首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Fourier domain technique has been proposed previously which, in principle, quantifies the extent to which multipoint in-situ measurements can identify whether or not an observed structure is time stationary in its rest frame. Once a structure, sampled for example by four spacecraft, is shown to be quasi-stationary in its rest frame, the structure’s velocity vector can be determined with respect to the sampling spacecraft. We investigate the properties of this technique, which we will refer to as a stationarity test, by applying it to two point measurements of a simulated boundary layer. The boundary layer was evolved using a PIC (particle in cell) electromagnetic code. Initial and boundary conditions were chosen such, that two cases could be considered, i.e. a spacecraft pair moving through (1) a time stationary boundary structure and (2) a boundary structure which is evolving (expanding) in time. The code also introduces noise in the simulated data time series which is uncorrelated between the two spacecraft. We demonstrate that, provided that the time series is Hanning windowed, the test is effective in determining the relative velocity between the boundary layer and spacecraft and in determining the range of frequencies over which the data can be treated as time stationary or time evolving. This work presents a first step towards understanding the effectiveness of this technique, as required in order for it to be applied to multispacecraft data.  相似文献   

2.
Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.  相似文献   

3.
It is well known that the ionospheric plasma response to high-power HF radio waves changes drastically as the heater frequency approaches harmonics of the electron gyrofrequency. These include changes in the spectrum of the stimulated electromagnetic emission, reduction in the anomalous absorption of low-power diagnostic waves propagating through the heated volume, and reduction in the large scale F-region heating. Theoretical models as well as previous experimental evidence point towards the absence of small-scale field-aligned plasma density irregularities at pump frequencies close to electron gyroharmonics as the main cause of these changes. Results presented in this paper are the first direct observations of the reduced striations at the 3rd gyroharmonic made by the CUTLASS radar. In addition, simultaneous EISCAT observations have revealed that the “enhanced ion-line” usually present in the EISCAT ion-line spectrum during the first few seconds after heater switch on, persisted at varying strengths while the heater was transmitting at frequencies close to the 3rd electron gyroharmonics.  相似文献   

4.
We present an analysis of phenomena observed by HF distance-diagnostic tools located in St. Petersburg combined with multi-instrument observation at Tromsø in the HF modified ionosphere during a magnetospheric substorm. The observed phenomena that occurred during the Tromsø heating experiment in the nightside auroral Es region of the ionosphere depend on the phase of substorm. The heating excited small-scale field-aligned irregularities in the E region responsible for field-aligned scattering of diagnostic HF waves. The equipment used in the experiment was sensitive to electron density irregularities with wavelengths 12–15 m across the geomagnetic field lines. Analysis of the Doppler measurement data shows the appearance of quasiperiodic variations with a Doppler frequency shift, fd and periods about 100–120 s during the heating cycle coinciding in time with the first substorm activation and initiation of the upward field-aligned currents. A relationship between wave variations in fd and magnetic pulsations in the Y-component of the geomagnetic field at Tromsø was detected. The analysis of the magnetic field variations from the IMAGE magnetometer stations shows that ULF waves occurred, not only at Tromsø, but in the adjacent area bounded by geographical latitudes from 70.5° to 68° and longitudes from 16° to 27°. It is suggested that the ULF observed can result from superposition of the natural and heater-induced ULF waves. During the substorm expansion a strong stimulated electromagnetic emission (SEE) at the third harmonic of the downshifted maximum frequency was found. It is believed that SEE is accompanied by excitation of the VLF waves penetrating into magneto-sphere and stimulating the precipitation of the energetic electrons (10–40 keV) of about 1-min duration. This is due to a cyclotron resonant interaction of natural precipitating electrons (1–10 keV) with heater-induced whistler waves in the magnetosphere. It is reasonable to suppose that a new substorm activation, exactly above Tromsø, was closely connected with the heater-induced precipitation of energetic electrons.  相似文献   

5.
SPEAR is a new polar cap HF radar facility which is to be deployed on Svalbard. The principal capabilities of SPEAR will include the generation of artificial plasma irregularities, operation as an all-sky HF radar, the excitation of ULF waves, and remote sounding of the magnetosphere. Operation of SPEAR in conjunction with the multitude of other instruments on Svalbard, including the EISCAT Svalbard radar, and the overlap of its extensive field-of-view with that of several of the HF radars in the SuperDARN network, will enable in-depth diagnosis of many geophysical and plasma phenomena associated with the cusp region and the substorm expansion phase. Moreover, its ability to produce artificial radar aurora will provide a means for the other instruments to undertake polar cap plasma physics experiments in a controlled manner. Another potential use of the facility is in field-line tagging experiments, for coordinated ground-satellite experiments. Here the scientific objectives of SPEAR are detailed, along with the proposed technical specifications of the system.  相似文献   

6.
The basic equations of wave distribution function analysis are rewritten in forms that treat the electric and magnetic fields of the waves in a more symmetrical way than the original equations do, and are slightly better for computing.  相似文献   

7.
The tomographic reconstruction technique generates a two-dimensional latitude versus height electron density distribution from sets of slant total electron content measurements (TEC) along ray paths between beacon satellites and ground-based radio receivers. In this note, the technique is applied to TEC values obtained from data simulated by the Sheffield/UCL/SEL Coupled Thermosphere/Ionosphere/Model (CTIM). A comparison of the resulting reconstructed image with the input modelled data allows for verification of the reconstruction technique. All the features of the high-latitude ionosphere in the model data are reproduced well in the tomographic image. Reconstructed vertical TEC values follow closely the modelled values, with the F-layer maximum density (NmF2) agreeing generally within about 10%. The method has also been able successfully to reproduce underlying auroral-E ionisation over a restricted latitudinal range in part of the image. The height of the F2 peak is generally in agreement to within about the vertical image resolution (25 km).  相似文献   

8.
The ionospheric electron gas can be heated artificially by a powerful radio wave. According to our modeling, the maximum effect of this heating occurs in the D-region where the electron temperature can increase by a factor of ten. Ionospheric plasma parameters such as Ne,Te and Ti are measured by EISCAT incoherent scatter radar on a routine basis. However, in the D-region the incoherent scatter echo is very weak because of the low electron density. Moreover, the incoherent scatter spectrum from the D-region is of Lorentzian shape which gives less information than the spectrum from the E- and F-regions. These make EISCAT measurements in the D-region difficult. A combined EISCAT VHF-radar and heating experiment was carried out in November 1998 with the aim to measure the electron temperature increase due to heating. In the experiment the heater was switched on/off at 5 minute intervals and the integration time of the radar was chosen synchronously with the heating cycle. A systematic difference in the measured autocorrelation functions was found between heated and unheated periods.  相似文献   

9.
The CUTLASS (Co-operative UK Twin Located Auroral Sounding System) Finland HF radar, whilst operating in a high spatial and temporal resolution mode, has measured the ionospheric signature of a naturally occurring ULF wave in scatter artificially generated by the Tromsø Heater. The wave had a period of 100 s and exhibited curved phase fronts across the heated volume (about 180 km along a single radar beam). Spatial information provided by CUTLASS has enabled an m-number for the wave of about 38 to be determined. This high-m wave was not detected by the IMAGE (International Monitor for Auroral Geomagnetic Effects) network of ground magnetometers, as expected for a wave of a small spatial scale size. These observations offer the first independent confirmation of the existence of the ground uncorrelated ULF wave signatures previously reported in measurements recorded from an HF Doppler sounder located in the vicinity of Tromsø. These results both demonstrate a new capability for geophysical exploration from the combined CUTLASS-EISCAT ionospheric Heater experiment, and provide a verification of the HF Doppler technique for the investigation of small scale ULF waves.  相似文献   

10.
We present a model that describes the decay of beam generated Langmuir waves into ion-acoustic waves in the topside ionosphere. This calculation is done within the frame of the weak turbulence approximation. We study the spectral signature of such a process as seen by a VHF incoherent scatter radar. An incoherent scatter (IS) spectrum is characterized by two maxima at kradar and −kradar, the right and left ion lines respectively. It is shown that, for reasonable beam parameters, the parametric decay of beam-generated Langmuir waves can enhance either the right, the left or both ion lines simultaneously. The shape of the spectrum can change drastically on time scale of about 0.1 to 1 s. The role of the beam parameter as well as the ionospheric parameters is also investigated. For a given beam number density, the beam energy or the background density are important to trigger either the left or the right ion line. A large energy spread of the beam or low electron collision frequencies can explain the simultaneous observations of the left and the right ion line. The importance of the electron collision frequency can explain the altitude distribution of the coherent echoes observed by incoherent scatter radars.  相似文献   

11.
Excitation of upper hybrid waves associated with the ionospheric heating experiments is assumed to be essential in explaining some of the features of stimulated electromagnetic emissions (SEE). A direct conversion process is proposed as an excitation mechanism of the upper hybrid waves where the energy of an obliquely propagating electromagnetic pump wave is converted into the electrostatic upper hybrid waves due to small-scale density irregularities. We performed electromagnetic particle-in-cell simulations to investigate the energy conversion process in the ionospheric heating experiments. We studied dependence of the amplitude of the excited wave on the propagation angle of the pump wave, scale length of the density irregularity, degree of the irregularity, and thermal velocity of the plasma. The maximum amplitude is found to be 37% of the pump amplitude under an optimum condition.  相似文献   

12.
High-time resolution CUTLASS observations and ground-based magnetometers have been employed to study the occurrence of vortical flow structures propagating through the high-latitude ionosphere during magnetospheric substorms. Fast-moving flow vortices (800 m s–1) associated with Hall currents flowing around upward directed field-aligned currents are frequently observed propagating at high speed (1 km s–1) azimuthally away from the region of the ionosphere associated with the location of the substorm expansion phase onset. Furthermore, a statistical analysis drawn from over 1000 h of high-time resolution, nightside radar data has enabled the characterisation of the bulk properties of these vortical flow systems. Their occurrence with respect to substorm phase has been investigated and a possible generation mechanism has been suggested.  相似文献   

13.
An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR) (14°N, 80°E, dip 14°N) along with other experiments, as a part of equatorial spread F (ESF) campaign, to study the nature of irregularities in electric field and electron density. The rocket was launched at 2130 local time (LT) and it attained an apogee of 348 km. Results of vertical and horizontal electric field fluctuations are presented here. Scale sizes of electric field fluctuations were measured in the vertical direction only. Strong ESF irregularities were observed in three regions, viz., 160/190 km, 210/257 km and 290/330 km. Some of the valley region vertical electric field irregularities (at 165 km and 168 km), in the intermediate-scale size range, observed during this flight, show spectral peak at kilometer scales and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of a new type. Scale sizes of vertical electric field fluctuations showed a decrease with increasing altitude. The most prominent scales were of the order of a few kilometers around 170 km and a few hundred meters around 310 km. Spectra of intermediate-scale vertical electric field fluctuations below the base of the F region (210/257 km) showed a tendency to become slightly flatter (spectral index n = –2.1 ± 0.7) as compared to the valley region (n = –3.6 ± 0.8) and the region below the F peak (n = –2.8 ± 0.5). Correlation analysis of the electron density and vertical electric field fluctuations suggests the presence of a sheared flow of current in 160/330 km region.  相似文献   

14.
The ionospheric signature of a flux transfer event (FTE) seen in EISCAT radar data has been used as the basis for a modelling study using a new numerical model of the high-latitude ionosphere developed at the University of Sheffield, UK. The evolution of structure in the high-latitude ionosphere is investigated and examined with respect to the current views of polar patch formation and development. A localized velocity enhancement, of the type associated with FTEs, is added to the plasma as it passes through the cusp. This is found to produce a region of greatly enhanced ion temperature. The new model can provide greater detail during this event as it includes anisotropic temperature calculations for the O+ ions. This illustrates the uneven partitioning of the energy during an event of this type. O+ ion temperatures are found to become increasingly anisotropic, with the perpendicular temperature being substantially larger than the parallel component during the velocity enhancement. The enhanced temperatures lead to an increase in the recombination rate, which results in an alteration of the ion concentrations. A region of decreased O+ and increased molecular ion concentration develops in the cusp. The electron temperature is less enhanced than the ions. As the new model has an upper boundary of 10 000 km the topside can also be studied in great detail. Large upward fluxes are seen to transport plasma to higher altitudes, contributing to the alteration of the ion densities. Plasma is stored in the topside ionosphere and released several hours after the FTE has finished as the flux tube convects across the polar cap. This mechanism illustrates how concentration patches can be created on the dayside and be maintained into the nightside polar cap.  相似文献   

15.
The continuous increase in concentration of greenhouse gases in the atmosphere is expected to cool higher levels of the atmosphere. There is some direct and indirect experimental evidence of long-term trends in temperature and other parameters in the mesosphere and lower thermosphere (MLT). Here we look for long-term trends in the annual and semiannual variations of the radio wave absorption in the lower ionosphere, which corresponds to the MLT region heights. Data from central and southeastern Europe are used. A consistent tendency to a positive trend in the amplitude of the semiannual wave appears to be observed. The reality of a similar tendency in the amplitude of the annual wave is questionable in the sense that the trend in the amplitude of the annual wave is probably induced by the trend in the yearly average values of absorption. The phases of both the annual and semiannual waves display a forward tendency, i.e. shift to an earlier time in the year. A tentative interpretation of these results in terms of changes of the seasonal variation of temperature and wind at MLT heights does not contradict the trends observed in those parameters.  相似文献   

16.
The relationship between electric fields, height-integrated conductivities and electric currents in the high-latitude nightside electrojet region is known to be complex. The tristatic nature of the EISCAT UHF radar facility provides an excellent means of exploring this interrelationship as it enables simultaneous estimates to be made of the full electric field vector and the ionospheric Hall and Pedersen conductances, further allowing the determination of both field-perpendicular electric current components. Over 1300 h of common programme observations by the UHF radar system provide the basis of a statistical study of electric fields, conductances and currents in the high-latitude ionosphere, from which preliminary results are presented. Times at which there is significant solar contribution to the ionospheric conductances have been excluded by limiting the observations according to solar zenith angle. Initial results indicate that, in general, the times of peak conductance, identified from the entire set of EISCAT observations, do not correspond to the times of the largest electric field values; the relative contribution of ionospheric conductance and electric field to the electrojet currents therefore depends critically on local time, a conclusion which corroborates work by previous authors. Simultaneous measurements confirm a tendency for a decrease in both Hall and Pedersen conductances to be accompanied by an increase in the electric field, at least for moderate and large electric field value, a tendency which is also identified to some extent in the ratio of the conductances, which acts as an indicator of the energy of precipitating particles.  相似文献   

17.
The variations of the first mode of Schumann resonance are analyzed using data from Kola peninsula stations during the solar proton event of 6 November 1997. On this day the intensive flux of energetic protons on GOES-8 and the 10% increase of the count rate of the neutron monitor in Apatity between 1220 and 2000 UT were preceded by a solar X-ray burst at 1155 UT. This burst was accompanied by a simultaneous increase of the Schumann frequency by 3.5%, and the relativistic proton flux increase was accompanied by 1% frequency decrease. These effects are explained by changes of the height and dielectric permeability of the Earth-ionosphere cavity.  相似文献   

18.
We follow the electron precipitation characteristics on and nearby a preonset arc using the high resolution Freja TESP instrument. Our data coverage extends from about 10 min before onset up to 1 min before onset. The arc is the most equatorward one (around MLAT 62°) of a system of growth phase arcs, and it was close to the radiation belt precipitation. Within the preonset arc, inverted-V type precipitation dominates. Poleward of the arc we also find some precipitation regions, and here there is systematically a cold electron population superposed with a warm population. Using single and double Maxwellian fits to the measured electron spectra we find the ionosphere-magnetosphere coupling parameters (field-aligned conductance K and the parallel potential drop V) as well as the effective source plasma properties (density and temperature) during the event. Compared to typical expansion phase features, the preonset parallel potential drop is smaller by a factor of ten, the electron temperature is smaller by a factor of at least five, and the field-aligned conductance is about the same or larger. The fact that there are two isotropic superposed electron populations on the poleward side of the preonset arc suggests that the distance between warm trapped electrons on dipolar field lines and colder electrons on open field lines has become so small near the onset that mixing e.g. due to finite electron Larmor radius effects can take place.  相似文献   

19.
The dynamics of the cusp region and post-noon sector for an interval of predominantly IMF By, Bz < 0 nT are studied with the CUTLASS Finland coherent HF radar, a meridian-scanning photometer located at Ny Ålesund, Svalbard, and a meridional network of magnetometers. The scanning mode of the radar is such that one beam is sampled every 14 s, and a 30° azimuthal sweep is completed every 2 minutes, all at 15 km range resolution. Both the radar backscatter and red line (630 nm) optical observations are closely co-located, especially at their equatorward boundary. The optical and radar aurora reveal three different behaviours which can interchange on the scale of minutes, and which are believed to be related to the dynamic nature of energy and momentum transfer from the solar wind to the magnetosphere through transient dayside reconnection. Two interpretations of the observations are presented, based upon the assumed location of the open/closed field line boundary (OCFLB). In the first, the OCFLB is co-located with equatorward boundary of the optical and radar aurora, placing most of the observations on open field lines. In the second, the observed aurora are interpreted as the ionospheric footprint of the region 1 current system, and the OCFLB is placed near the poleward edge of the radar backscatter and visible aurora; in this interpretation, most of the observations are placed on closed field lines, though transient brightenings of the optical aurora occur on open field lines. The observations reveal several transient features, including poleward and equatorward steps in the observed boundaries, braiding of the backscatter power, and 2 minute quasi-periodic enhancements of the plasma drift and optical intensity, predominantly on closed field lines.  相似文献   

20.
On the basis of bispectral analysis applied to the hourly data set of neutral wind measured by meteor radar in the MLT region above Bulgaria it was demonstrated that nonlinear processes are frequently and regularly acting in the mesopause region. They contribute significantly to the short-term tidal variability and are apparently responsible for the observed complicated behavior of the tidal characteristics. A Morlet wavelet transform is proposed as a technique for studying nonstationary signals. By simulated data it was revealed that the Morlet wavelet transform is especially convenient for analyzing signals with: (1) a wide range of dominant frequencies which are localized in different time intervals; (2) amplitude and frequency modulated spectral components, and (3) singular, wave-like events, observed in the neutral wind of the MLT region and connected mainly with large-scale disturbances propagated from below. By applying a Morlet wavelet transform to the hourly values of the amplitudes of diurnal and semidiurnal tides the basic oscillations with periods of planetary waves (1.5/20 days), as well as their development in time, are obtained. A cross-wavelet analysis is used to clarify the relation between the tidal and mean neutral wind variability. The results of bispectral analysis indicate which planetary waves participated in the nonlinear coupling with the atmospheric tides, while the results of cross-wavelet analysis outline their time intervals if these interactions are local.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号