首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The structural dynamic behaviour of a fast patrol boat is studied with two- and three-dimensional idealizations for dry-hull analysis. A preliminary two-dimensional beam analysis is conducted by means of the Prohl-Myklestad method to derive a first estimate of the first four symmetric mode shapes. A more complex three-dimensional finite element model is developed in order to evaluate the modal characteristics for both symmetric and coupled anti-symmetric distortions, with the emphasis placed on the former.  相似文献   

2.
A new stiffened plate element is developed for the three-dimensional finite element analysis of ship structures. The plate element can accommodate any number of arbitrarily oriented stiffeners and obviates the use of mesh lines along the stiffeners. The new element provides a very economic global analysis of the complete ship structure with fewer elements and without any loss of accuracy. The global analysis of a rectangular box shaped vessel is carried out with the present element and compared with the general-purpose finite element software NISA. An Offshore Tug/Supply Vessel is analysed for crest at perpendiculars.  相似文献   

3.
A computational method has been developed to predict the hydrodynamic performance of the propeller–rudder systems (PRS) and azimuthing podded drive (AZIPOD) systems. The method employs a vortex-based lifting theory for the propeller and the potential surface panel method for the steering system. Three propeller models along with three steering systems (rudder and strut, flap and pod (SFP)) are implemented in the present calculations for the cases of uniform and non-uniform conditions. Computed velocity components show good agreement with the experimental measurements behind a propeller with or without the rudder. Calculated thrust, torque and lift also agree well with the experimental results. Computations are also performed for an AZIPOD system in order to obtain the pressure distributions on the SFP, and the hydrodynamic performance (thrust, torque and lift coefficients). The present method is useful for examining the performance of the PRS and AZIPOD systems in the hope of estimating the propulsion and the maneuverability characteristics of the marine vehicles more accurately.  相似文献   

4.
Arcandra Tahar  M.H. Kim   《Ocean Engineering》2008,35(17-18):1676-1685
A theory and numerical tool are developed for the coupled-dynamic analysis of a deepwater floating platform with polyester mooring lines. The formulas allow relatively large elongation and nonlinear stress–strain relationships, as typically observed in polyester fibers. The mooring-line dynamics are based on a rod theory and the finite element method (FEM), with the governing equations described in a generalized coordinate system. The original rod theory [Nordgren, R.P., 1974. On Computation of the Motion of Elastic Rods. Journal of Applied Mechanics, 41, 777–780] is generalized to allow larger elongation and nonlinear stress–strain relationship. The dynamic modulus of polyester is modeled following an empirical regression formula suggested by [Bosman, R.L.M., Hooker, J., 1999. The Elastic Modulus Characteristic of Polyester Mooring Ropes. In: Proceedings of the Offshore Technology Conference, OTC 10779. Houston, Texas], in which the axial stiffness is not constant, but depends on loading conditions. Two case studies, the static and dynamic behavior of a tensioned buoy and a classic spar with polyester mooring lines, are conducted. The time-domain simulation results are systematically compared with those from the original rod theory. The effects of large elongation and nonlinear stress–strain relations are separately assessed. It is seen that the mean offset, motions, and tension with polyester lines can be different from those by original rod theory with linear elastic lines.  相似文献   

5.
The two-dimensional finite-difference scheme has been extended to three dimensions to solve nonlinear hydrodynamic pressures and structural responses of a deformable, vertical and circular surface-piercing offshore cylinder during earthquakes. A complete three-dimensional analysis has been made with both the three-dimensional equations of motion and the simultaneous action of three components of ground acceleration included in the analysis. Not only the magnitude but also the direction of the acting ground motion can be varied with time. The dynamic response of a cylinder is approximated by the displacements in the fundamental modes of vibration. A comparison of the dynamic displacement of the cylinder with and without surrounding sea water has been made. The flexibility of the offshore cylinder can significantly increase the hydrodynamic pressures acting on cylinder faces, that is, the fluid-structure interaction is necessary in offshore cylinder analysis. Although the hydrodynamic pressure induced by the vertical ground acceleration of the El Centro 1979 earthquake is significant, the calculated structural dynamic response of a cylinder is very small and the corresponding resultant hydrodynamic force is almost nil. The hydrodynamic force induced by two-horizontal ground acceleration is about the same as that by three simultaneous components of ground acceleration. For a solid and stubbier circular cylinder, the vertical component of ground acceleration may be neglected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号