首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geochemical anomaly separation and identification using the number–size (N–S) model at Bardaskan area, NE Iran is studied in this paper. Lithogeochemical data were used in this study which was conducted for the exploration for Au and Cu mineralization and enrichments in Bardaskan area. There are two major mineralization phases concluded epithermal gold and a disseminated systems. N–S log–log plots for Cu, Au, Sb, and As illustrated multifractal natures. Several anomalies at local scale were identified for Au (32 ppb), Cu (28 ppm), As (11 ppm), and Sb (0.8 ppm) and the obtained results suggest existence of local Au and Cu anomalies whose magnitudes generally are above 158 and 354 ppm, respectively. The most important mineralization events are responsible for presence of Au and Cu at grades above 1,778 and 8,912 ppm. The study reveals threshold values for Au and Cu are a consequence of the occurrence of anomalous accumulations of phyllic and silicification alteration zones and metamorphic rocks especially in tuffaceous sandstones and sericite schist types. The obtained results were correlated with fault distribution patterns, revealing a positive direct correlation between mineralization in anomalous areas and the faults present in the mineralized system.  相似文献   

2.
The Oligocene–Miocene carbonate record of the Zagros Mountains, known as the Asmari Formation, constitutes an important hydrocarbon reservoir in southern Iran. This marine carbonate succession, which developed under tropical conditions, is explored in terms of larger foraminiferal biostratigraphy, facies analysis and sequence stratigraphy in a new section at Papoon cropping out in the western Fars sub-basin, in the south-east of the Zagros belt. Facies analysis shows evidence of re-working and transport of skeletal components throughout the depositional system, interpreted here as a carbonate ramp. The foraminifera-based biozones identified include the Globigerina–Turborotalia cerroazulensis–Hantkenina Zone and Nummulites vascus–Nummulites fichteli Zone, both of Rupelian age, the Archaias asmaricus–Archaias hensoni–Miogypsinoides complanatus Zone of Chattian age and the ‘Indeterminate’ Zone of Aquitanian age. The vertical sedimentary evolution of the formation exhibits a progressive shallowing of the facies belts and thus the succession is interpreted as a high-rank low-order regressive systems tract. This long-lasting Rupelian–Aquitanian regressive event is in accordance with accepted global long-term eustatic curves. Accordingly, long-term eustatic trends would have been a factor controlling accommodation during the deposition of the Asmari Formation studied in the western Fars sub-basin.  相似文献   

3.
Uttarakhand geothermal area, located in the central belt of the Himalayan geothermal province, is one of the important high temperature geothermal fields in India. In this study, the chemical characteristics of the thermal waters are investigated to identify the main geochemical processes affecting the composition of thermal waters during its ascent toward the surface as well as to determine the subsurface temperature of the feeding reservoir. The thermal waters are mainly Ca–Mg–HCO3 type with moderate silica and TDS concentrations. Mineral saturation states calculated from PHREEQC geochemical code indicate that thermal waters are supersaturated with respect to calcite, dolomite, aragonite, chalcedony, quartz (SI > 0), and undersaturated with respect to gypsum, anhydrite, and amorphous silica (SI < 0). XRD study of the spring deposit samples fairly corroborates the predicted mineral saturation state of the thermal waters. Stable isotopes (δ18O, δ2H) data confirm the meteoric origin of the thermal waters with no oxygen-18 shift. The mixing phenomenon between thermal water with shallow ground water is substantiated using tritium (3H) and chemical data. The extent of dilution is quantified using tritium content of thermal springs and non-thermal waters. Classical geothermometers, mixing model, and multicomponent fluid geothermometry modeling (GeoT) have been applied to estimate the subsurface reservoir temperature. Among different classical geothermometers, only quartz geothermometer provide somewhat reliable estimation (96–140 °C) of the reservoir temperature. GeoT modeling results suggest that thermal waters have attained simultaneous equilibrium with respect to minerals like calcite, quartz, chalcedony, brucite, tridymite, cristobalite, talc, at the temperature 130 ± 5 °C which is in good agreement with the result obtained from the mixing model.  相似文献   

4.
This study concerns the mineralogy, spatial distribution and sources of nine heavy metals in surface sediments of the Maharlou saline lake, close to the Shiraz metropolis in southern Iran. The sources for these sediments were studied by comparing the mineralogy and the distribution of heavy metals, using multivariate statistical analysis (correlation analysis and principal component analysis). The geochemical indices, including geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI), were used to assess the degree of heavy metal contamination in surface sediments. Sediment quality guidelines (SQGs) have also been applied to assess its toxicity. The XRD analysis shows that the main minerals of the surface sediments are aragonite, calcite, halite and quartz, with small amounts of montmorillonite, dolomite and sepiolite. The total heavy metal contents in surface sediments decrease in order of Sr?>?Ni?>?Cr?>?Zn?>?Cu?>?Co?>?Pb?>?As >?Cd and the average concentrations of Sr, Ni and As exceeded more than 10, 5 and 3 times, respectively, by comparing with the normalized upper continental crust (UCC) values. The results of pollution indices (Igeo, CF and PLI) revealed that strontium (Sr), nickel (Ni) and arsenic (As) were significantly enriched in those sediments. Based on the sediment quality guidelines (SQGs), Ni would infrequently cause toxicity. Multivariate statistical analysis indicated that the Ni, Co and Cr came mainly from natural geological background sources, while Cd, Cu, Pb, and Zn were derived from urban effluents (especially traffic emissions) and As originated from agriculture activities. Significant relationships of Sr with S, CaO and MgO in sediments suggest that Sr was derived from carbonate- and gypsum-bearing catchment source host rocks.  相似文献   

5.
Evaluation of groundwater resources in dry areas without enough data is a challenging task in many parts of the world, including Tehran–Karaj plain in Iran, which includes Tehran, the capital city of Iran and Karaj, one of Iran’s biggest cities. Water demand due to increasing agricultural and industrial activities caused many problems in the field of water resources management. In this study, the potential of groundwater resources was evaluated using remote sensing, geographic information system (GIS), and analytic hierarchy process (AHP) for the first time. Digital Elevation Model from Shuttle Radar Topography Mission was used to generate a slope map and drainage density map. Three Landsat-8 satellite images were utilized to provide lineament density and land cover/land use maps. Geological and soil type maps were provided from the Geological Survey and Mineral Explorations of Iran (GSI). Tropical Rainfall Measuring Mission data were used to prepare average annual precipitation map. Discharge values from 102 pumping wells in the time period of 2002–2014 were used to evaluate the results. Seven data layers were prepared, and the geodatabase was made in GIS. The layers and their classes were assigned weights using AHP method. Finally, the layers were overlaid based on their weights, and the potential map of groundwater resources was generated. The area was classified into five zones with very high, high, moderate, low, and very low potentials. The zones covered 5.95, 32.90, 22.70, 10.20, and 28.25% of the study area, respectively. The results showed good agreement with the field data obtained from discharge wells.  相似文献   

6.
7.
The purpose of this study was to identify the various mineralization zones especially supergene enrichment and hypogene in two different Iranian porphyry Cu deposits, based on subsurface data and by using the proposed concentration–volume (C–V) fractal method. The Sungun and Chah-Firuzeh porphyry Cu deposits, which are situated in NW and SE Iran, respectively, were selected for this study. Straight lines fitted through log–log plots showing C–V relations for Cu were employed to separate supergene enrichment and hypogene zones from oxidation zones and barren host rocks in the two deposits and to distinguish a skarn mineralized zone from the hypogene zone in Sungun deposit. In the proposed C–V fractal method, the identification of mineralization zones is based on power–law relationships between Cu concentrations and the volume of rocks hosting porphyry Cu mineralization. Separate subsurface data from the two deposits were analyzed by C–V fractal method and the results have been compared with geological models which included alteration and mineralogical models. The comparison shows that the interpreted zones based on the C–V fractal method are consistent with the geological models. The proposed C–V method is a new approach to defining zones in a mineral deposit and there was no commercial software available to perform the relevant calculations; therefore, a fractal concentration–volume (FCV) software was designed by the authors to achieve this goal.  相似文献   

8.
Pham  Quoc Bao  Ali  Sk Ajim  Bielecka  Elzbieta  Calka  Beata  Orych  Agata  Parvin  Farhana  Łupikasza  Ewa 《Natural Hazards》2022,113(2):1043-1081
Natural Hazards - Advances in the availability of multi-sensor, remote sensing-derived datasets, and machine learning algorithms can now provide an unprecedented possibility to predict flood events...  相似文献   

9.
Aquifer vulnerability assessment techniques have been developed to predict which areas are more likely than others to become contaminated as a result of activities at or near the land surface. This research focuses on the evaluation of groundwater vulnerability to pollution in an urban area. Among several assessment methods, DRASTIC has been selected for this study. ArcGIS has been used to overlay and calculate different layers and obtain the vulnerability map. In order to show the importance of fuzzy algorithms in classification, both Boolean and fuzzy algorithms were used and compared. The fuzzy algorithm could recognize the areas with low and negligible vulnerability potentials whereas the Boolean model classified them as moderate. Two sensitivity tests, the map removal sensitivity analyses and single-parameter sensitivity analysis, were performed to show the importance of each parameter in the index calculation.  相似文献   

10.
Sa'ar–Nayfa reservoir is mainly made up of carbonate sediments with bands of shale that contain a substantial amount of proven oil in the Hiswah Oilfield, Sayun–Masila Basin, eastern Yemen. Several vertical wells have been drilled and penetrated these sequences. This study is concerned on the petrophysical evaluation and well log analysis of the Lower Cretaceous of 11 wells at the Hiswah Oilfield, Hadramawt Governorate, eastern Yemen. Computer-assisted log analyses were used to evaluate the petrophysical parameters such as shale volume, total porosity, effective porosity, water saturation, hydrocarbon saturation, flushed zone saturation and reservoir and pay flags. Cross-plots of the petrophysical parameters versus depth were illustrated. The Lower Cretaceous Sa'ar–Nayfa reservoir reflects that the matrix components are mainly carbonates and shales. Moreover, the lithological-geologic model reflected that these shales are strongly affecting the porosity and, consequently, the fluid saturation in the Sa'ar–Nayfa reservoir. In this study, the thickness of the Sa'ar–Nayfa reservoir increases from central toward north-eastern and north-western parts within the Hiswah Oilfield. The porosities analyses of the investigation of the Sa'ar–Nayfa reservoir for the 11 studied wells concluded that the average total porosity ranges from 5.4 % to 16.8 % while the effective porosity ranges from 5.2 % to 14.8 %. Water saturation of the Sa'ar–Nayfa reservoir ranges from 6.9 % to 75.8 %. On the other hand, hydrocarbon saturation matches with water saturation in a reverse relationship. Sa'ar–Nayfa reservoir is interpreted as good quality reservoir rocks with high average effective porosity reaching to 20 % and high hydrocarbon saturation exceeding 93 %. The Sa'ar–Nayfa reservoir reveals promising reservoir characteristics especially the upper reservoir unit, which should be taken into consideration during future development of the oilfields area. The hydrocarbon saturation map of the Sa'ar–Nayfa reservoir shows a regular pattern of distribution with a general increasing to the northeast, northwest and east directions while decreasing southwest wards, recording the maximum value of 93.1 % at the Hiswah-21 well.  相似文献   

11.
The Asmari Formation(a giant hydrocarbon reservoir)is a thick carbonate sequence of the Oligocenee Miocene in the Zagros Basin,southwest of Iran.This formation is exposed at Tang-e-Lendeh in the Fars interior zone with a thickness of 190 m comprising medium and thick to massive bedded carbonates.The age of the Asmari Formation in the study area is the late Oligocene(Chattian)eearly Miocene(Burdigalian).Ten microfacies are defned,characterizing a gradual shallowing upward trend;the related environments are as follows:open marine(MF 8e10),restricted lagoon(MF 6e7),shoal(MF 3e5),lagoon(MF 2),and tidal fat(MF 1).Based on the environmental interpretations,a homoclinal ramp consisting of inner and middle parts prevails.MF 3e7 are characterized by the occurrence of large and small porcelaneous benthic foraminifera representing a shallow-water setting of an inner ramp,infuenced by wave and tidal processes.MF 8e10,with large particles of coral and algae,represent a deeper fair weather wave base of a middle ramp setting.  相似文献   

12.
In order to understand and mitigate the deterioration of water quality in the aquifer system underlying Guadalajara metropolitan area, an investigation was performed developing geochemical evolution models for assessment of groundwater chemical processes. The models helped not only to conceptualize the groundwater geochemistry, but also to evaluate the relative influence of anthropogenic inputs and natural sources of salinity to the groundwater. Mixing processes, ion exchange, water–rock–water interactions and nitrate pollution and denitrification were identified and confirmed using mass-balance models constraint by information on hydrogeology, groundwater chemistry, lithology and stability of geochemical phases. The water–rock interactions in the volcanic setting produced a dominant NaHCO3 water type, followed by NaMgCaHCO3 and NaCaHCO3. For geochemical evolution modeling, flow sections were selected representing recharge and non-recharge processes and a variety of mixing conditions. Recharge processes are dominated by dissolution of soil CO2 gas, calcite, gypsum, albite and biotite, and Ca/Na exchange. Non-recharge processes show that the production of carbonic acid and Ca/Na exchange are decreasing, while other minerals such as halite and amorphous SiO2 are precipitated. The origin of nitrate pollution in groundwater are fertilizers in rural plots and wastewater and waste disposal in the urban area. This investigation may help water authorities to adequately address and manage groundwater contamination.  相似文献   

13.
TerCharts is a comprehensive, fast, flexible, and versatile ternary charting utility that can be used for ternary data presentation analysis and modeling across many scientific disciplines. TerCharts is developed using Microsoft (MS) Excel 2003 and Visual Basic for Applications (VBA) which is an object oriented programming language developed by MS as a tool to enhance the capabilities of MS products. The Excel–VBA interface is important because normally chemical, geochemical, and mineralogical data used in teaching and basic research are processed using Excel spreadsheets, making TerCharts a more convenient tool for generating ternary charts which in turn can be used for data presentation and analysis. Ternary charts generated by this utility can be improved, edited, and modified utilizing MS Excel’s powerful charting and editing techniques.  相似文献   

14.
The chemical zoning profile in metamorphic minerals is often used to deduce the pressure–temperature (PT) history of rock. However, it remains difficult to restore detailed paths from zoned minerals because thermobarometric evaluation of metamorphic conditions involves several uncertainties, including measurement errors and geological noise. We propose a new stochastic framework for estimating precise PT paths from a chemical zoning structure using the Markov random field (MRF) model, which is a type of Bayesian stochastic method that is often applied to image analysis. The continuity of pressure and temperature during mineral growth is incorporated by Gaussian Markov chains as prior probabilities in order to apply the MRF model to the PT path inversion. The most probable PT path can be obtained by maximizing the posterior probability of the sequential set of P and T given the observed compositions of zoned minerals. Synthetic PT inversion tests were conducted in order to investigate the effectiveness and validity of the proposed model from zoned Mg–Fe–Ca garnet in the divariant KNCFMASH system. In the present study, the steepest descent method was implemented in order to maximize the posterior probability using the Markov chain Monte Carlo algorithm. The proposed method successfully reproduced the detailed shape of the synthetic PT path by eliminating appropriately the statistical compositional noises without operator’s subjectivity and prior knowledge. It was also used to simultaneously evaluate the uncertainty of pressure, temperature, and mineral compositions for all measurement points. The MRF method may have potential to deal with several geological uncertainties, which cause cumbersome systematic errors, by its Bayesian approach and flexible formalism, so that it comprises potentially powerful tools for various inverse problems in petrology.  相似文献   

15.
《International Geology Review》2012,54(11):1311-1358
Molybdenum exploration activity in China has accelerated tremendously during the past decade owing to the continuous, increasing demand for Earth resources. China possesses the largest Mo reserves in the world (exceeding 19.6 Mt). The major ore deposits are of porphyry, porphyry–skarn, skarn, vein, and sedimentary types. Porphyry molybdenum deposits contain 77.5% of the Chinese Mo reserves, with lesser amounts in porphyry–skarns (13%), skarns (5.1%), and veins (4.4%). Exploitation of sedimentary-type molybdenum deposits thus far has been uneconomical. The six Mo provinces are in the Northeast China, Yanliao, Qinling–Dabie, middle–lower Yangtze River Valley, South China, and Sanjiang areas. We recognize six ore-forming periods: (1) Precambrian (>541 Ma), (2) Palaeozoic (541–250 Ma), (3) Triassic (250–200 Ma), (4) Jurassic–Early Cretaceous (190–135 Ma), (5) Cretaceous (135–90 Ma), and (6) Cenozoic (55–12 Ma). The abundance of Mo ore deposits in China reflects the occurrence of multiple periods of tectonism, involving interactions between the Siberian, North China, Yangtze, India, and Palaeo-Pacific plates. Precambrian molybdenum deposits are related to Mesoproterozoic volcanism in an extensional setting. Palaeozoic Cu–Mo deposits are related to calc-alkaline granitic plutons in an island arc or a continental margin setting. Triassic Mo deposits formed in the syn-collision–postcollision tectonic setting between the Siberian and North China plates and between the North China and Yangzi plates. Jurassic–Early Cretaceous molybdenum deposits formed along the eastern margin of Asia and are associated with the palaeo-Pacific plate-subduction tectonic setting. Cretaceous Mo deposits are related to high-K calc-alkaline granitic rocks and formed in a lithospheric thinning setting. Cenozoic molybdenum deposits formed in a collision setting between the Indian and Eurasian continents and the subsequent extensional setting.  相似文献   

16.
Porphyry copper deposits (PCDs) in Iran are dominantly distributed in Arasbaran (NW Iran), the middle segment of the Urumieh–Dokhtar Magmatic Arc (UDMA), and Kerman (central SE Iran), with minor occurrences in eastern Iran and the Makran arc. This paper provides a temporal–spatial and geodynamic framework of the Iranian porphyry Cu (Mo–Au) systems, based on geochronologic data obtained from zircon U–Pb and molybdenite Re–Os dating of host porphyritic rocks and molybdenites in 15 major PCDs. The dating results define a long metallogenic duration (39–6 Ma), and suggest a long history of tectonic evolution from the accretionary orogeny related to early Cenozoic closure of the Neo-Tethys Ocean to subsequent collisional orogeny for the Iranian porphyry copper systems.The oldest porphyry mineralization occurred in the eastern part of Iran after the closure of a branch of the Neo-Tethyan (Sistan) Ocean between the Lut and Afghan blocks in the late Eocene (39–37 Ma). This was followed by mineralization in the Kerman porphyry copper belt over a time interval of about 20 m.y., where two metallogenic epochs have been recognized, including late Oligocene (29–27 Ma) and Miocene (18–6 Ma). The Bondar-e-Hanza deposit formed in the late Oligocene, while and the remaining dated deposits belong to Miocene epoch. According to the deposits' characteristics and their ages, the Miocene epoch can be divided into early, middle, and late stages. The Darreh Zar, Bakh Khoshk, Chah Firouzeh and Sar Kuh deposits formed during the early–middle Miocene. The largest porphyry deposits occur in the middle stage during the middle Miocene (14–11 Ma) and include the Sar Cheshmeh, Meiduk, Dar Alu and Now Chun deposits. These deposits were formed during crustal thickening, uplift, and rapid exhumation of the belt. The final stage of porphyry mineralization occurred during the late Miocene (9–6 Ma), and formed the Iju, Kerver, Kuh Panj and Abdar deposits.There were two porphyry mineralization stages in the Arasbaran porphyry copper belt in NW Iran, including an older late Oligocene (29–27 Ma) and a younger early Miocene (22–20 Ma) events. The Haft Cheshmeh deposit belongs to the older stage, and the world-class Sungun and Masjed Daghi deposits formed during the early Miocene.In the middle segment of the UDMA (Saveh–Yazd porphyry copper belt), PCDs formed during middle Miocene time (17–15 Ma). The geochronological results reveal that the porphyry mineralization moved from the northwest to southeast of UDMA over the time.Our dating results, combined with the possible late Eocene–Oligocene timing for collision between the Arabian and Iranian plates, support a model for Iranian PCD formation by partial melting of previously subduction-modified lithosphere in a post-subduction and post-collisional tectonic setting.  相似文献   

17.
Earth fracturing or fissuring is a natural phenomenon and a major geohazard in many countries. The factors that cause the earth to fracture were analyzed in Yuci City, in Shanxi Province of China using the geographical information system (GIS). A nonlinear simulation and assessment model of earth fracturing was established using the artificial neural network (ANN) technology to simulate the structure and function of the neural network (NN) of the human brain with engineering technology. The developed nonlinear modeling and forecasting system was used to assess and forecast the earth fracture hazard in Yuci City. The results of this study provided useful and essential information for scientific policy-making in the areas of city planning, environmental protection, and land development.  相似文献   

18.
This research proposes a geospatial information system (GIS)-based framework extending the Dempster–Shafer theory to manage spatial uncertainties in the hydrocarbon exploration process. The output would be a composite common risk segment (CCRS) map which categorised the study area according to the exploration risk and interval uncertainties computed by the proposed model in the GIS environment. This exhibits the quantity of the entire Dempster–Shafer functions for the hydrocarbon resources in the potential areas in the Fars domain, Zagros sedimentary basin in the central part of Iran. The produced CCRS outlines approximately 25.9% of the study area which is highly promising for the hydrocarbon potential reservation. The accuracy of the model was validated using the area under curve. It was observed that 79.6% were classified correctly for the training and 73.4% for the testing data by the applied model. According to the obtained results, the proposed knowledge guided – data-driven method enhanced the precision of the classification more than the data-driven or knowledge-driven methods separately.  相似文献   

19.
《Comptes Rendus Geoscience》2018,350(4):180-191
The delineation of populations of stream sediment geochemical data is a crucial task in regional exploration surveys. In this contribution, uni-element stream sediment geochemical data of Cu, Au, Mo, and Bi have been subjected to two reliable anomaly-background separation methods, namely, the concentration-area (C–A) fractal and the U-spatial statistics methods to separate geochemical anomalies related to porphyry-type Cu mineralization in northwest Iran. The quantitative comparison of the delineated geochemical populations using the modified success-rate curves revealed the superiority of the U-spatial statistics method over the fractal model. Moreover, geochemical maps of investigated elements revealed strongly positive correlations between strong anomalies and Oligocene–Miocene intrusions in the study area. Therefore, follow-up exploration programs should focus on these areas.  相似文献   

20.
Asadi  Sina  Moore  Farid 《Mineralogy and Petrology》2017,111(1):145-161
Mineralogy and Petrology - The Bavanat Cu deposit occurs as veins controlled by a NE–trending structure within the Permo–Triassic Surian metamorphic complex (SMC), southwest of Iran....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号