首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seismic hazard assessment of the Dead Sea rift, Jordan   总被引:1,自引:0,他引:1  
The Dead Sea fault system and its branching faults represent one of the most tectonically active regions in the Middle East. The aim of this study is to highlight the degree of hazards related to the earthquake activities associated with the Dead Sea rift, in terms of speculating the possible future earthquakes. The present investigation mainly is based on available data and vertical crustal modeling of Jordan and the Dead Sea model for the Dead Sea basin with particular emphasis of the recent earthquake activities, which occurred on December 31st, 2003 (Mc = 3.7), February 11th, 2004 (strongest Mc = 4.9 R), and March 15th, 2004 (Mc = 4). The present research examines the location of the strong events and correlates them with the various tectonic elements in the area. The source mechanism of the main shock and the aftershock events is also examined. The analyses were based on the available short period seismogram data, which was recorded at the Natural Resources Authority of Jordan, Seismological Observatory. The seismic energy appears to have migrated from the south to the north during the period from December 31st up to March 12th, where the released seismic energy showed a migration character to the southern block of the eastern side of the Dead Sea, which led the seismic event to occur on March 15th.  相似文献   

2.
The northern part of the Dead Sea Fault Zone is one of the major active neotectonic structures of Turkey. The main trace of the fault zone (called Hacıpaşa fault) is mapped in detail in Turkey on the basis of morphological and geological evidence such as offset creeks, fault surfaces, shutter ridges and linear escarpments. Three trenches were opened on the investigated part of the fault zone. Trench studies provided evidence for 3 historical earthquakes and comparing trench data with historical earthquake records showed that these earthquakes occurred in 859 AD, 1408 and 1872. Field evidence, palaeoseismological studies and historical earthquake records indicate that the Hacıpaşa fault takes the significant amount of slip in the northern part of the Dead Sea Fault Zone in Turkey. On the basis of palaeoseismological evidence, it is suggested that the recurrence interval for surface faulting event is 506 ± 42 years on the Hacıpaşa fault.  相似文献   

3.
The Dead Sea basin is often cited as one of the classic examples for the evolution of pull-apart basins along strike–slip faults. Despite its significance, the internal structure of the northern Dead Sea basin has never been addressed conclusively. In order to produce the first comprehensive, high-resolution analysis of this area, all available seismic data from the northern Dead Sea (lake)–lower Jordan valley (land) were combined. Results show that the northern Dead Sea basin is comprised of a system of tectonically controlled sub-basins delimited by the converging Western and Eastern boundary faults of the Dead Sea fault valley. These sub-basins grow shallower and smaller to the north and are separated by structural saddles marking the location of active transverse faults. The sedimentary fill within the sub-basins was found to be relatively thicker than previously interpreted. As a result of the findings of this study, the “classic” model for the development of pull-aparts, based on the Dead Sea, is revised. The new comprehensive compilation of data produced here for the first time was used to improve upon existing conceptual models and may advance the understanding of similar basinal systems elsewhere.  相似文献   

4.
Öncel  A. O.  Alptekin  Ö. 《Natural Hazards》1999,19(1):1-11
In order to investigate the effect of aftershocks on earthquake hazard estimation, earthquake hazard parameters (m, b and Mmax) have been estimated by the maximum likelihood method from the main shocks catalogue and the raw earthquakes catalogue for the North Anatolian Fault Zone (NAFZ). The main shocks catalogue has been compiled from the raw earthquake catalogue by eliminating the aftershocks using the window method. The raw earthquake catalogue consisted of instrumentally detected earthquakes between 1900 and 1992, and historical earthquakes that occurred between 1000–1900. For the events of the mainshock catalogue the Poisson process is valid and for the raw earthquake catalogue it does not fit. The paper demonstrates differences in the hazard outputs if on one hand the main catalogues and on the other hand the raw catalogue is used. The maximum likelihood method which allows the use of the mixed earthquake catalogue containing incomplete (historical) and complete (instrumental) earthquake data is used to determine the earthquake hazard parameters. The maximum regional magnitude (Mmax, the seismic activity rate (m), the mean return period (R) and the b value of the magnitude-frequency relation have been estimated for the 24°–31° E, 31°–41° E, 41°–45° E sections of the North Anatolian Fault Zone from the raw earthquake catalogue and the main shocks catalogue. Our results indicate that inclusion of aftershocks changes the b value and the seismic activity rate m depending on the proportion of aftershocks in a region while it does not significantly effect the value of the maximum regional magnitude since it is related to the maximum observed magnitude. These changes in the earthquake hazard parameters caused the return periods to be over- and underestimated for smaller and larger events, respectively.  相似文献   

5.
We investigate background seismic activity of the Abruzzo region, a 5000 km2 area located within the Central Apennines of Italy, where in the past 600 years at least 5 large earthquakes (I = XI–X) have occurred.Between April 2003 and September 2004, a dense temporary seismic network composed of 30 digital three-component seismic stations recorded 850 earthquakes with 0.9 < ML < 3.7. We present earthquake locations and focal mechanisms obtained by standard procedures and an optimized velocity model computed with a search technique based on genetic algorithms.The seismicity occurs at a low and constant rate of  2.6 e− 04 events/daykm2 and is sparsely distributed within the first 15 km of the crust. Minor increases in the seismicity rate are related to the occurrence of small and localised seismic sequences that occur at the tip of major active normal faults along secondary structures.We observe that during the 16 months of study period, the Fucino fault system responsible for the 1915 Fucino earthquake (MS = 7.0), and the major normal faults of the area, did not produce significant seismic activity.Fault plane solutions evaluated using P-wave polarity data show the predominance of normal faulting mechanisms ( 55%) with NE-trending direction of extension coherent with the regional stress field active in this sector of the Apennines. Around 27% of the focal solutions have pure strike–slip mechanisms and the rest shows transtensional faulting mechanisms that mainly characterise the kinematics of the secondary structures activated by the small sequences.We hypothesize that the largest known NW-trending normal faults are presently locked and we propose that in the case of activation, the secondary structures located at their tips may act as transfer faults accommodating a minor part of the extensional deformation with strike–slip motion.  相似文献   

6.
After the 2005 Kashmir earthquake, we mapped surface ground fractures in Tangdhar, Uri, Rajouri and Punch sectors and liquefaction features in Jammu area lying close to the eastern side of the Line of Control (LOC) in Kashmir, India. The NW trending ground fractures occurred largely in the hanging wall zone of the southeastern extension of the causative fault in Tangdhar and Uri sectors. The principal compressive stress deduced from the earthquake induced ground fractures is oriented at N10°, whereas the causative Balakot–Bagh fault strikes 330°. The fault-plane solution indicates primarily SW thrusting of the causative fault with a component of strike–slip motion. The ground fractures reflect pronounced strike–slip together with some tensile component. The Tangdhar area showing left-lateral strike–slip motion lies on the hanging wall, and the Uri region showing right-lateral strike–slip movement is located towards the southeastern extension of the causative fault zone. The shear fractures are related to static stress that was responsible for the failure of causative fault. The tensile fractures with offsets are attributed to combination of both static and dynamic stresses, and the fractures and openings without offsets owe their origin due to dynamic stress. In Punch–Rajouri and Jammu area, which lies on the footwall, the fractures and liquefactions were generated by dynamic stress. The occurrence of liquefaction features in the out board part of the Himalayan range front near Jammu is suggestive of stress transfer  230 km southeast of the epicenter. The Balakot–Bagh Fault (BBF), the Muzaffarabad anticline, the rupture zone of causative fault and the zone of aftershocks — all are aligned in a  25 km wide belt along the NW–SE trending regional Himalayan strike of Kashmir region and lying between the MBT and the Riasi Thrust (Murree Thrust), suggesting a seismogenic zone that may propagate towards the southeast to trigger an earthquake in the eastern part of the Kashmir region.  相似文献   

7.
A comprehensive record of lake level changes in the Dead Sea has been reconstructed using multiple, well dated sediment cores recovered from the Dead Sea shore. Interpreting the lake level changes as monitors of precipitation in the Dead Sea drainage area and the regional eastern Mediterranean palaeoclimate, we document the presence of two major wet phases ( 10–8.6 and  5.6–3.5 cal kyr BP) and multiple abrupt arid events during the Holocene. The arid events in the Holocene Dead Sea appear to coincide with major breaks in the Near East cultural evolution (at  8.6, 8.2, 4.2, 3.5 cal kyr BP). Wetter periods are marked by the enlargement of smaller settlements and growth of farming communities in desert regions, suggesting a parallelism between climate and Near East cultural development.  相似文献   

8.
The July 2003 sequence in the Gulf of Saros (Northeastern Aegean Sea) is investigated, in terms of accurate event locations and source properties of the largest events. The distribution of epicenters shows the activation of a 25-km long zone, which extends in depth between 9 and 20 km. The major slip patch of the 6 July 2003 Mw 5.7 mainshock is confined in a small area (45 km2), which coincides with the deeper (12–20 km) part of the activated zone. The epicenters of the sequence follow the northern margin of the Saros depression. This observation supports recent studies, according to which the continuation of the Ganos fault in the Gulf of Saros does not coincide with the fault along the northern coast of the Gelibolu peninsula, but it is located at the northern boundary of the Saros depression. This is further supported by the fact that the focal mechanisms of the mainshock and of the largest aftershocks of the 2003 sequence imply almost pure dextral strike-slip faulting, whereas the fault bounding the Gulf of Saros to the south appears as a normal fault on seismic sections. Thus, we infer that the principle deformation zone consists of a major strike-slip fault, which lies close to the northern margin of the Saros depression and this fault could be regarded as the continuation of the northern branch of the North Anatolian Fault into the Saros Gulf and North Aegean Trough as suggested by regional tectonic models. The northeastern extent of the 2003 sequence marks the western termination (at 26.3° E) of a long-term seismic quiescence observed in the period following the 1912 Ganos earthquake, which may be associated with the extend of the rupture of the particular earthquake.  相似文献   

9.
The Elat fault (a segment of the Dead Sea Transform) runs along the southern Arava valley (part of the Dead Sea Rift, Israel) forming a complex fault zone that displays a time-dependent seismic behaviour. Paleoseismic evidence shows that this fault zone has generated at least 15 earthquakes of magnitude larger than M 6 during the late Pleistocene and the Holocene. However, at present the Elat fault is one of the quietest segments of the Dead Sea Transform, lacking even microsesimicity. The last event detected in the southern Arava valley occurred in the Avrona playa and was strong enough to have deformed the playa and to change it from a closed basin with internal drainage into an open basin draining to the south.Paleoseismological, geophysical and archaeological evidences indicate that this event was the historical devastating earthquake, which occurred in 1068 AD in the eastern Mediterranean region. According to the present study this event was strong enough to rupture the surface, reactivate at least two fault branches of the Elat fault and vertically displace the surface and an early Islamic irrigation system by at least 1 m. In addition, the playa area was uplifted between 2.5 and 3 m along the eastern part of the Elat fault shear zone. Such values are compatible with an earthquake magnitude ranging between M 6.6 and 7. Since the average recurrence interval of strong earthquakes during the Holocene along the Elat fault is about 1.2 ± 0.3 ky and the last earthquake occurred more about 1000 years ago, the possibility of a very strong earthquake in this area in the future should be seriously considered in assessing seismic hazards.  相似文献   

10.
The Tan–Lu Fault Zone (TLFZ) extends in a NNE–SSW direction for more than 2000 km in Eastern China. It has been considered either as a major sinistral strike-slip fault, as a suture zone or as a normal fault. We have conducted a structural analysis of the southern segment of this fault zone (STLFZ) in the Anhui Province. The ages (Triassic to Palaeocene) of the formations affected by the faults have been re-appraised taking into account recent stratigraphical studies to better constraint the ages of the successive stages of the kinematics of the STLFZ. Subsequently, the kinematics of the faults is presented in terms of strain/stress fields by inversion of the striated fault set data. Finally, the data are discussed in the light of the results obtained by previous workers.We propose the following history of the STLFZ kinematics during the Mesozoic. At the time of collision, a  NNE orientated Tan–Lu margin probably connected two margins located north of the Dabie and Sulu collision belts. During the Middle–Late Triassic, the SCB has been obliquely subducted below the NCB along this margin which has acted as a compressional transfer zone between the Dabie and Sulu continental subduction zones. The STLFZ has been initiated during the Early Jurassic and has acted as a sinistral transform fault during the Jurassic, following which the NCB/SCB collision stopped. A  NW-trending extension related to metamorphic domes was active during the basal Early Cretaceous ( 135–130 Ma); it has been followed by a NW–SE compression and a NE–SW tension during the middle–late Early Cretaceous ( 127 to  105 Ma, possibly  95 Ma); at that time the TLFZ was a sinistral transcurrent fault within the eastern part of the Asian continent. During the Late Cretaceous–Palaeocene, the STLFZ was a normal fault zone under a WNW–ESE tension.  相似文献   

11.
The Dead Sea is a large, active graben within the Dead Sea rift, which is bounded by two major strike-slip faults, the Jericho and the Arava faults. We investigated the young tectonic activity along the Jericho fault by excavating trenches, up to 3.5 m deep, across its trace. The trenches penetrate through Late Pleistocene and Holocene sediments. We found that a zone, up to 15 m wide, of disturbed sediments exists along the fault. These disturbed sediments provide evidence for two periods of intensive activity or more likely, for two major earthquakes, that occurred during the last 2000 years. The earthquakes are evident in small faults, vertical throw of a few layers, cracks, unconformities and wide fissures. We further documented evidence for recent sinistral shear along the Jericho fault in deformed sediments and damage to an 8th Century palace on a subsidiary fault. We suggest that the two earthquakes may be correlated with the 31 B.C. earthquake and the 748 A.D. earthquake, reported by the ancients.  相似文献   

12.
The evolution of the seismogenic process associated with the Ms 5.8 Sangro Valley earthquake of May 1984 (Abruzzo, central Italy) is closely controlled by the Quaternary extensional tectonic pattern of the area. This pattern is characterised by normal faults mainly NNW striking, whose length is controlled by pre-existing Mio–Pliocene N100±10° left-lateral strike-slip fault zones. These are partly re-activated as right-lateral normal-oblique faults under the Quaternary extensional regime and behave as transfer faults.Integration of re-located aftershocks, focal mechanisms and structural features are used to explain the divergence between the alignment of aftershocks (WSW–ENE) and the direction of seismogenic fault planes defined by the focal mechanisms (NNW–SSE) of the main shock and of the largest aftershock (Ms=5.3).The faults that appear to be involved in the seismogenic process are the NNW–SSE Barrea fault and the E–W M. Greco fault. There is field evidence of finite Quaternary deformation indicating that the normal Barrea fault re-activates the M. Greco fault as right-lateral transfer fault. No surface faulting was observed during the seismic sequence. The apparently incongruent divergence between aftershocks and nodal planes may be explained by interpreting the M. Greco fault as a barrier to the propagation of earthquake rupturing. The rupture would have nucleated on the Barrea fault, migrating along-strike towards NNW. The sharp variation in direction from the Barrea to the M. Greco fault segments would have represented a structural complexity sufficient to halt the rupture and subsequent concentration of post-seismic deformation as aftershocks around the line of intersection between the two fault planes.Fault complexities, similar to those observed in the Sangro Valley, are common features of the seismic zone of the Apennines. We suggest that the zones of interaction between NW–SE and NNW–SSE Plio-Quaternary faults and nearly E–W transfer faults, extending for several kilometres in the same way as M. Greco does, might act as barriers to the along-strike propagation of rupture processes during normal faulting earthquakes. This might have strong implications on seismic hazard, especially for the extent of the maximum magnitude expected on active faults during single rupture episodes.  相似文献   

13.
The Gemmi fault is a prominent NW–SE striking lineament that crosses the Gemmi Pass in the central Swiss Alps. A multidisciplinary investigation of this structure that included geological mapping, joint profiling, cathodoluminescence and scanning electron microscopy, stable isotope measurements, luminescence- and U-TH-dating, 3D ground penetrating radar (GPR) surveying and trenching reveals a history of fault movements from the Miocene to the Holocene. The main fault zone comprises a 0.5–3 m thick calcite cataclasite formed during several cycles of veining and brittle deformation. Displaced Cretaceous rock layers show an apparent dextral slip of 10 m along the fault.A detailed study of a small sediment-filled depression that crosses the fault provides evidence for a post-glacial reactivation of the fault. A trench excavated across the fault exposed a Late-Glacial-age loess layer and late Holocene colluvial-like slope-wash deposits that showed evidence for fault displacement of a few centimeters, indicating a recent strike-slip reactivation of the fault. Focal mechanisms of recent instrumentally recorded earthquakes are consistent with our findings that show that the fault at the Gemmi Pass, together with other parallel faults in this area, may be reactivated in today's stress field. Taking together all the observations of its ancient and recent activity, the Gemmi fault can be viewed as a window through geological space and time.  相似文献   

14.
We revisit the April 1979 Montenegro earthquake sequence to invert for finite-fault slip models for the mainshock of 15 April 1979 (Mw 7.1) and of the strongest aftershock of 24 May 1979 (Mw 6.2) using P, SH and SV waveforms, retrieved from IRIS data center. We also used body waveform modelling inversion to confirm the focal mechanism of the mainshock as a pure thrust mechanism and rule out the existence of considerable strike slip component in the motion. The mainshock occurred along a shallow (depth 7 km), low angle (14°) thrust fault, parallel to the coastline and dipping to the NE. Our preferred slip distribution model for the mainshock indicates that rupture initiated from SE and propagated towards NW, with a speed of 2.0 km/s. Moment was released in a main slip patch, confined in an area of L  50 km × W  23 km. The maximum slip ( 2.7 m) occurred  30 km to the NW of the hypocenter (location of rupture initiation). The average slip is 49 cm and the total moment release over the fault is 4.38e19 Nm. The slip model adequately fits the distribution of the Mw ≥ 4.3 aftershocks, as most of them are located in the regions of the fault plane that did not slip during the mainshock. The 24 May 1979 (Mw 6.2) strongest aftershock occurred  40 km NW of the mainshock. Our preferred slip model for this event showed a characteristic two-lobe pattern, where each lobe is  7.5 × 7.5 km2. Rupture initiated in the NW lobe, where the slip obtained its maximum value of 45 cm, very close to the hypocenter, and propagated towards the south-eastern lobe where it reached another maximum value — for this lobe — of 30 cm, approximately 10 km away from the hypocenter. To indirectly validate our slip models we produced synthetic PGV maps (Shake maps) and we compared our predictions with observations of ground shaking from strong motion records. All comparisons were made for rock soil conditions and in general our slip models adequately fit the observations especially at the closest stations where the shaking was considerably stronger. Through the search of the parameter space for our inversions we obtained an optimum location for the mainshock at 42.04°N and 19.21° E and we also observed that better fit to the observations was obtained when the fault was modeled as a blind thrust fault.  相似文献   

15.
Integration of on-land and offshore geomorphological and structural investigations coupled to extensive radiometric dating of co-seismically uplifted Holocene beaches allows characterization of the geometry, kinematics and seismotectonics of the Scilla Fault, which borders the eastern side of the Messina Strait in Calabria, Southern Italy. This region has been struck by destructive historical earthquakes, but knowledge of geologically-based source parameters for active faults is relatively poor, particularly for those running mostly offshore, as the Scilla Fault does. The  30 km-long normal fault may be divided into three segments of  10 km individual length, with the central and southern segments split in at least two strands. The central and northern segments are submerged, and in this area marine geophysical data indicate a youthful morphology and locally evidence for active faulting. The on-land strand of the western segment displaces marine terraces of the last interglacial (124 to 83 ka), but seismic reflection profiles suggest a full Quaternary activity. Structural data collected on bedrock faults exposed along the on-land segment provide evidence for normal slip and  NW-SE extension, which is consistent with focal mechanisms of large earthquakes and GPS velocity fields in the region. Detailed mapping of raised Holocene marine deposits exposed at the coastline straddling of the northern and central segments supplies evidence for two co-seismic displacements at  1.9 and  3.5 ka, and a possible previous event at  5 ka. Co-seismic displacements show a consistent site value and pattern of along-strike variation, suggestive of characteristic-type behaviour for the fault. The  1.5–2.0 m average co-seismic slips during these events document Me  6.9–7.0 earthquakes with  1.6–1.7 ka recurrence time. Because hanging-wall subsidence cannot be included into slip magnitude computation, these slips reflect footwall uplift, and represent minimum average estimates. The palaeoseismological record based on the palaeo-shorelines suggests that the last rupture on the Scilla Fault during the February 6, 1783 Mw = 5.9–6.3 earthquake was at the expected time but it may have not entirely released the loaded stress since the last great event at  1.9 ka. Comparison of the estimated co-seismic extension rate based on the Holocene shoreline record with available GPS velocities indicates that the Scilla Fault accounts for at least  15–20% of the contemporary geodetic extension across the Messina Strait.  相似文献   

16.
2014年10—12月期间,云南景谷接连发生了Ms6.6、Ms5.8、Ms5.9三次中-强地震。为确定地震的地质构造成因,在地表调查的基础上,综合该区的地质构造情况、烈度与余震分布、震源机制解等资料,确定此次震群活动的宏观震中位于永平盆地东南侧山地,发震断层为地质与地貌表现不显著的NW向右旋走滑断层。此次震群活动及余震迁移过程指示,由于断层斜接部位岩桥的临时阻碍,Ms6.6地震破裂在向南东扩展过程中发生短暂停滞,突破障碍后进一步引发了Ms5.8和Ms5.9地震,这符合震源破裂沿NW向发震断裂分段破裂的行为。区域活动断裂的遥感解译结果发现,发震断层位置恰好处于NW向右旋走滑的茶房断裂与普文断裂之间,区域上属于该断裂带的不连贯部位,指示此次中-强震群活动应该是茶房-普文断裂带贯通过程的构造活动表现。结合思茅地块的历史地震资料发现,思茅地块地震活动多以小于等于6.8级为主,发震构造多为NW向断裂。指示在现今构造应力场作用下,该区NW向断裂的活动性相对NE向断裂更加显著,属于该区主要控震构造,应在今后的地震地质工作中给予更多关注。  相似文献   

17.
The data on catastrophic earthquakes with magnitudes of 8.3 and 8.1 that occurred in the Simushir Island area on November 15, 2006, and January 13, 2007, respectively, were compared with the results of land-sea deep seismic studies by different methods (deep seismic sounding, the correlation method of refracted waves, the earthquake converted-wave method, the common mid-point) in the Central Kuril segment. The structure of the Earth’s crust and the hypocentral zones of these earthquakes were analyzed. It was established that the hypocenter of the main shock of the first earthquake was located at the bend of the seismofocal zone under the island slope of the trench on the outer side of the subsiding lithospheric plate in the rapidly rising granulite-basite (ìbasalticî) crustal layer, which, at depths of 7–15 km, replaced the granulite-gneiss layer. This was accompanied by an increase of the seismic wave velocity from 6.4 to 7.1 km/s. The focus of the second earthquake was located beneath the axis of the deep-sea trench. The aftershocks were concentrated in two bands 60–120 km wide that extend along the trench, as well as in the third zone orthogonal to the island arc. It was shown that the epicenters of the earthquakes are linked with regional faults. The main shock of the first earthquake (November 15, 2006) was interpreted as a thrust fault and the second one (January 13, 2007) was attributed to a normal fault.  相似文献   

18.
During mid-Oligocene to early-Miocene times the northeastern Afro-Arabian plate underwent changes, from continental breakup along the Red Sea in the south, to continental collision with Eurasia in the north and formation of the N–S trending Dead Sea fault plate boundary. Concurrent uplift and erosion of the entire Levant area led to an incomplete sedimentary record, obscuring reconstructions of the transition between the two tectonic regimes. New well data, obtained on the continental shelf of the central Levant margin (Qishon Yam 1), revealed a uniquely undisturbed sedimentary sequence which covers this time period. Evaporitic facies found in this well have only one comparable location in the entire eastern Mediterranean area (onland and offshore) over the same time frame — the Red Sea–Suez rift system. Analysis of 4150 km of multi and single-channel seismic profiles, offshore central Levant, shows that the sequence was deposited in a narrow basin, restricted to the continental shelf. This basin (the Haifa Basin) evolved as a half graben along the NW trending Carmel fault, which at present is one of the main branches of the Dead Sea fault. Re-evaluation of geological data onland, in view of the new findings offshore, indicates that the Haifa basin is the northwestern-most of a larger series of basins, comprising a failed rift along the Qishon–Sirhan NW–SE trend. This failed rift evolved spatially parallel to the Red Sea–Suez rift system, and at the same time frame. The Carmel fault would therefore seem to be related to processes occurring several million years earlier than previously thought, before the formation of the Dead Sea fault. The development of a series of basins in conjunction with a young spreading center is a known phenomenon in other regions worldwide; however this is the only known example from across the Arabian plate.  相似文献   

19.
Recently released reflection seismic lines from the Eastern side of the Jordan River north of the Dead Sea were interpreted by using borehole data and incorporated with the previously published seismic lines of the eastern side of the Jordan River. For the first time, the lines from the eastern side of the Jordan River were combined with the published reflection seismic lines from the western side of the Jordan River. In the complete cross sections, the inner deep basin is strongly asymmetric toward the Jericho Fault supporting the interpretation of this segment of the fault as the long-lived and presently active part of the Dead Sea Transform. There is no indication for a shift of the depocenter toward a hypothetical eastern major fault with time, as recently suggested. Rather, the north-eastern margin of the deep basin takes the form of a large flexure, modestly faulted. In the N–S-section along its depocenter, the floor of the basin at its northern end appears to deepen continuously by roughly 0.5 km over 10 km distance, without evidence of a transverse fault. The asymmetric and gently-dipping shape of the basin can be explained by models in which the basin is located outside the area of overlap between en-echelon strike-slip faults.  相似文献   

20.
Late- to post-magmatic deformation in slightly diachronous contiguous intrusions of the north-western Adamello batholith (Southern Alps, Italy) is recorded as, from oldest to youngest: (i) joints, (ii) solid-state ductile shear zones, (iii) faults associated with epidote-K-feldspar veins and (iv) zeolite veins and faults. Structures (ii) to (iv) are localized on the pervasive precursory network of joints (i), which developed during the earliest stages of pluton cooling. High temperature ( 500 °C), ductile overprinting of joints produced lineations, defined by aligned biotite and hornblende, on the joint surfaces and highly localized mylonites. The main phase of faulting, producing cataclasites and pseudotachylytes, occurred at  250 °C and was associated with extensive fluid infiltration. Cataclasites and pseudotachylytes are clustered along different E–W-striking dextral strike-slip fault zones correlated with the activity of the Tonale fault, a major tectonic structure that bounds the Adamello batholith to the north. Ductile deformation and cataclastic/veining episodes occurred at P = 0.25–0.3 GPa during rapid cooling of the batholith to the ambient temperatures ( 250 °C) that preceded the exhumation of the batholith. Timing of the sequence of deformation can be constrained by 39Ar–40Ar ages of  30 Ma on pseudotachylytes and various existing mineral ages. In the whole composite Adamello batholith, multiple magma pulses were intruded over the time span 42–30 Ma and each intrusive body shows the same ductile-to-brittle structural sequence localized on the early joint sets. This deformation sequence of the Adamello might be typical of intrusions undergoing cooling at depths close to the brittle–ductile transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号