首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Picard spacecraft was successfully launched on 15 June 2010, into a Sun-synchronous orbit. The mission represents one of the European contributions to solar observations and Essential Climate Variables (ECVs) measurements. The payload is composed of a Solar Diameter Imager and Surface Mapper (SODISM) and two radiometers: SOlar VAriability Picard (SOVAP) and PREcision MOnitor Sensor (PREMOS). SOVAP, a dual side-by-side cavity radiometer, measures the total solar irradiance (TSI). It is the sixth of a series of differential absolute-radiometer-type instruments developed and operated in space by the Royal Meteorological Institute of Belgium. The measurements of SOVAP in the summer of 2010 yielded a TSI value of 1362.1 W?m?2 with an uncertainty of ±?2.4 W?m?2 (k=1). During the periods of November 2010 and January 2013, the amplitude of the changes in TSI has been on the order of 0.18 %, corresponding to a range of about 2.4 W?m?2.  相似文献   

3.
The solar spectrum is a key parameter for different scientific disciplines such as solar physics, climate research, and atmospheric physics. The SOLar SPECtrometer (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to measure the solar spectral irradiance (SSI) from 165 to 3088 nm with high accuracy. To cover the full wavelength range, three double-monochromators with concave gratings are used. We present here a thorough analysis of the data from the third channel/double-monochromator, which covers the spectral range between 656 and 3088 nm. A new reference solar spectrum is therefore obtained in this mainly infrared wavelength range (656 to 3088 nm); it uses an absolute preflight calibration performed with the blackbody of the Physikalisch-Technische Bundesanstalt (PTB). An improved correction of temperature effects is also applied to the measurements using in-flight housekeeping temperature data of the instrument. The new solar spectrum (SOLAR–IR) is in good agreement with the ATmospheric Laboratory for Applications and Science (ATLAS?3) reference solar spectrum from 656 nm to about 1600 nm. However, above 1600 nm, it agrees better with solar reconstruction models than with spacecraft measurements. The new SOLAR/SOLSPEC measurement of solar spectral irradiance at about 1600 nm, corresponding to the minimum opacity of the solar photosphere, is 248.08 ± 4.98 mW?m?2?nm?1 (1?\(\sigma\)), which is higher than recent ground-based evaluations.  相似文献   

4.
The High-Resolution Coronal Imager (Hi-C) was flown on a NASA sounding rocket on 11 July 2012. The goal of the Hi-C mission was to obtain high-resolution (≈?0.3?–?0.4′′), high-cadence (≈?5 seconds) images of a solar active region to investigate the dynamics of solar coronal structures at small spatial scales. The instrument consists of a normal-incidence telescope with the optics coated with multilayers to reflect a narrow wavelength range around 19.3 nm (including the Fe xii 19.5-nm spectral line) and a 4096×4096 camera with a plate scale of 0.1′′?pixel?1. The target of the Hi-C rocket flight was Active Region 11520. Hi-C obtained 37 full-frame images and 86 partial-frame images during the rocket flight. Analysis of the Hi-C data indicates the corona is structured on scales smaller than currently resolved by existing satellite missions.  相似文献   

5.
Using observations from the High Energy Telescopes (HETs) on the STEREO A and B spacecraft and similar observations from near-Earth spacecraft, we summarize the properties of more than 200 individual >?25 MeV solar proton events, some detected by multiple spacecraft, that occurred from the beginning of the STEREO mission in October 2006 to December 2013, and provide a catalog of these events and their solar sources and associations. Longitudinal dependencies of the electron and proton peak intensities and delays to onset and peak intensity relative to the solar event have been examined for 25 three-spacecraft particle events. Expressed as Gaussians, peak intensities fall off with longitude with σ=47±14° for 0.7?–?4 MeV electrons, and σ=43±13° for 14?–?24 MeV protons. Several particle events are discussed in more detail, including one on 3 November 2011, in which ~?25 MeV protons filled the inner heliosphere within 90 minutes of the solar event, and another on 7 March 2012, in which we demonstrate that the first of two coronal mass ejections that erupted from an active region within ~?1 hour was associated with particle acceleration. Comparing the current Solar Cycle 24 with the previous cycle, the first >?25 MeV proton event was detected at Earth in the current solar cycle around one year after smoothed sunspot minimum, compared with a delay of only two months in Cycle 23. Otherwise, solar energetic particle event occurrence rates were reasonably similar during the rising phases of Cycles 23 and 24. However, the rate declined in 2013, reflecting the decline in sunspot number since the peak in the northern-hemisphere sunspot number in November 2011. Observations in late 2013 suggest that the rate may be rising again in association with an increase in the southern sunspot number.  相似文献   

6.
We statistically analyzed the kinematical evolution and wave pulse characteristics of 60 strong large-scale EUV wave events that occurred during January 2007 to February 2011 with the STEREO twin spacecraft. For the start velocity, the arithmetic mean is 312±115 km?s?1 (within a range of 100?–?630 km?s?1). For the mean (linear) velocity, the arithmetic mean is 254±76 km?s?1 (within a range of 130?–?470 km?s?1). 52 % of all waves under study show a distinct deceleration during their propagation (a≤?50 m?s?2), the other 48 % are consistent with a constant speed within the uncertainties (?50≤a≤50 m?s?2). The start velocity and the acceleration are strongly anticorrelated with c≈?0.8, i.e. initially faster events undergo stronger deceleration than slower events. The (smooth) transition between constant propagation for slow events and deceleration in faster events occurs at an EUV wave start-velocity of v≈230 km?s?1, which corresponds well to the fast-mode speed in the quiet corona. These findings provide strong evidence that the EUV waves under study are indeed large-amplitude fast-mode MHD waves. This interpretation is also supported by the correlations obtained between the peak velocity and the peak amplitude, impulsiveness, and build-up time of the disturbance. We obtained the following association rates of EUV wave events with other solar phenomena: 95 % are associated with a coronal mass ejection (CME), 74 % to a solar flare, 15 % to interplanetary type II bursts, and 22 % to coronal type II bursts. These findings are consistent with the interpretation that the associated CMEs are the driving agents of the EUV waves.  相似文献   

7.
We study the abundances of the elements He through Pb in Fe-rich impulsive solar energetic-particle (SEP) events with measurable abundances of ions with atomic number Z>2 observed on the Wind spacecraft, and their relationship with coronal mass ejections (CMEs) observed by the Large Angle and Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). On an average the element abundances in these events are similar to coronal abundances at low Z but, for heavier elements, enhancements rise as a power law in the mass-to-charge ratio A/Q of the ions (at coronal temperatures of 2.5?–?3 MK) to a factor of 3 at Ne, 9 at Fe, and 900 for 76≤Z≤82. Energy dependences of abundances are minimal in the 2?–?15 MeV amu?1 range. The 111 of these Fe-rich impulsive SEP events we found, between November 1994 and August 2013 using the Wind spacecraft, have a 69 % association rate with CMEs. The CMEs are narrow with a median width of 75°, are characteristically from western longitudes on the Sun, and have a median speed of ≈?600 km?s?1. Nearly all SEP onsets occur within 1.5?–?5 h of the CME onset. The faster (>?700 km?s?1), wider CMEs in our sample are related to SEPs with coronal abundances indicating hot coronal plasma with fully ionized He, C, N and O and moderate enhancements of heavier elements, relative to He, but slower (<?700 km?s?1), narrower CMEs emerge from cooler plasma where higher SEP mass-to-charge ratios, A/Q, yield much greater abundance enhancements, even for C/He and O/He. Apparently, the open magnetic-reconnection region where the impulsive SEPs are accelerated also provides the energy to drive out CME plasma, accounting for a strong, probably universal, impulsive SEP-CME association.  相似文献   

8.
We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H?? observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H?? observations revealed two successive ejections (of speeds ???350 and ???100 km?s?1), originating from the same filament channel, which were associated with two high speed CMEs (???1223 and ???1660 km?s?1, respectively). These two ejections generated propagating fast shock waves (i.e., fast-drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun?CEarth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst peak=?472 nT) on the Earth.  相似文献   

9.
The RESIK instrument on the CORONAS-F spacecraft obtained solar flare and active-region X-ray spectra in four channels covering the wavelength range 3.8?–?6.1 Å in its operational period between 2001 and 2003. Several highly ionized silicon lines were observed within the range of the long-wavelength channel (5.00?–?6.05 Å). The fluxes of the Si?xiv Ly-β line (5.217 Å) and the Si?xiii 1s 2?–?1s3p line (5.688 Å) during 21 flares with optimized pulse-height analyzer settings on RESIK have been analyzed to obtain the silicon abundance relative to hydrogen in flare plasmas. As in previous work, the emitting plasma for each spectrum is assumed to be characterized by a single temperature and emission measure given by the ratio of emission in the two channels of GOES. The silicon abundance is determined to be A(Si)=7.93±.21 (Si?xiv) and 7.89±.13 (Si?xiii) on a logarithmic scale with H=12. These values, which vary by only very small amounts from flare to flare and times within flares, are 2.6±1.3 and 2.4±0.7 times the photospheric abundance, and are about a factor of three higher than RESIK measurements during a period of very low activity. There is a suggestion that the Si/S abundance ratio increases from active regions to flares.  相似文献   

10.
Auchère  F.  Artzner  G.E. 《Solar physics》2004,219(2):217-230
The Mercury transit of 15 November 1999 has been observed from space by the SOHO and TRACE spacecraft. We exploited the data recorded by EIT/SOHO to determine the stray-light level and the plate-scale of the instrument. The asymmetric distribution of stray light across the images is confirmed, but the absolute amount was found to be higher than previously estimated. The plate scale averaged over wavelengths was found to be 2.627±0.001 arc sec pixel−1, in excellent agreement with two previous and independent determinations.  相似文献   

11.
Solar Photometer in X-rays (SphinX) was a spectrophotometer developed to observe the Sun in soft X-rays. The instrument observed in the energy range ≈?1?–?15 keV with resolution ≈?0.4 keV. SphinX was flown on the Russian CORONAS–PHOTON satellite placed inside the TESIS EUV and X telescope assembly. The spacecraft launch took place on 30 January 2009 at 13:30 UT at the Plesetsk Cosmodrome in Russia. The SphinX experiment mission began a couple of weeks later on 20 February 2009 when the first telemetry dumps were received. The mission ended nine months later on 29 November 2009 when data transmission was terminated. SphinX provided an excellent set of observations during very low solar activity. This was indeed the period in which solar activity dropped to the lowest level observed in X-rays ever. The SphinX instrument design, construction, and operation principle are described. Information on SphinX data repositories, dissemination methods, format, and calibration is given together with general recommendations for data users. Scientific research areas in which SphinX data find application are reviewed.  相似文献   

12.
This study based on longitudinal Zeeman effect magnetograms and spectral line scans investigates the dependence of solar surface magnetic fields on the spectral line used and the way the line is sampled to estimate the magnetic flux emerging above the solar atmosphere and penetrating to the corona from magnetograms of the Mt. Wilson 150-foot tower synoptic program (MWO). We have compared the synoptic program λ5250 Å line of Fe?i to the line of Fe?i at λ5233 Å since this latter line has a broad shape with a profile that is nearly linear over a large portion of its wings. The present study uses five pairs of sampling points on the λ5233 Å line. Line profile observations show that the determination of the field strength from the Stokes V parameter or from line bisectors in the circularly polarized line profiles lead to similar dependencies on the spectral sampling of the lines, with the bisector method being the less sensitive. We recommend adoption of the field determined with the line bisector method as the best estimate of the emergent photospheric flux and further recommend the use of a sampling point as close to the line core as is practical. The combination of the line profile measurements and the cross-correlation of fields measured simultaneously with λ5250 Å and λ5233 Å yields a formula for the scale factor δ ?1 that multiplies the MWO synoptic magnetic fields. By using ρ as the center-to-limb angle (CLA), a fit to this scale factor is δ ?1=4.15?2.82sin?2(ρ). Previously δ ?1=4.5?2.5sin?2(ρ) had been used. The new calibration shows that magnetic fields measured by the MDI system on the SOHO spacecraft are equal to 0.619±0.018 times the true value at a center-to-limb position 30°. Berger and Lites (2003, Solar Phys. 213, 213) found this factor to be 0.64±0.013 based on a comparison using the Advanced Stokes Polarimeter.  相似文献   

13.
Here we report a radio burst in absorption at 9?–?30 MHz observed with the UTR-2 telescope. This event occurred on 19 August 2003 about 11:16?–?11:26 UT, against solar type IV/II emission background. It is the first event where absorption was observed below 30 MHz. The absorption region, comparable with the solar radius size, traveled a long distance into the upper corona from the Sun. We show that the burst minimum corresponds to the almost full absorption of the solar radio emission up to a background level of the quiescent Sun. This supports the interpretation of the phenomenon as an absorption. The result is examined independently with the Nançay Decameter Array measurements and the Wind WAVES instrument records.  相似文献   

14.
Total solar irradiance (TSI) measurements have been available from the TIM instrument on the SORCE spacecraft since 2003. We compare TSI data, both 24-h and 6-h averages, with photometric indices from red and K-line images obtained on a daily basis at the San Fernando Observatory (SFO). For 1253 days of data from 2 March 2003 to 5 May 2010 we compare the data in linear multiple regression analyses. The best results come from using two photometric indices, the red and K-line photometric sums, and SORCE TSI 6-h averages interpolated to the SFO time of observation. For this case, we obtain a coefficient of multiple determination, R 2, of 0.9495 and a quiet-Sun irradiance S 0?=?1360.810?±?0.004?W?m?2. These results provide further support for the hypothesis that the quiet Sun is constant over time.  相似文献   

15.
An unusual solar burst was observed simultaneously by two decameter radio telescopes UTR-2 (Kharkov, Ukraine) and URAN-2 (Poltava, Ukraine) on 3 June 2011 in the frequency range of 16?–?28 MHz. The observed radio burst had some unusual properties, which are not typical for the other types of solar radio bursts. Its frequency drift rate was positive (about 500 kHz?s?1) at frequencies higher than 22 MHz and negative (100 kHz?s?1) at lower frequencies. The full duration of this event varied from 50 s up to 80 s, depending on the frequency. The maximum radio flux of the unusual burst reached ≈103 s.f.u. and its polarization did not exceed 10 %. This burst had a fine frequency-time structure of unusual appearance. It consisted of stripes with the frequency bandwidth 300?–?400 kHz. We consider that several accompanied radio and optical events observed by SOHO and STEREO spacecraft were possibly associated with the reported radio burst. A model that may interpret the observed unusual solar radio burst is proposed.  相似文献   

16.
The transport of energy in space plasmas, especially in the solar wind, is far from being understood. Measuring the temperature of the electrons and their non-thermal properties is essential to understand the transport properties in collisionless plasmas. Quasi-thermal noise spectroscopy is a reliable tool for measuring the electron temperature accurately since it is less sensitive to the spacecraft perturbations than particle detectors. We apply this method to Ulysses radio data obtained during the first pole-to-pole fast latitude scan in the high-speed solar wind, using a kappa function to describe the electron velocity distribution. We deduce the variations with heliocentric distance between 1.5 and 2.3 AU in the fast solar wind at high latitude in terms of three fitting parameters: the electron density varies as n e??R ?1.96±0.08, the electron temperature as T e??R ?0.53±0.15, and the kappa index of the distribution remains constant at ??=2.0±0.2. These observations agree with the predictions of the exospheric theory.  相似文献   

17.
We study the association of solar flares with coronal mass ejections (CMEs) during the deep, extended solar minimum of 2007?–?2009, using extreme-ultraviolet (EUV) and white-light (coronagraph) images from the Solar Terrestrial Relations Observatory (STEREO). Although all of the fast (v>900 km?s?1), wide (θ>100°) CMEs are associated with a flare that is at least identified in GOES soft X-ray light curves, a majority of flares with relatively high X-ray intensity for the deep solar minimum (e.g. ?1×10?6 W?m?2 or C1) are not associated with CMEs. Intense flares tend to occur in active regions with a strong and complex photospheric magnetic field, but the active regions that produce CME-associated flares tend to be small, including those that have no sunspots and therefore no NOAA active-region numbers. Other factors on scales similar to and larger than active regions seem to exist that contribute to the association of flares with CMEs. We find the possible low coronal signatures of CMEs, namely eruptions, dimmings, EUV waves, and Type III bursts, in 91 %, 74 %, 57 %, and 74 %, respectively, of the 35 flares that we associate with CMEs. None of these observables can fully replace direct observations of CMEs by coronagraphs.  相似文献   

18.
This paper presents the results of a comparison between observations of coronal holes in UV (SOHO EIT) and radio emission (17, 5.7 GHz, 327 and 150.9 MHz, from NoRH, SSRT and Nançay radioheliographs), and solar wind parameters, from ACE spacecraft data over the period 12 March?–?31 May 2007. The increase in the solar wind velocity up to ~?600 km?s?1 was found to correlate with a decrease in the UV flux in the central parts of the solar disk. A connection between the parameters of the radio emission from three different layers of the solar atmosphere and the solar wind velocity near the Earth’s orbit was discovered. Such a connection is suggestive of a common mechanism of solar wind acceleration from chromospheric heights to the upper corona.  相似文献   

19.
Interplanetary scintillation (IPS) measurements of the solar wind speed for the distance range between 13 and 37 R S were carried out during the solar conjunction of the Nozomi spacecraft in 2000?–?2001 using the X-band radio signal. Two large-aperture antennas were employed in this study, and the baseline between the two antennas was several times longer than the Fresnel scale for the X-band. We successfully detected a positive correlation of IPS from the cross-correlation analysis of received signal data during ingress, and estimated the solar wind speed from the time lag corresponding to the maximum correlation by assuming that the solar wind flows radially. The speed estimates range between 200 and 540?km?s?1 with the majority below 400?km?s?1. We examined the radial variation in the solar wind speed along the same streamline by comparing the Nozomi data with data obtained at larger distances. Here, we used solar wind speed data taken from 327 MHz IPS observations of the Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, and in?situ measurements by the Advanced Composition Explorer (ACE) for the comparison, and we considered the effect of the line-of-sight integration inherent to IPS observations for the comparison. As a result, Nozomi speed data were proven to belong to the slow component of the solar wind. Speed estimates within 30 R S were found to be systematically slower by 10?–?15 % than the terminal speeds, suggesting that the slow solar wind is accelerated between 13 and 30 R S.  相似文献   

20.
T. Iju  M. Tokumaru  K. Fujiki 《Solar physics》2013,288(1):331-353
We report radial-speed evolution of interplanetary coronal mass ejections (ICMEs) detected by the Large Angle and Spectrometric Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO), interplanetary scintillation (IPS) at 327 MHz, and in-situ observations. We analyze solar-wind disturbance factor (g-value) data derived from IPS observations during 1997?–?2009 covering nearly the whole period of Solar Cycle 23. By comparing observations from SOHO/LASCO, IPS, and in situ, we identify 39 ICMEs that could be analyzed carefully. Here, we define two speeds [V SOHO and V bg], which are the initial speed of the ICME and the speed of the background solar wind, respectively. Examinations of these speeds yield the following results: i) Fast ICMEs (with V SOHO?V bg>500 km?s?1) rapidly decelerate, moderate ICMEs (with 0 km?s?1V SOHO?V bg≤500 km?s?1) show either gradually decelerating or uniform motion, and slow ICMEs (with V SOHO?V bg<0 km?s?1) accelerate. The radial speeds converge on the speed of the background solar wind during their outward propagation. We subsequently find; ii) both the acceleration and the deceleration are nearly complete by 0.79±0.04 AU, and those are ended when the ICMEs reach a 480±21 km?s?1. iii) For ICMEs with (V SOHO?V bg)≥0 km?s?1, i.e. fast and moderate ICMEs, a linear equation a=?γ 1(V?V bg) with γ 1=6.58±0.23×10?6 s?1 is more appropriate than a quadratic equation a=?γ 2(V?V bg)|V?V bg| to describe their kinematics, where γ 1 and γ 2 are coefficients, and a and V are the acceleration and speed of ICMEs, respectively, because the χ 2 for the linear equation satisfies the statistical significance level of 0.05, while the quadratic one does not. These results support the assumption that the radial motion of ICMEs is governed by a drag force due to interaction with the background solar wind. These findings also suggest that ICMEs propagating faster than the background solar wind are controlled mainly by the hydrodynamic Stokes drag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号