首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
Recharge areas of the Guarani Aquifer System (GAS) are particularly sensitive and vulnerable to climate variability; therefore, the understanding of infiltration mechanisms for aquifer recharge and surface run‐off generation represent a relevant issue for water resources management in the southeastern portion of the Brazilian territory, particularly in the Jacaré‐Pepira River watershed. The main purpose of this study is to understand the interactions between precipitation, surface water, and groundwater using stable isotopes during the strong 2014–2016 El Niño Southern Oscillation event. The large variation in the isotopic composition of precipitation (from ?9.26‰ to +0.02‰ for δ18O and from ?63.3‰ to +17.6‰ for δ2H), mainly associated with regional climatic features, was not reflected in the isotopic composition of surface water (from ?7.84‰ to ?5.83‰ for δ18O and from ?49.7‰ to +33.6‰ for δ2H), mainly due to the monthly sampling frequency, and groundwater (from ?7.04‰ to ?7.76‰ for δ18O and from ?49.5‰ to ?44.7‰ for δ2H), which exhibited less variation throughout the year. However, variations in deuterium excess (d‐excess) in groundwater and surface water suggest the occurrence of strong secondary evaporation during the infiltration process, corresponding with groundwater level recovery. Similar isotopic composition in groundwater and surface water, as well as the same temporal variations in d‐excess and line‐conditioned excess denote the strong connectivity between these two reservoirs during baseflow recession periods. Isotopic mass balance modelling and hydrograph separation estimate that the groundwater contribution varied between 70% and 80%, however, during peak flows, the isotopic mass balance tends to overestimate the groundwater contribution when compared with the other hydrograph separation methods. Our findings indicate that the application of isotopic mass balance methods for ungauged rivers draining large groundwater reservoirs, such as the GAS outcrop, could provide a powerful tool for hydrological studies in the future, helping in the identification of flow contributions to river discharge draining these areas.  相似文献   

2.
Equatorial Pacific sea surface temperature variations interact with processes of atmospheric circulation, creating conditions for the occurrence of El Niño–Southern Oscillation (ENSO). ENSO events represent the most important interannual phenomena affecting climate patterns worldwide and causing significant socio‐economic impacts. In the Brazilian territory, ENSO leads to an increase in drought episodes in the north‐eastern region and an increase in precipitation in the southern region, whereas the effects over the south‐east region are yet not well understood. The main goal of this study is to compare variations of isotopic composition in precipitation across the south‐east portion of the Brazilian territory during two very strong ENSO events: 1997–1998 (ENSO 1) and 2014–2016 (ENSO 2). Daily isotopic records, available from the Global Network of Isotopes in Precipitation database for ENSO 1, and samples collected during ENSO 2 were used to compare the influence of both events on the isotopic composition of precipitation. Seasonal variations indicated more depleted precipitation during the wet seasons (δ18O = ?5.4 ± 4.0‰) and enriched precipitation during the dry seasons (δ18O = ?2.8 ± 2.3‰). Observed rainfall variations were associated with atmospheric large‐scale processes and moisture transport from the Amazon region, whereas extreme values (enriched or depleted) appear to be associated with particular convective and stratiform precipitation events. Overall, more depleted isotopic composition of precipitation (δ18O = ?4.60‰) and higher d‐excess (up to +15‰) were observed during the dry season of ENSO 1 when compared with ENSO 2 dry season (δ18O‰ = ?2.80‰, d‐excess lower than +14‰). The latter is explained by greater atmospheric moisture content, particularly associated with recycling of transpiration fluxes from the Amazon region, during dry season of ENSO 1. No significant differences for δ18O and δ2H were observed during the wet season; however, d‐excess from ENSO 2 was greater than ENSO 1, due to the slightly greater atmospheric moisture content and very strong upward motion observed. Our findings highlight the opportunity that environmental isotopes offer towards understanding hydrometeorological processes, particularly, the evolution of extreme climatic events of global resonance such as ENSO.  相似文献   

3.
High‐elevation tropical grassland systems, called Páramo, provide essential ecosystem services such as water storage and supply for surrounding and lowland areas. Páramo systems are threatened by climate and land use changes. Rainfall generation processes and moisture transport pathways influencing precipitation in the Páramo are poorly understood but needed to estimate the impact of these changes, particularly during El Niño conditions, which largely affect hydrometeorological conditions in tropical regions. To fill this knowledge gap, we present a stable isotope analysis of rainfall samples collected on a daily to weekly basis between January 2015 and May 2016 during the strongest El Niño event recorded in history (2014–2016) in two Páramo regions of Central America (Chirripó, Costa Rica) and the northern Andes (Cajas, south Ecuador). Isotopic compositions were used to identify how rainfall generation processes (convective and orographic) change seasonally at each study site. Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT) air mass back trajectory analysis was used to identify preferential moisture transport pathways to each Páramo site. Our results show the strong influence of north‐east trade winds to transport moisture from the Caribbean Sea to Chirripó and the South American low‐level jet to transport moisture from the Amazon forest to Cajas. These moisture contributions were also related to the formation of convective rainfall associated with the passage of the Intertropical Convergence Zone over Costa Rica and Ecuador during the wetter seasons and to orographic precipitation during the transition and drier seasons. Our findings provide essential baseline information for further research applications of water stable isotopes as tracers of rainfall generation processes and transport in the Páramo and other montane ecosystems in the tropics.  相似文献   

4.
The plausible long‐term trend of precipitation in China and its association with El Niño–southern oscillation (ENSO) are investigated by using non‐parametric techniques. It is concluded that a greater number of decreasing trends are observed than are expected to occur by chance. Geographically, the decreasing trend was concentrated in most parts of China, including the Songliao River, Hai River, Huai River, Yellow River, Zhujiang River, and southern part of the Yangtze River basins, whereas an increasing trend appeared primarily in the western and middle parts of China, mainly including the Inland River basin, and the northern part of the Yangtze River basins. Monthly mean precipitation for the summer and early autumn months generally decreased, with the greatest decrease occurring in August. The precipitation in spring from January to April and later autumn, including September and October, tended to increase. The teleconnection between precipitation and ENSO has been investigated by using the non‐parametric Kendall's τ. The correlation coefficients between the southern oscillation index (SOI) and precipitation show the areas with positive or negative associations. Approximately 20% of the stations exhibit statistically significant correlations between SOI and precipitation, of which 70% show a negative correlation, with most of them appearing in southeast China and several appearing in northwest and northeast China. Similar regional patterns are also observed when the precipitation records are further subdivided into El Niño, La Niña, and neutral periods. Statistical tests for the three kinds of time series were carried out using the non‐parametric Wilcoxon rank‐sum test, and it is noted that the stations with significant differences in precipitation averages are mainly marked in the Yellow River basin and south China. The frequencies of below‐ and above‐average precipitation that occurred during the El Niño, La Niña, and neutral periods are estimated as well. The result shows that greater precipitation may be associated with El Niño episodes in south China, but drought may easily occur during El Niño episodes in the Yellow River basin. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The relationship between El Niño–Southern Oscillation (ENSO) events versus precipitation anomalies, and the response of seasonal precipitation to El Niño and La Niña events were investigated for 30 basins that represent a range of climatic types throughout South‐east Asia and the Pacific region. The teleconnection between ENSO and the hydroclimate is tested using both parametric and non‐parametric approaches, and the lag correlations between precipitation anomalies versus the Southern Oscillation Index (SOI) several months earlier, as well as the coherence between SOI and precipitation anomalies are estimated. The analysis shows that dry conditions tend to be associated with El Niño in the southern zone, and part of the middle zone in the study area. The link between precipitation anomalies and ENSO is statistically significant in the southern zone and part of the middle zone of the study area, but significant correlation was not observed in the northern zone. Patterns of precipitation response may differ widely among basins, and even the response of a given river basin to individual ENSO events also may be changeable. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Rivers display temporal dependence in suspended sediment–water discharge relationships. Although most work has focused on multi‐decadal trends, river sediment behavior often displays sub‐decadal scale fluctuations that have received little attention. The objectives of this study were to identify inter‐annual to decadal scale fluctuations in the suspended sediment–discharge relationship of a dry‐summer subtropical river, infer the mechanisms behind these fluctuations, and examine the role of El Niño Southern Oscillation climate cycles. The Salinas River (California) is a moderate sized (11 000 km2), coastal dry‐summer subtropical catchment with a mean discharge (Qmean) of 11.6 m3 s?1. This watershed is located at the northern most extent of the Pacific coastal North America region that experiences increased storm frequency during El Niño years. Event to inter‐annual scale suspended sediment behavior in this system was known to be influenced by antecedent hydrologic conditions, whereby previous hydrologic activity regulates the suspended sediment concentration–water discharge relationship. Fine and sand suspended sediment in the lower Salinas River exhibited persistent, decadal scale periods of positive and negative discharge corrected concentrations. The decadal scale variability in suspended sediment behavior was influenced by inter‐annual to decadal scale fluctuations in hydrologic characteristics, including: elapsed time since small (~0.1 × Qmean), and moderate (~10 × Qmean) threshold discharge values, the number of preceding days that low/no flow occurred, and annual water yield. El Niño climatic activity was found to have little effect on decadal‐scale fluctuations in the fine suspended sediment–discharge relationship due to low or no effect on the frequency of moderate to low discharge magnitudes, annual precipitation, and water yield. However, sand concentrations generally increased in El Niño years due to the increased frequency of moderate to high magnitude discharge events, which generally increase sand supply. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
To investigate stable isotopic variability of precipitation in Singapore, we continuously analysed the δ‐value of individual rain events from November 2014 to August 2017 using an online system composed of a diffusion sampler coupled to Cavity Ring‐Down Spectrometer. Over this period, the average value (δ18OAvg), the lowest value (δ18OLow), and the initial value (δ18OInit) varied significantly, ranging from ?0.45 to ?15.54‰, ?0.9 to ?17.65‰, and 0 to ?13.13‰, respectively. All 3 values share similar variability, and events with low δ18OLow and δ18OAvg values have low δ18OInit value. Individual events have limited intraevent variability in δ‐value (Δδ) with the majority having a Δδ below 4‰. Correlation of δ18OLow and δ18OAvg with δ18OInit is much higher than that with Δδ, suggesting that convective activities prior to events have more control over δ‐value than on‐site convective activities. The d‐excess of events also varies considerably in response to the seasonal variation in moisture sources. A 2‐month running mean analysis of δ18O reveals clear seasonal and interannual variability. Seasonal variability is associated with the meridional movement of the Intertropical Convergence Zone and evolution of the Asian monsoon. El Niño–Southern Oscillation is a likely driver of interannual variability. During 2015–2016, the strongest El Niño year in recorded history, the majority of events have a δ18O value higher than the weighted average δ18O of daily precipitation. δ18O shows a positive correlation with outgoing longwave radiation in the western Pacific and the Asian monsoon region, and also with Oceanic Niño Index. During El Niño, the convection centre shifts eastward to the central/eastern Pacific, weakening convective activities in Southeast Asia. Our study shows that precipitation δ‐value contains information about El Niño–Southern Oscillation and the Intertropical Convergence Zone, which has a significant implication for the interpretation of water isotope data and understanding of hydrological processes in tropical regions.  相似文献   

8.
In June 2013, excessive rainfall associated with an intense weather system triggered severe flooding in southern Alberta, which became the costliest natural disaster in Canadian history. This article provides an overview of the climatological aspects and large‐scale hydrometeorological features associated with the flooding event based upon information from a variety of sources, including satellite data, upper air soundings, surface observations and operational model analyses. The results show that multiple factors combined to create this unusually severe event. The event was characterized by a slow‐moving upper level low pressure system west of Alberta, blocked by an upper level ridge, while an associated well‐organized surface low pressure system kept southern Alberta, especially the eastern slopes of the Rocky Mountains, in continuous precipitation for up to two days. Results from air parcel trajectory analysis show that a significant amount of the moisture originated from the central Great Plains, transported into Alberta by a southeasterly low level jet. The event was first dominated by significant thunderstorm activity, and then evolved into continuous precipitation supported by the synoptic‐scale low pressure system. Both the thunderstorm activity and upslope winds associated with the low pressure system produced large rainfall amounts. A comparison with previous similar events occurring in the same region suggests that the synoptic‐scale features associated with the 2013 rainfall event were not particularly intense; however, its storm environment was the most convectively unstable. The system also exhibited a relatively high freezing level, which resulted in rain, rather than snow, mainly falling over the still snow‐covered mountainous areas. Melting associated with this rain‐on‐snow scenario likely contributed to downstream flooding. Furthermore, above‐normal snowfall in the preceding spring helped to maintain snow in the high‐elevation areas, which facilitated the rain‐on‐snow event. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we describe the importance of hyporheic dynamics within Andersen Creek and Von Guerard Stream, Taylor Valley, Antarctica, from the 2010–2011 melt season using natural tracers. Water collection started at flow onset and continued, with weekly hyporheic‐zone sampling. The water δ18O and δD values were isotopically lighter in the beginning and heavier later in the season. D‐excess measurements were used as an indicator of mixing because an evaporative signature was evident and distinguishable between 2 primary end‐members (glacier meltwater and hyporheic zone). Hyporheic‐zone influence on the channel water was variable with a strong control on streamwater chemistry, except at highest discharges. This work supports previous research indicating that Von Guerard Stream has a large, widespread hyporheic zone that varies in size with time and discharge. Andersen Creek, with a smaller hyporheic zone, displayed hyporheic‐zone solute interaction through the influence from subsurface hypersaline flow. Overall, the evolution of Taylor Valley hyporheic‐zone hydrology is described seasonally. In mid‐December, the hyporheic zone is a dynamic system exchanging with the glacier meltwater in the channel, and with diminishing flow in January, the hyporheic zone drains back into the channel flow also impacting stream chemistry. This work adds new information on the role of hyporheic zone–stream interaction in these glacier meltwater streams.  相似文献   

10.
Deuterium and oxygen‐18 are common environmental tracers in water used to investigate hydrological processes such as evaporation and groundwater recharge, and to trace moisture source. In this study, we collected event precipitation from 01 January 2010 to 28 February 2011 at a site in Changsha, Yangtze River Basin to estimate the influence of moisture source and atmospheric conditions on stable isotope compositions. The local meteoric water line, established as δD = (8.45 ± 0.13) δ18O + (17.7 ± 0.9) (r2 = 0.97, n = 189), had a higher slope and intercept than global meteoric water line. Temperature–δ18O exhibited complex correlations, with positive correlations during Nov.–Apr. superior to during Jun.–Sep., which was attributed to distinctive moisture sources, but vague the overall period; amount effect examined throughout the year. Linear regressions between δ18O and δD value in different precipitation event size classes revealed progressively decreasing slope and intercept values with decreasing precipitation amount and increasing vapour pressure deficit, indicating that small rainfall events (0–5 mm) were subject to secondary evaporation effects during rainwater descent. In contrast, snowfall and heavy precipitation events exhibited high slope and intercepts for the regression equation between δ18O and δD. High concentrations of heavy isotopes were associated with precipitation events sourced from remote westerly air masses, degenerated tropical marine air masses from the Bay of Bengal (BoB), and inland moisture in the pre‐monsoon period, as determined from backward trajectories assessed in the HYSPLIT model. Meanwhile, low concentrations of heavy isotopes were found to correspond with remote maritime moisture from BoB, the South China Sea, and the west Pacific at three different air pressures in summer monsoon and post‐monsoon using HYSPLIT and records of typhoon paths. These findings suggest that stable isotope compositions in precipitation events are closely associated with the meteorological conditions and respond sensitively to moisture source in subtropical monsoon climates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Two reaches of Aguapeí River, a left‐bank tributary of the Paraná River in western São Paulo state, Brazil, were studied with the objective of assessing the role of bend curvature on channel migration in this wet‐tropical system and examining if land‐use changes or ENSO (El Niño Southern Oscillation) driven climate anomalies over nearly half a century have changed migration behaviour and planform geometry. Meander‐bend migration rates and morphometric parameters including meander‐bend curvature, sinuosity, meander wavelength and channel width, were measured and the frequency of bend cutoffs was analysed in order to determine the rate of change of channel adjustment over a 48 year period to 2010. Results show that maximum average channel migration rates occur in bends with curvatures of about 2–3 rc/w, similar to other previously studied temperate and subarctic freely meandering rivers although not as pronounced and with a tendency to favour tighter curvature. From 1962 to 2010 the Aguapeí River has undergone a significant reduction in sinuosity, a shift from tightly curving to more open bends, an overall decline in channel migration rates, an associated decrease in the frequency of neck‐cutoffs and an overall increase in channel width. As the majority of the drainage basin (96%) was already deforested in 1962, channel form and process changes were, unlike an interpretation for an adjacent river system, not attributed to altered land‐use but rather to a sharp ENSO‐driven increase in the magnitude of peak flow‐discharges of some 32% since 1972. In summary, this research revealed that recent climate and associated flow regime changes are having a pronounced effect on river channel behaviour in the Aguapeí River investigated here. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
Rapid population growth and increased economic activity impose an urgent challenge on the sustainability of water resources in Beijing. Understanding the spatial and temporal variability of precipitation is of the upmost importance in order to sustain the region's water resources. Two time series, one long term (1724–2010) from a single meteorological station and a shorter time series (1980–2010) from 20 different meteorological stations within the Beijing area, were analysed using Linear Regression, Moving Average, Mann–Kendall, Rescaled Range and Spatial Interpolation methods. Results from both the long‐ and short‐term meteorological data show a mean annual precipitation rate of 600 mm and 540 mm respectively. Annual precipitation rates have decreased during the 21st century by an estimated 100 mm or 16% in comparison to the 1990s. The 1980–2010 data show an increase in precipitation during the early 1990s followed by a sharp decrease during the subsequent years. The change of annual precipitation with time is more random and diverse in comparison to space. The main local impact factors (terrain, urbanization and elevation) and how they work on the local precipitation especially the spatial diversity are identified qualitatively. Generally speaking, (1) the annual precipitation of the plain area is more than that of the mountainous area (terrain effect), (2) the annual precipitation of the urban area in the plain area is obviously more than that of the surrounding suburb area (urbanization effect) and (3) the annual precipitation of the lower location is approximately more than that of the higher location (elevation effect). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Extreme wave events in coastal zones are principal drivers of geomorphic change. Evidence of boulder entrainment and erosional impact during storms is increasing. However, there is currently poor time coupling between pre‐ and post‐storm measurements of coastal boulder deposits. Importantly there are no data reporting shore platform erosion, boulder entrainment and/or boulder transport during storm events – rock coast dynamics during storm events are currently unexplored. Here, we use high‐resolution (daily) field data to measure and characterize coastal boulder transport before, during and after the extreme Northeast Atlantic extra‐tropical cyclone Johanna in March 2008. Forty‐eight limestone fine‐medium boulders (n = 46) and coarse cobbles (n = 2) were tracked daily over a 0.1 km2 intertidal area during this multi‐day storm. Boulders were repeatedly entrained, transported and deposited, and in some cases broken down (n = 1) or quarried (n = 3), during the most intense days of the storm. Eighty‐one percent (n = 39) of boulders were located at both the start and end of the storm. Of these, 92% were entrained where entrainment patterns were closely aligned to wave parameters. These data firmly demonstrate rock coasts are dynamic and vulnerable under storm conditions. No statistically significant relationship was found between boulder size (mass) and net transport distance. Graphical analyses suggest that boulder size limits the maximum longshore transport distance but that for the majority of boulders lying under this threshold, other factors influence transport distance. Paired analysis of 20 similar sized and shaped boulders in different morphogenic zones demonstrates that geomorphological control affects entrainment and transport distance – where net transport distances were up to 39 times less where geomorphological control was greatest. These results have important implications for understanding and for accurately measuring and modelling boulder entrainment and transport. Coastal managers require these data for assessing erosion risk. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

14.
The equatorial undercurrent (EUC), the shallow meridional overturning cells feeding it, and their role in El Niño and decadal variability in the equatorial Pacific are studied using both in situ data and an ocean general circulation model. Using temperature and current data from the TAO/TRITON moorings at the equator, their data gaps are filled and it was shown that continuous time series of mass transport, temperature, depth, and kinetic energy of the EUC could be constructed for the period 1980–2002 with an excellent accuracy. This dataset was analysed and used to validate the output from an oceanic general circulation model (OGCM). The OGCM was then used to find that variations in the strength of the EUC, shallow meridional overturning (pycnocline convergence and surface divergence), and equatorial upwelling had the same variations in mass transport on interannual and longer time scales within the period 1951–1999. These variations are all caused by variations of the zonal wind stress zonally integrated, in agreement with simple linear and steady dynamics theories. Impact of these mass transport variations and of temperature variations on heat budgets in the entire equatorial band of the Pacific and in its eastern part are quantified.  相似文献   

15.
On the basis of daily precipitation records at 76 meteorological stations in the arid region, northwest of China, the spatial and temporal distribution of mean precipitation and extremes were analysed during 1960–2010. The Mann–Kendall trend test and linear least square method were utilized to detect monotonic trends and magnitudes in annual and seasonal mean precipitation and extremes. The results obtained indicate that both the mean precipitation and the extremes have increased except in consecutive dry days, which showed the opposite trend. The changes in amplitude of both mean precipitation and extremes show seasonal variability. On an annual basis, the number of rain days (R0.1) has significantly increased. Meanwhile, the precipitation intensity as reflected by simple daily intensity index (SDII), number of heavy precipitation days (R10), very wet days (R95p), max 1‐day precipitation amount (RX1day) and max 5‐day precipitation amount (RX5day) has also significantly increased. This suggests that the precipitation increase in the arid region is due to the increase in both precipitation frequency and intensity. Trends in extremes are very highly correlated with mean trends of precipitation. The spatial correlation between trends in extremes and trends in the mean is stronger for winter (DJF) than for annual and other seasons. The regional annual and seasonal precipitation and extremes are observed the step jump in mean in the late 1980s. Overall, the results of this study are good indicators of local climate change, which will definitely enhance human mitigation to natural hazards caused by precipitation extremes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The spatial and temporal variations of precipitation in the desert region of China (DRC) from 1951 to 2005 were investigated using a rotated empirical orthogonal function (REOF), the precipitation concentration index (PCI) and the Mann–Kendall trend test method (M‐K method). In addition, the association between variation patterns of precipitation and large‐scale circulation were also explored using the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data. The results indicated that the spatial pattern of precipitation was primarily the local climate effect significant type, with the first three EOFs explaining a total of 55·3% of the variance, and the large‐scale climate system effect type, which explained 9·8% of the variance. Prior to the 1970s, the East Asian summer monsoon was stronger, which resulted in abundant precipitation in the Inner Mongolia region. Conversely, the climate of the Xinjiang region was controlled by westerly circulation and had lower precipitation. However, this situation has been reversed since the 1980s. It is predicted that precipitation will decrease by 15–40 and 0–10 mm/year in the Inner Mongolia plateau and southern Xinjiang, respectively, whereas it will likely increase by 10–40 mm/year in northern Xinjiang. Additionally, 58–62% of the annual rainfall occurred during summer in the DRC, with precipitation increasing during spring and summer and decreasing in winter. The intra‐annual precipitation is becoming uniform, but the inter‐annual variability in precipitation has been increasing in the western portions of the DRC. The probability of precipitation during the study period increased by 30% and 22·2% in the extreme‐arid zones and arid zones, respectively. Conversely, the probability of precipitation during the study period decreased by 18·5% and 37·5% in the semi‐arid zones and semi‐wet zones, respectively. It is predicted that the northwest portion of the DRC will become warmer and wetter, while the central portion will become warmer and drier and the northeast portion will be subjected to drought. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Miao Li  Zhi Chen  Dejuan Meng  Chongyu Xu 《水文研究》2013,27(20):2934-2943
Non‐parametric methods including Mann–Kendall (M–K) test, continuous wavelet transform (CWT) and discrete wavelet transform analysis are applied in this paper to detect the trend and periodic trait of precipitation data series in Beijing area where the data set spans nearly 300 years from 1724 to 2009. First, the trend of precipitation variables is elaborated by the M–K test (Sequential M–K test). The results show that there is an increasing trend (the value of this trend is 1.98) at the 5%‐significance level and there are not turning points in the whole data series. Then, CWT and wavelet variance are used to check for significant periodic characteristics of data series. In the plots of wavelet transform coefficients and figure of wavelet variance, some periodic events affect the trend of the annual total precipitation series in Beijing area. 85‐year, 35‐year and 21‐year periodic events are found to be the main periodic series of long‐term precipitation data, and they are all statistically significant. Moreover, the results of non‐parametric M–K test are exhibited on seven different combinations of discrete wavelet components. D5 (32‐year periodicity) periodic component is the effective and significant component on data. It is coincident with the result (35‐year periodic event as one part of main periodicity) by using CWT analysis. Moreover, approximation mode shows potential trend of the whole data set because it is the residuals as all periodicities are removed from data series. Thus, the mode A + D5 is responsible for producing a real basic structure of the trend founded on the data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号