首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overpopulation and food security are the main global problems alert decision makers. In developing countries, such problem put extra pressure for horizontal expansion for agricultural development. The rapid sprawl of urbanized areas on the alluvial land of the River Nile and delta to accommodate the population growth has encouraged governmental and private sector for agricultural expansion in the desert. Unless there are reliable information and accurate studies for land and soil suitability, there will be a collapse of such investment. To evaluate the potential suitability of soil for agriculture development in areas of the western desert, satellite images, geographic information, and field survey including soil profiles and artesian water samples with laboratory analysis were integrated to classify the soils according their suitability for specific crop. The main land qualities of the different mapping units and the crop requirement were rated and matched to obtain the current and potential land suitability using Automated Land Evaluation System “ALES”. The study found that the main physiographic units are plateaus, hilland, mountain, and depression floor. But there are three limiting parameters for land suitability which are the lack of nutrient elements, wind erosion vulnerability, and soil texture. The study concluded that the best crops adapted with the soil conditions and could be feasible for economic use are: (1) native vegetation such as agol, sand trees, sammar, halfaa, bawaal, qordaob, bardi, and qortom; (2) filed crops such as onion, garlic, watermelon and wheat; and (3) fruits such as olive and date palms.  相似文献   

2.
Satellite remote sensing data has significant potential use in analysis of natural hazards such as landslides. Relying on the recent advances in satellite remote sensing and geographic information system (GIS) techniques, this paper aims to map landslide susceptibility over most of the globe using a GIS-based weighted linear combination method. First, six relevant landslide-controlling factors are derived from geospatial remote sensing data and coded into a GIS system. Next, continuous susceptibility values from low to high are assigned to each of the six factors. Second, a continuous scale of a global landslide susceptibility index is derived using GIS weighted linear combination based on each factor’s relative significance to the process of landslide occurrence (e.g., slope is the most important factor, soil types and soil texture are also primary-level parameters, while elevation, land cover types, and drainage density are secondary in importance). Finally, the continuous index map is further classified into six susceptibility categories. Results show the hot spots of landslide-prone regions include the Pacific Rim, the Himalayas and South Asia, Rocky Mountains, Appalachian Mountains, Alps, and parts of the Middle East and Africa. India, China, Nepal, Japan, the USA, and Peru are shown to have landslide-prone areas. This first-cut global landslide susceptibility map forms a starting point to provide a global view of landslide risks and may be used in conjunction with satellite-based precipitation information to potentially detect areas with significant landslide potential due to heavy rainfall.  相似文献   

3.
Siliyin spring is one of the many natural fresh water springs in the Western Desert of Egypt. It is located at the central part of El-Fayoum Delta, which is a potential place for urban developments and touristic activities. Integrated geoelectrical survey was conducted to facilitate mapping the groundwater resources and the shallow subsurface structures in the area. Twenty-eight transient electromagnetic (TEM) soundings, three vertical electrical soundings (VES) and three electrical resistivity tomography (ERT) profiles were carried out around the Siliyin spring location. The dense cultivation, the rugged topography and the existence of infra structure in the area hindered acquiring more data. The TEM data were inverted jointly with the VES and ERT, and constrained by available geological information. Based on the inversion results, a set of geoelectrical cross-sections have been constructed. The shallow sand to sandy clay layer that forms the shallow aquifer has been completely mapped underneath and around the spring area. Flowing of water from the Siliyin spring is interconnected with the lateral lithological changes from clay to sand soil. Exploration of the extension of Siliyin spring zone is recommended. The interpretation emphasizes the importance of integrating the geoelectrical survey with the available geological information to obtain useful, cheap and fast lithological and structural subsurface information.  相似文献   

4.
Land degradation is one of the most common issues in the eastern part of the Nile Delta area that threatens the ongoing agricultural activities and prohibits further reclamation expansions. The different degradation types and the associated risk assessment of some soils types of western Suez Canal region during the period from 1997 to 2010 is discussed. The assessment of the different degradation degrees in the investigated area has been carried out through integrating remote sensing, GIS and GLASOD approaches. Results revealed that the salinization, alkalization, soil compaction and water logging are the main types of land degradation in the area. The main causative factors of human induced land degradation types are; over irrigation, human intervention in natural drainage, improper time use of heavy machinery and the absence of conservation measurements. Low and moderately clay flats, gypsifferous flats, have high to very high risk in both salinization sodication and physical degradation. Values such as EC, ESP, and ground water level reach 104.0 dS/m, 176? % and 60 cm, respectively. These results will be of great help and be basic sources for the planners and decision makers in sustainable planning. The spatial land degradation model was developed based on integration between remote sensing data, geographic information system, soil characteristics and DEM.  相似文献   

5.
Soil salinity is a major environmental hazard. The global extent of primary and secondary salt affected soils is about 955 and 77 M?ha, respectively. Soil salinity tends to increase in spite of considerable effort dedicated to land reclamation. This requires careful monitoring of the soil salinity status. The objectives of this study were: (a) to evaluate the capability of thematic mapper (TM) and multispectral scanner (MSS) imagery for mapping land cover types, (b) to analyse the spectral features of sail crusts relative to bare soil and gravely soil surface conditions, and (c) to detect the soil salinity changes during the period 1975–2004 in the Ardakan area located in the central Iranian Deserts. The Landsat MSS and TM on two different dates of September 14, 1975 and September 11, 2004, respectively, were used. Due to great confusion between some classes, the TM 6 was included in the band combination. The result of the image classification based on the combination of TM bands 3, 4, 5, and 6 showed of the classification results. For multi-temporal analysis, both TM and MSS images were classified with the same method but with a different number of training classes. The TM-classified image was regrouped to make it comparable with MSS regrouped classified image. The comparison between the classified images showed about 39% of the total area had changed in 29 years. The result of this study revealed the possibility of detecting important soil salinity changes by using Landsat satellite data  相似文献   

6.
Flash floods are considered to be one of the worst weather-related natural disasters. They are dangerous because they are sudden and are highly unpredictable following brief spells of heavy rain. Several qualitative methods exist in the literature for the estimations of the risk level of flash flood hazard within a watershed. This paper presents the utilization of remote sensing data such as enhanced Thematic Mapper Plus (ETM+), Shuttle Radar Topography Mission (SRTM), coupled with geological, geomorphological, and field data in a GIS environment for the estimation of the flash flood risk along the Feiran–Katherine road, southern Sinai, Egypt. This road is a vital corridor for the tourists visiting here for religious purposes (St. Katherine monastery) and is subjected to frequent flash floods, causing heavy damage to man-made features. In this paper, morphometric analyses have been used to estimate the flash flood risk levels of sub-watersheds within the Wadi Feiran basin. First, drainage characteristics are captured by a set of parameters relevant to the flash flood risk. Further, comparison between the effectiveness of the sub-basins has been performed in order to understand the active ones. A detailed geomorphological map for the most hazardous sub-basins is presented. In addition, a map identifying sensitive sections is constructed for the Feiran–Katherine road. Finally, the most influenced factors for both flash flood hazard and critical sensitive zones have been discussed. The results of this study can initiate appropriate measures to mitigate the probable hazards in the area.  相似文献   

7.
Environment in arid conditions is dynamic and needs more investigation to understand the complexity of change. This spatiotemporal study will help to assess and monitor the land use and land cover change in the arid region of El-Arish area, where the climate and human activities are the major threats to rural development. In the past 11 years, dramatic changes of environment have been recorded in case studies. The post-classification comparison method was used to observe the changes using multi-temporal satellite images which were captured in the years 1999, 2001, 2005, and 2010. The overall accuracy of the produced thematic images was assessed regarding to the quantity and allocation disagreements. Five classes were defined in this investigation: bare soil, vegetation, urban, sand dunes, and fertile soil. From the year 1999 to 2010, fertile soil was increased by 13 %. Bare soil class occupied more than 50 % of land in the case study during for over a decade. From year 1999 to 2010, vegetation cover witnessed a dramatic increase. Soil and water management are the keys of land development and positive land use and land cover dynamics. Changing agricultural policies of using the available water resources are needed in the case study to prevent severe food shortage in the future.  相似文献   

8.
本文提出了国土资源综合监测需求程度区划的基本思路,明确了区划的四个基本原则,即:前瞻性、现势性、客观性和动态性.结合国土资源部的管理职责,首次确定了国土资源综合监测需求程度区划的指标体系,并把除港澳台外的全国陆域进行了综合监测需求程度区划研究,其结果可以为今后监测工作部署及综合监测网络优化提供参考依据.  相似文献   

9.
This paper summarizes the findings of groundwater potential zonation mapping at the Bharangi River basin, Thane district, Maharastra, India, using Satty’s Analytical Hierarchal Process model with the aid of GIS tools and remote sensing data. To meet the objectives, remotely sensed data were used in extracting lineaments, faults and drainage pattern which influence the groundwater sources to the aquifer. The digitally processed satellite images were subsequently combined in a GIS with ancillary data such as topographical (slope, drainage), geological (litho types and lineaments), hydrogeomorphology and constructed into a spatial database using GIS and image processing tools. In this study, six thematic layers were used for groundwater potential analysis. Each thematic layer’s weight was determined, and groundwater potential indices were calculated using groundwater conditions. The present study has demonstrated the capabilities of remote sensing and GIS techniques in the demarcation of different groundwater potential zones for hard rock basaltic basin.  相似文献   

10.
This study estimates fire risk in Swaziland using geographic information system (GIS) and remote sensing data. Fire locations were identified in the study area from remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) active fire and burned area data for the period between April 2000 to December 2008 and January 2001 and December 2008, respectively. A total of thirteen biophysical and socio-economic explanatory variables were analyzed and processed using a Bayesian network (BN) and GIS to generate the fire risk maps. The interdependence of each of the factors was probabilistically determined using the expectation-maximization (EM) learning algorithm. The final probabilistic outputs were then used to classify the country into five fire risk zones for mitigation and management. Accuracy assessments and comparison of the fire risk maps indicate that the risk maps derived from the active fire and burned area data were 93.14 and 96.64% accurate, respectively, demonstrating sufficient agreement between the risk maps and the existing data. High fire risk areas are observed in the Highveld particularly plantation forests and grasslands and within the Lowveld sugarcane plantations. Land tenure and land cover are the dominant determinants of fire risk, the implications of which are discussed for fire management in Swaziland. Limitations of the data used and the modeling approach are also discussed including suggestions for improvements and future research.  相似文献   

11.
In this study, an attempt has been made to estimate land surface temperatures (LST) and spectral emissivities over a hard rock terrain using multi-sensor satellite data. The study area, of about 6000 km2, is a part of Singhbhum-Orissa craton situated in the eastern part of India. TIR data from ASTER, MODIS and Landsat ETM+ have been used in the present study. Telatemp Model AG-42D Portable Infrared Thermometer was used for ground measurements to validate the results derived from satellite (MODIS/ASTER) data. LSTs derived using Landsat ETM+ data of two different dates have been compared with the satellite data (ASTER and MODIS) of those two dates. Various techniques, viz., temperature and emissivity separation (TES) algorithm, gray body adjustment approach in TES algorithm, Split-Window algorithms and Single Channel algorithm along with NDVI based emissivity approach have been used. LSTs derived from bands 31 and 32 of MODIS data using Split-Window algorithms with higher viewing angle (50°) (LST1 and LST2) are found to have closer agreement with ground temperature measurements (ground LST) over waterbody, Dalma forest and Simlipal forest, than that derived from ASTER data (TES with AST 13). However, over agriculture land, there is some uncertainty and difference between the measured and the estimated LSTs for both validation dates for all the derived LSTs. LST obtained using Single Channel algorithm with NDVI based emissivity method in channel 13 of ASTER data has yielded closer agreement with ground measurements recorded over vegetation and mixed lands of low spectral contrast. LST results obtained with TIR band 6 of Landsat ETM+ using Single Channel algorithm show close agreement over Dalma forest, Simlipal forest and waterbody with LSTs obtained using MODIS and ASTER data for a different date. Comparison of LSTs shows good agreement with ground measurements in thermally homogeneous area. However, results in agriculture area with less homogeneity show difference of LST up to 2°C. The results of the present study indicate that continuous monitoring of LST and emissivity can be undertaken with the aid of multi-sensor satellite data over a thermally homogeneous region.  相似文献   

12.
An attempt to carry out morphometric, statistical, and hazard analyses using ASTER data and GIS technique of Wadi El-Mathula watershed, Central Eastern Desert, Egypt. Morphometric analysis with application of GIS technique is essential to delineate drainage networks; basin geometry, drainage texture, and relief characteristics, through detect forty morphometric parameters of the study watershed and its sub-basins. Extract new drainage network map with DEM, sub-basin boundaries, stream orders, drainage networks, slope, drainage density, flow direction maps with more details is very necessary to analyze different morphometric and hydrologic applications for the study basin. Statistical analysis of morphometric parameters was done through cluster analysis, regression equations, and correlation coefficient matrix. Clusters analyses detect three independents variables which are stream number, basin area, and stream length have a very low linkage distance of 0.001 (at very high similarity of 99.95%) in a cluster with the basin width. Main channel length and basin perimeter (at very high similarity of 99.83%) are in a cluster with basin length. Using the regression equations and graphical correlation matrix indicates the mathematical relationships and helps to predict the behavior between any two variables. Hazard analysis and hazard degree assessment for each sub-basin were performed. The hazardous factors were detected and concluded that most of sub-basins are classified as moderately to highly hazardous. Finally, we recommended that the flood possibilities should be taken in consideration during future development of these areas.  相似文献   

13.
14.
In the current study, an integration of Enhanced Thematic Mapper Plus (ETM+), field, and laboratory data have been used for lithological mapping of different granitic phases in the Kadabora area, Eastern Desert, Egypt. Application of enhancement techniques, including a new proposed band ratio combination (ratio 5/3, 3/1, 7/5 in RGB, respectively) and supervised classification images are used in discriminating different granitic phases in the Kadabora pluton from each other and from their environs. The data have been proved with the help of field and geochemical investigations. The results revealed that: (1) the Kadabora granitic pluton could be distinguished into three phases that recognized by field and laboratory investigation including granodiorite (phase I), monzogranite (phase II), and syeno-alkali feldspar granite (phase III). These phases are arranged according to their relative ages while the country rocks include ophiolitic mélange and metagabbro–diorite complex. It is also confirmed that the granitic pluton is invaded by dyke swarms which is trending in N–S direction. Geochemically, results show that the granodiorite is calc-alkaline, I-type and formed under subduction tectonic regime. Monzogranite falls within the alkaline and highly fractionated calc-alkaline granites, whereas syeno-alkali feldspar granite extends into proper alkaline granitoids field. Monzogranite and syeno-alkali feldspar granite belong to the A2-subtype granite. This A2-subtype granite was probably formed in an extensional regime, subsequent to subduction which can lead to tensional break-up of the crust (i.e., post-collisional, post-orogenic granites). The monzogranite and the syeno-alkali feldspar granite were probably formed by partial melting of relatively anhydrous lower crust source and/or tonalite to granodiorite is viable alternative to the granulite source.  相似文献   

15.
Due to the ecological importance of seagrasses and recent indications of disease and dieback, we have synthesized existing mapped survey information concerning the spatial and temporal distribution of seagrass beds (primarily eelgrass,Zostera marina) in Barnegat Bay, New Jersey. Mapped surveys from the 1960s, 1970s, 1980s, and 1990s were digitized and compiled in a geographic information system to facilitate analysis. Comparison of the earlier maps with the 1990s survey shows an overall decrease of approximately 2,000 to 3,000 ha in the area of seagrass beds. While there are indications of seagrass decline, due to the great difference in mapping methods used for each of the surveys, we are cautious in directly attributing the decrease in mapped eelgrass acreage to a large-scale dieback. We examined the extent to which light could be used to predict the distribution of seagrass in Barnegat Bay. Data on Secchi depth throughout the bay were combined with a modification of an existing model (Duarte 1991) of the relationship betweenZ. marina compensation depths and light attenuation coefficients to predict the distribution of seagrasses in Barnegat Bay. When compared with mapped seagrass distribution in the bay, the model correctly predicts seagrass presence-absence over two-thirds of the time. The majority of the model error is due to errors of commission, i.e., the model predicts seagrass occurrence where it was not observed to occur. Most of this commission error is located in specific geographic areas (i.e., southern third of Little Egg Harbor and the western shoreline of the bay).  相似文献   

16.
In this paper satellite-derived radiative energy budget such as shortwave radiative heating, longwave radiative heating and net radiation balance have been studied for the post-onset phase of summer monsoon 1979. Since clouds play an important role in determining diabatic heating field as well as being a reflection of status of the monsoon itself, the day to day evolution of clouds from TIROS-N satellite has been made. Satellite-derived radiative heating rates from surface to 100 hPa were computed for each 100 hPa thickness layer. These heating rates were then compared with the observed latitudinal distribution of total radiative heating rates over the domain of the study. From the results of our study it was found that the characteristic features such as net radiative heating rates of the order of 0.2°C/day at upper tropospheric layer (100–200 hPa) and cooling throughout the lower tropospheric layers with relatively less cooling between 500–700 hPa layer observed in a case of satellite-derived radiative energy budget agree well with the characteristic features of observational radiative energy budget over the domain of the study. Therefore, it is suggested that radiative energy budget derived from satellite observations can be used with great potential and confidence for the evolution of the complete life cycle of the monsoon over the Indian region for different years.  相似文献   

17.
18.
The regional survey of groundwater used as a small water supply system was performed to know the effect of geology, soil properties and land use on groundwater quality at Nonsan City, Korea. A total of 126 groundwater samples were collected and analyzed at the study area. The multivariate statistical methods, principal components analysis and discriminant analysis, and GIS technique were used for the quantitative interpretation of groundwater quality. The study area is mainly composed of Precambrian gneiss, Jurassic granite, and Cretaceous volcanics, and metasedimentary rocks of the Ogcheon zone. The land use was grouped as paddy, upland, grassland, resident, point source, industrial area, and water system. The soil properties were classified as 4 major groups, Entisols, Alfisols, Inceptisols, and Ultisols, by the degree of development, and reclassified as 11 subgroups. The modified and simplified geologic map, soil map, and land use map were made by using ARCGIS soft-ware. The area of geology, soil property, and land use affecting the groundwater quality for each well were also calculated by ARCGIS soft-ware to acquire the quantitative parameters for multivariate statistical analysis. The monitoring results of groundwater in the study area showed that 13%-21% of the groundwater samples exceeded the portable water guideline and the main causes were turbidity, bacteria, arsenic and nitrate-N. The spatial distribution of each component showed the close relationship between groundwater quality and geology reflecting the topography, land use.  相似文献   

19.
This study aims to estimate artificial recharge of groundwater by using remote sensing technology, geographical information systems, and groundwater surveys. This study is part of the King Fahd project for rainfall and runoff water harvesting, within the premises of Alilb Dam in Diriyah to the west of Riyadh. Digital elevation models were obtained with the help of aerial photography from the year 2007. These models were used to delineate watershed. Average rainfall was calculated using isoheytal method, and the area of each of the storage lakes was measured using SPOT 5 satellite images from 2007. Fluctuations in groundwater levels, evaporation, and infiltration rates were used to determine the water balance for the purpose of estimating of artificial recharge. Artificial recharge rates were found to surpass natural recharge from rainfall. Recharge wells caused a reduction in the effect of evaporation on storage lakes and helped in supplying water to the groundwater reservoir. Moreover, 80% and 86% of the rainwater was found to be available for artificial recharge in Alilb at 2005 and 2007, respectively. The study recommends the establishment of strategic projects for water storage using artificial recharge wells, an increase in the number of monitoring wells around the dams, and the monitoring of hydrochemical changes in groundwater both before and after the artificial recharge. It also recommends the erection of a weather station in the northwest of Wadi Hanifa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号