoff processes remains delicate, heterogeneities between the two catchments seem to be related to changes in the ratio between infiltration excess and saturation processes in runoff formation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号