首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic analysis of a deepwater floating structure is complex due to dynamic coupling between the platform and the moorings/risers. Furthermore, the system response at the incident wave frequency and at the resonant low frequency is coupled due to geometric and hydrodynamic nonlinearities. As such, it is generally held that a fully coupled time-domain analysis should be used for an accurate prediction of the dynamic response. However, in a recent work, it is found that for an ultra-deepwater floating system, a fully coupled frequency-domain analysis can provide highly accurate response predictions. One reason is the accuracy of the drag linearization procedure over the motions at two time scales, another is the minimal geometric nonlinearity of the moorings/risers in deepwater. In this paper, the frequency-domain approach is investigated for intermediate water depths, and it is found that the accuracy reduces substantially as geometric nonlinearity becomes important. Therefore, a novel hybrid approach is developed, in which the low-frequency motion is simulated in the time domain while the wave frequency motion is solved in the frequency domain at regular intervals. Coupling between the two analyses is effected by the fact that (i) the low-frequency motion affects the line geometry for the wave frequency motion, and (ii) the wave frequency motion affects the modeling of the drag forces, which damp the low-frequency motion. The method is found to be nearly as accurate as fully coupled time domain analysis even for a system with a preponderance of nonlinear and coupling effects, but requiring only one-tenth of the computational effort.  相似文献   

2.
The dynamic analysis of a deepwater floating structure is complicated by the fact that there can be significant coupling between the dynamics of the floating vessel and the attached risers and mooring lines. Furthermore, there are significant nonlinear effects, such as geometric nonlinearities, drag forces, and second order (slow drift) forces on the vessel, and for this reason the governing equations of motion are normally solved in the time domain. This approach is computationally intensive, and the aim of the present work is to develop and validate a more efficient linearized frequency domain approach. To this end, both time and frequency domain models of a coupled vessel/riser/mooring system are developed, which each incorporate both first and second order motions. It is shown that the frequency domain approach yields very good predictions of the system response when benchmarked against the time domain analysis, and the reasons for this are discussed. It is found that the linearization scheme employed for the drag forces on the risers and mooring lines yields a very good estimate of the resulting contribution to slow drift damping.  相似文献   

3.
基于三维频域势流理论,计算船体的水动力参数;采用动态耦合方法分析了深海半潜式生产平台各系统之间的相互作用特征,研究了立管系统对锚泊系统定位能力的影响。计算结果表明,立管系统在一定程度上增加了整个系统的刚度,其所受的附加质量和阻尼可降低平台的低频响应,从而降低平台的偏移和系泊缆的张力;海流将增大立管上的拖曳力,使平台偏移更远,锚索上的张力更大;立管系统对锚泊系统定位性能的最终影响需综合考虑多种因素的叠加。对目标平台而言,由于服役海域的流速较大,对立管的拖曳作用较为明显。因此,为确保平台的安全性,当服役海域流速较大时,带有多立管的平台,其锚泊系统的设计应考虑立管的影响。  相似文献   

4.
The dynamically coupled interaction between the hull of a floating platform and its risers and tendons plays an important role in the global motions of the platform and the tension loads in the tendons and risers. This is an especially critical design issue in the frequency ranges outside the wave frequencies of significant energy content. This study examines the importance of this coupled dynamic interaction and the effectiveness of different approaches for their prediction. A numerical code, named COUPLE, has been developed for computing the motions and tensions pertaining to a moored floating structure positioned and restrained by its mooring/tendon and riser systems. In this study the experimentally measured motions of a mini-TLP are compared with those computed using COUPLE and alternative predictions based upon quasi-static analysis. The comparisons confirm that COUPLE is able to predict the dynamic interaction between the hull and its tendon and riser systems while the related quasi-static analysis fails. The comparisons also show that wave loads on the mini-TLP can be accurately predicted using the Morison equation provided that the wavelength of incident waves is much longer than the diameters of the columns and pontoons and that the wave kinematics used are sufficiently accurate. Although these findings are based upon the case of a mini-TLP, they are expected to be relevant to a wide range of floating or compliant deepwater structures.  相似文献   

5.
国外深水钢悬链线立管研究发展现状   总被引:2,自引:0,他引:2  
介绍国外在新型深水立管系统--钢悬链线立管关键技术方面的研究发展现状,论述浮体一、二阶运动对钢悬链线立管疲劳寿命的影响、浮体升沉运动对钢悬链线立管触地点疲劳寿命的影响;钢悬链线立管与海底相互作用机制的实验研究及结果;钢悬链线立管涡致振动与疲劳的研究现状.并简要论述钢悬链线立管触地点问题的研究结论.  相似文献   

6.
深水铺管船是深水油气田开发的主要施工装备,它担负着浮式生产平台的安装、海底管线的铺设以及立管系统安装任务。通过对国外主要深水铺管船和重点工程项目的分析,简要介绍了国外深水铺管船的基本特征、性能和设备能力;重点阐述了深水铺管船的关键设备及其对施工能力的影响;最后,对国外深水铺管船的发展趋势作了进一步的分析。为我国的深水铺管船研发提供有益的参考。  相似文献   

7.
Excited by ocean currents, random wave and vessel motion, deepwater drilling risers exhibit significant dynamic response. In time domain, a method is proposed to calculate the nonlinear dynamic response of deepwater drilling risers subjected to random wave and dynamic large displacement vessel motion boundary condition. Structural and functional loads, external and internal pressure, free surface effect of irregular wave, hydrodynamic forces induced by current and wave, as well as wave and low frequency (drift) motion of the drilling vessel are all accounted for. An example is presented which illustrates the application of the proposed method. The study shows that long term drift motion of the vessel has profound effect on the envelopes of bending stress and lateral displacement, as well as the range of lower flex joint angle of the deepwater riser. It can also be concluded that vessel motion is the principal dynamic loading of nonlinear dynamic response for the deepwater risers rather than wave force.  相似文献   

8.
随着海洋石油向深水领域的拓展,SPAR平台以其诸多优点逐渐成为海上油气生产的主流设施。主要研究SPAR与系泊系统间的耦合响应问题,在讨论了浮体在波浪中运动求解方法之后,阐述了如何利用非线性有限元技术对系泊缆索和立管进行动力分析和张力计算,以及浮体与系泊系统耦合计算的相关理论,对浮体和系泊系统耦合计算模型进行了描述。通过对某SPAR进行系泊系统耦合计算和对计算结果的讨论,证明了深海SPAR系泊系统耦合计算的正确性。  相似文献   

9.
This paper deals with a numerical study of the transient effect of tendon disconnection on global performance of an extended tension leg platform (ETLP) during harsh environmental conditions of Gulf of Mexico (GoM). The ETLP has twelve tendons with twelve production top-tensioned risers (TTRs) and one drilling riser. The risers are attached by hydro-pneumatic tensioners. A time-domain nonlinear global-motion-analysis program for floating hulls coupled with risers/mooring lines is developed to model the transient effects associated with tendon disconnection at the top or the bottom. The sudden disconnection of one or more tendons causes the change of stiffness and natural periods, the imbalance of forces and moments of the total system, and possibly large transient overshoots in tension at the moment of disconnection. The breakage at the top and the unlatch at the bottom also make different impacts on the system. The transient responses and tensions are compared and discussed in the viewpoint of the robustness of the system. The survivability of a TLP with the loss of one or two tendons by accident during a lesser-than-extreme environment can also be checked by this kind of time-domain simulation technique.  相似文献   

10.
深水浮式系统由系泊系统、立管系统和浮式结构(船体)构成,船体与柔性结构的耦合效应是非常显著的,文章介绍了深水平台耦合效应产生的原因和定义.耦合分析方法的步骤及其原理,并分析了传统非耦舍分析方法的不足.实例表明,耦合分析方法更接近于实际.  相似文献   

11.
The dynamic analysis of a Tension Leg Platform (TLP) in random wave is investigated by considering the set-down of a floating body. The nonlinear restoring stiffness is derived with the set-down motion of a floating body and the coupled motion of the tension leg and platform and the differential equations of the motion are established. The study focuses on the influence of the set-down motion on the nonlinear response of the platform. By considering different significant wave heights and currents, motion responses of the platform are calculated and compared. The analysis shows that the set-down motion significantly increases the heave motion with low frequency and the equilibrium position of the heave motion with the set-down motion is much lower than that without set-down motion. The results in this paper indicate that the set-down motion has a major impact on the safety of the platform inproduction operation, and it is also a threat to the strength of tension legs and risers.  相似文献   

12.
Along with the consumption increase of the petroleum products,more countries have transferred their attentions to the offshore fields,especially the deepwater oil and gas reserves.For deepwater exploitation,the risers must be installed to act as the conduits connecting surface platforms to subsea facilities.In this paper,the typical risers sorted by different classes are introduced,and the correspondent installation methods are presented.By investigating the recent projects performed in the deepwater hot spots,and combining the challenges of HYSY201 for riser installation,a lifting device developed for assisting riser installation is proposed and detailed to satisfy the installation of deepwater risers in the LW3-1 Gas Field of in the South China Sea.Tests on both the functions and performances of such a new system exhibit the satisfaction of meeting all challenging requirements of HYSY201 for application to riser installation in waters up to a depth of in the South China Sea.  相似文献   

13.
作为浮式结构最常采用的两种系泊方式,悬链式系泊和张紧式系泊皆存在不足。本文提出了一种新型系泊系统,并以一深水FPSO为例,采用完全时域耦合分析方法,对不同工作水深情况下的浮体及新型系泊系统的运动性能进行了数值模拟,并将该新型系泊系统的仿真结果与传统的张紧式系泊系统进行了比较,分析了新型系泊系统在浮体运动性能、缆索张力等方面的改善,同时探讨了该新型系泊系统的最佳工作水深。  相似文献   

14.
In recent years, offshore reservoirs have been developed in deeper and deeper water environments. Steel catenary risers (SCRs) are being considered in deepwater development such as Northern North Sea. SCRs used in conjunction with a semi-submersible or floating production, storage and offloading (FPSO) in deepwater harsh environments present significant design challenges. The large vertical motions at the semi or FPSO induce severe riser response, which results in difficulty meeting strength and fatigue criteria at the hang off and touch down point locations. To improve the understanding of SCR behaviour and increase the confidence in the design of such systems in deepwater harsh environments, a parametric study on a SCR connected to a semi-submersible was carried out in this paper to deal with the factors that mainly influence the loading condition and fatigue life of the riser. Weight-optimized configurations were applied during the course of riser design. Riflex combined with DeepC was the primary analysis tool used for the long-term response of the nonlinear SCR structure simulations, which requires a large amount of computer time. Hence, the parameters affecting the efficiency and accuracy of the simulations have also been studied during the analysis process.  相似文献   

15.
The coupled hull, mooring and riser analysis techniques in time domain are widely recognized as the unique approach to predict the accurate global motions. However, these complex issues have not been perfectly solved due to a large number of nonlinear factors, e.g. forces nonlinearity, mooring nonlinearity, motion nonlinearity and so on. This paper investigates the coupled effects through the numerical uncoupled model, mooring coupled model and fully coupled model accounting mooring and risers based on a novel deep draft multi-spar which is especially designed for deepwater in 2009. The numerical static-offset, free-decay, wind-action tests are executed, and finally three hours simulations are conducted under 100-year return period of GOM conditions involving wave, wind and current actions. The damping contributions, response characteristics and mooring line tensions are emphatically studied.  相似文献   

16.
The coupled hull, mooring and riser analysis techniques in time domain are widely recognized as the unique approach to predict the accurate global motions. However, these complex issues have not been perfectly solved due to a large number of nonlinear factors, e.g. forces nonlinearity, mooring nonlinearity, motion nonlinearity and so on. This paper investigates the coupled effects through the numerical uncoupled model, mooring coupled model and fully coupled model accounting mooring and risers based on a novel deep draft multi-spar which is especially designed for deepwater in 2009. The numerical static-offset, free-decay, wind-action tests are executed, and finally the three hours simulations are conducted under 100-year return period of GOM conditions involving wave, wind and current actions. The damping contributions, response characteristics and mooring line tensions are emphatically studied.  相似文献   

17.
A vortex-induced vibration(VIV) experiment on three side-by-side risers subjected to a uniform flow was carried out in a combined wave-current flume. The dynamic features of interference effect on three side-by-side risers were investigated by varying fluid velocity and inter-riser spacing. The distributions of dimensionless displacement,dominant frequency, and displacement trajectory of the model risers were measured using mode decomposition and wavelet transform techniques. The coupled interference of inter-riser fluid to adjacent risers at different spacings was disclosed by introducing the "interference ratio" concept. The results show that at spacings smaller than 6.0 D, the three model risers display appreciable deviations in their displacement responses in cross-flow or in-line direction,attributable to the strong proximity disturbance and wake interference between the risers. When the spacing is increased to 8.0 D, wake interference still makes great difference to the dynamic response of the risers in both directions. As reduced velocity increases, the three risers show higher agreement with an isolated riser in overall dominant vibration frequency in CF direction than that in IL direction at all spacings and the side risers, although symmetrically placed, do not vibrate symmetrically, as a result of the steady deflection of clearance flow within the riser group. Interference effect results in a remarkable unsteady mode competition within the risers; quantitation of the interference levels for the three risers at different spacings with interference ratio revealed that under low flow velocities and large spacing ratios, clearance flow constitutes a non-neglectable interferer for three side-by-side risers.  相似文献   

18.
Flexible marine risers are commonly used in deepwater floating systems.Bend stiffeners are designed to protect flexible risers against excessive bending at the connection with the hull.The structure is usually analyzed as a cantilever beam subjected to an inclined point load.As deflections are large and the bend stiffener material exhibits nonlinear stress-strain characteristics,geometric and material nonlinearities are important considerations.A new approach has been developed to solve this nonlinear problem.Its main advantage is its simplicity;in fact the present method can be easily implemented on a spreadsheet.Finite element analysis using ABAQUS is performed to validate the method.Solid elements are used for the bend stiffener and flexible pipe.To simulate the near inextensibility of flexible risers,a simple and original idea of using truss elements is proposed.Through a set of validation studies,the present method is found to be in a good agreement with the finite element analysis.Further,parametric studies are performed by using both methods to identify the key parameters and phenomena that are most critical in design.The most important finding is that the common practice of neglecting the internal steel sleeve in the bend stiffener analysis is non-conservative and therefore needs to be reassessed.  相似文献   

19.
硬悬挂钻井隔水管涡激振动特性研究   总被引:1,自引:0,他引:1  
针对深水钻井过程中遭遇强台风,基于安全性考虑要求钻井平台悬挂隔水管提前撤离的问题,采用软件SHEAR7针对HYSY981钻井平台硬悬挂隔水管系统避台风撤离作业过程中,受南海一年一遇海流作用时诱发涡激振动(VIV)的情况,研究航速与悬挂长度对VIV特性的影响。研究表明,浮力块覆盖率越高,隔水管系统张力越小;浮力块分布对隔水管系统VIV响应影响较大,25%交错布置方案VIV响应最弱。隔水管并非越短越好,要综合考虑洋流剖面、隔水管配置和平台航行的影响;在不同悬挂长度及航行条件下的VIV响应,在撤离作业前应尽量避免在高流速区布置浮力单根,撤离作业时应尽量采用顺流而避免平台逆流航向。  相似文献   

20.
This paper quantitatively studies the transient dynamic response of a semi-submersible production platform with the loss of one or several positioning mooring lines.A semi-submersible platform,production risers,and positioning mooring lines are all included in the numerical simulation.Increased motion of the semi-submersible platform,tension variation of the remaining mooring lines/risers and the risk of mooring line or riser clashing are all investigated through fully coupled time-domain analysis.Combined environmental loads are selected from irregular waves and the steady current varying from very rough to extreme sea conditions.Three dimension radiation/diffraction theories and Morison’s equation are applied to calculate first-order wave force and second-order mean drift force of floating semi-submersible platform.Nonlinear time-domain finite element methods are employed to analyze the behavior of mooring lines and risers.Results show that the failure of mooring lines seriously reduce the platform’s stability performance.The tension of the rest lines is also increased accordingly.Remaining lines which are closer to the failed lines will have larger tension increase to compensate.Line-Line distance provides practical information for the risk of clashing investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号