首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Being a composite collisional orogen between North China and South China blocks, the Qinling orogenic belt is the key to understand the composite combination, prolonged evolutionary history and their continental dynamics. The main suture between north and south Qinling, called Shangdan suture zone (SDSZ), had been studied in detail for about twenty years. Recently, another suture zone, called Mianl黣 suture zone (MLSZ), has been identified in the Qinling Mountains. It is characterized b…  相似文献   

2.
The Dabie Mountain is the collisional orogenic belt between the North China Block and the Yangtze Block. As the eastern segment of the central-China orogenic belt, its tectonic framework is corresponding to the Qinling orogenic belt as a whole[1]. The NHB in northern part of Dabie Orogen is regarded as the joint belt between the Yangtze Block and the North China Block, and roughly corresponds to the north Qinling belt of the Qinling orogenic belt, which separated the Tongbai-Dabie hig…  相似文献   

3.
The tectonic evolution features in the western South China Sea (SCS) are directly related to the Tethys tectonic province. The Red River fault zone (RRFZ) comprises a large part of the Tethys tectonic province and is the boundary between the Europe Block and the India-Asia Block[1]. It serves as the contact between the uplift of the Qinghai-Tibet Plateau and the SCSopening. The RRFZ, which is an important dividing line in the geology of the SE Asia, is about 1000 km long in the co…  相似文献   

4.
Timing of the intermediate-basic igneous rocks developed in the area of Kuhai-A'nyêmaqên along the southern east Kunlun tectonic belt is a controversial issue. This paper presents new zircon SHRIMP U-Pb dating data for igneous zircons from the Kuhai gabbro and the Dur'ngoi diorite in the Kuhai-A'nyemaqen tectonic belt, which are 555±9 Ma and 493±6 Ma, respectively. The trace element geochemical features of the Kuhai gabbro and the Dur'ngoi diorite are similar to those of ocean island basalts (OIB) and island arc basalts (IAB), respectively. Thus, the Kuhai gabbro with the age of 555±9 Ma and OIB geochemical features is similar to the Yushigou oceanic ophiolite in the North Qilian orogen, whereas the Dur'ngoi diorite with the age of 493±6 Ma and IAB geochemical features is similar to the island arc volcanic rocks developed in the north Qaidam. The Late Neoproterozoic to Early Ordovician ophiolite complex in the area of Kuhai-A'nyêmaqên suggests that the southern margin of the "Qilian-Qaidam-Kunlun" archipelagic ocean in this period was located in the southern east Kunlun tectonic belt. Therefore, the southern east Kunlun tectonic belt in the early Paleozoic is not comparable to the Mianlüe tectonic belt in the Qinling orogenic belt.  相似文献   

5.
The Qinling orogen was formed as a result of the collision between the North and South China blocks. The Qinling orogen represents the location at which the southern and northern parts of the Chinese mainland collided, and it's also the intersection of the Central China orogen and the north-south tectonic belt. There is evidence of strong deformation in this orogen, and it has had a long and complex geological history. We investigated the structure of the Moho in the southern Qinling orogen using large dynamite shot imaging techniques. By integrating the analysis of the single-shot and the move-out corrections profile, we determined the structure of the Moho beneath the northern Dabashan thrust belt and the southern Qinling orogen, including the mantle suture beneath Fenghuang mountain. The Moho is divided into two parts by the mantle suture zone beneath Fenghuang mountain:(1) from Ziyang to Hanyin, the north-dipping Moho is at about45–55 km depth and the depth increases rapidly; and(2)from Hanyin to Ningshan, the south-dipping Moho is at about 40–45 km depth and shallows slowly. The mantle suture is located beneath Fenghuang mountain, and the Moho overlaps at this location: the shallower Moho is connected to the northern part of China, and the deeper Moho is connected to the southern part. This may indicate that the lithosphere in the Sichuan basin subducts to the Qinling block and that the subduction frontier reaches at least as far as Fenghuang mountain.  相似文献   

6.
Crustal Deformation Monitoring Center, China Seismological Bureau, Tianjin 300180, China Crustal deformation in the northern part of North China associated with Zhangbei earthquake is analyzed using GPS data collected during 1992, 1996 and 1999, precise re-leveling data collected during 1992, 1998 and 2000, and INSAR result (September 22, 1997~May 6, 1998). The results indicate: ① The vertical deformation is not remarkable since 1992. The vertical crustal deformation in the central and northern part of North China in recent 10 years is of inheritance. The scope of the significant deformation is 15km×15km with a magnitude of 250mm when the event occurred. ② The horizontal deformation is not remarkable in any unit of North China. ③ Before and after the event (1992~1996 and 1996~1999), there is kinematic change of horizontal motion between different units. The activity mode along Yinshan tectonic zone changed from relative static state to left-lateral strike slip; The dominant extensional movement along Shanxi rift zone changed to right-lateral strike slip; Yanshan tectonic zone changed from left-lateral strike-slip with extension to left-lateral strike slip; Yanshan-Hebei transitional zone formed before the event disappeared after the event. ④ The scale of the deformation is closely related to the physical property of media and geological structure environment. Further analysis indicates that ① Zhangbei earthquake does not mean that the earthquake activity begins to be strengthened in North China; ② The crustal movement is normal at present; ③ Next stronger earthquake in North China might be located in Yanshan tectonic zone, especially at its both ends, and Shanxi tectonic zone.  相似文献   

7.
The topographic evolution of continental orogens is important for understanding continental orogenic processes,geodynamic mechanisms,and climatic and environmental changes.The Qinling Orogen is a major orogenic belt in China,and its uplift history can provide insights into the tectonic configuration and geodynamics of China and East Asia.Previous studies have shown that the Dabashan and Micangshan-Hannan Dome(MHD)in the South Qinling orogenic belt were uplifted during the Mesozoic.However,the magnitude of the uplift remains unclear.In this study,using sedimentary records in the northern Sichuan Basin and lithospheric flexural modeling,we estimated the magnitude of Mesozoic uplift of the Dabashan and MHD,along with the effective elastic thickness(Te)of the Sichuan Basin.The Dabashan and MHD were uplifted by approximately 1220 and 880 m during the Middle Jurassic and Early Cretaceous,respectively.Therefore,we propose that the present-day elevation of the Dabashan and MHD is primarily the result of Mesozoic uplift.The differences in the duration and amount of uplift between different tectonic units indicate that the uplift processes and driving mechanisms in the South Qinling orogenic belt were different in the Mesozoic and Cenozoic.Mesozoic uplift was the result of convergence of the North China and South China blocks advanced from east to west,whereas Cenozoic uplift was driven by ongoing indentation of the Indian Plate into Eurasia from southwest to northeast.The lithospheric strength of the northern Sichuan Basin was weakened from the Middle Jurassic to Early Cretaceous,and Tedecreased from 73 to 57 km.This may have been caused by the flexure-related bending stresses in the lithosphere that developed due to the large topographic loading.  相似文献   

8.
The abundant research achievements about Qinling orogeny going through central China were obtained in the last decade[1—3]. However, there is a debate about the early Paleozoic tectonic evolution of south Qinling. Thus, it is undoubted that the systemati…  相似文献   

9.
The Qinling Orogenic Belt is divided commonly by the Fengxian-Taibai strike-slip shear zone and the Huicheng Basin into the East and West Qinling mountains,which show significant geological differences after the Indosinian orogeny.The Fengxian-Taibai fault zone and the Meso-Cenozoic Huicheng Basin,situated at the boundary of the East and West Qinling,provide a natural laboratory for tectonic analysis and sedimentological study of intracontinental tectonic evolution of the Qinling Orogenic Belt.In order to explain the dynamic development of the Huicheng Basin and elucidate its post-orogenic tectonic evolution at the junction of the East and West Qinling,we studied the geometry and kinematics of fault zones between the blocks of West Qinling,as well as the sedimentary fill history of the Huicheng Basin.First,we found that after the collisional orogeny in the Late Triassic,post-orogenic extensional collapse occurred in the Early and Middle Jurassic within the Qinling Orogenic Belt,resulting in a series of rift basins.Second,in the Late Jurassic and Early Cretaceous,a NE-SW compressive stress field caused large-scale sinistral strike-slip faults in the Qinling Orogenic Belt,causing intracontinental escape tectonics at the junction of the East and West Qinling,including eastward finite escape of the East Qinling micro-plate and southwest lateral escape of the Bikou Terrane.Meanwhile,the strike-slip-related Early Cretaceous sedimentary basin was formed with a right-order echelon arrangement in sinistral shear zones along the southern margin of the Huicheng fault.Overall during the Mesozoic,the Huicheng Basin and surrounding areas experienced four tectonic evolutionary stages,including extensional rift basin development in the Early and Middle Jurassic,intense compressive uplift in the Late Jurassic,formation of a strike-slip extensional basin in the Early Cretaceous,and compressive uplift in the Late Cretaceous.  相似文献   

10.
Through the analysis and 2-D inversion for the 5 profiles in Haiyuan arcuate tectonic region (105°~107°E,36°~37.5°N) in the northeastern margin of Qinghai-Xizang Plateau, we have obtained the electric structure within a range of 160 km in width (east-west) and 60 km in depth in the studied area. The results show that the crustal electric structure can be divided into 6 sections, corresponding respectively to Xiji basin (Ⅰ), Xihuashan-Nanhuashan uplift (Ⅱ), Xingrenbu-Haiyuan basin (Ⅲ), Zhongwei-Qingshuihe basin (Ⅳ), Zhongning-Hongsibu basin (Ⅴ) and west-margin zone of Ordos (Ⅵ) from the southwest to the northeast. The crustal electric structure is characterized by a broom-shaped pattern, which scatters to the northwest and shrinks to the southeast. The structures in the top part of Haiyuan arcuate tectonic region are complete and large, however, they diminish from the arc top to the northwest and southeast ends. In the depth from 0 km to 10 km, the resistivity is high in the sections Ⅱ and Ⅵ, but relatively low in the other four sections, showing a similar pattern of basin depression. The electrical basement in the section Ⅲ is the deepest, displaying a "dustpan" shape that is deep in the southwest and shallow in the northeast. A series of discontinuous zones with high conductivity exist in the middle-lower crust in Haiyuan arcuate tectonic region, which is possibly related to the moderate and strong earthquakes in the region. The resistivity distribution in the focal area of the 1920 Haiyuan earthquake is significantly heterogeneous with an obviously high conductivity zone near the hypocenter regime.  相似文献   

11.
Located at the west of the Linfen basin, the Luoyunshan piedmont fault zone controls the western boundary of the basin. According to the measurements of the terraces in eight gullies along the Luoyunshan fault zone, five levels of terraces, namely T1~T5 have developed in these gullies. The heights of terraces T1, T2, T3, T4 and T5 are about 3m, 8~10m, about 20m, about 30m and 40~50m, respectively. The dating data of the terraces and investigation of the faulted landforms show that the Luoyunshan fault zone has experienced much activity since the Late Quaternary. The uplift rate of the terraces was 0.41mm/a since the Middle-Late Pleistocene, and 0.75mm/a since the Holocene. The increasing trend of uplift rate of the terraces along the Luoyunshan fault zone from the Middle-Late Pleistocene to Holocene indicates the tendency of gradual tectonic uplift of the fault zone since the late Quaternary. This is in good agreement with the increasing trend of subsidence rate of the Linfen basin from the Late Pleistocene to Holocene.  相似文献   

12.
Although Tanlu fault is one of the most important tectonic fault zones and active earthquake belts in eastern China, little is known about its deep structure. In this study, we use the existing Bouguer gravity data to study the middle section of the Tanlu fault zone, which is also known as the Yishu fault zone. Our gravity inversion results indicate that the Moho has an abrupt offset in depth at the Tanlu fault zone and it has a relatively smooth variation away from the fault zone. The crustal structures on both sides are different from each other. Sediment is thin on the west side with an average thickness of less than 5 km, while it is as thick as 6 km on the east side. The thinnest sediment (3-4 km) is at the fault zone. Moho depth increases from 33 to 34 km on east side and from 36 to 38 km on west side. Tanlu fault zone is shown as a wide zone of linear gradient in the Bouguer gravity anomaly.  相似文献   

13.
Geochemical and Pb-Sr-Nd isotopic compositions of five Indosinian granitoid intrusions from the western Qinling belt provide insights into basement nature and tectonic affinity. The results show that the western Qinling granitoids incline towards basic in their bulk chemical composition. The granitoids belong to high-K to shoshonitic series with K2O/Na2O=1.04-1.86 and are dominantly metaluminous with A/CNK=0.90-1.05 (most samples have A/CNK of <1.0). They have similar trace elemental compo- sitional patterns. In Sr-Nd isotopic compositions, they display some extent heterogeneity with Isr=0.70682-0.70845, εNd(t)=?4.85 to ?9.17 and TDM=1.26-1.66 Ga. They are characterized by high ra- diogenic Pb isotopic compositions. Their initial Pb isotopic ratios are 206Pb/204Pb=17.996-18.468, 207Pb/204Pb=15.565-15.677 and 208Pb/204Pb=38.082-38.587. Geochemical and Sr-Nd isotopic composi- tions reveal that magma for the granitoids was derived from partial melting of high-K (Rb) basaltic rocks, which might be formed in 900-1400 Ma. It is suggested that a large amount of the Proterozoic high-K (Rb) basaltic rocks, which underlie the Phanerozoic sedimentary cover, constitute the crustal basement of the western Qinling belt. Pb-Sr-Nd isotopic compositional comparison between the east- ern Qinling and the western Qinling Indosinian granitoids indicates that the crustal basement of the western Qinling is distinct from that of the eastern Qinling. The Baoji-Chengdu railway close to south-north orientation can be taken as an approximate boundary between both basements. The Pb-Nd isotopic compositional characteristics of the western Qinling granitoids suggest that the basement of the western Qinling belt has an affinity with the Yangtze block.  相似文献   

14.
Here I collected natural gas samples from 41 industrial gas wells in the Tarim Basin,and studied the mercury distribution in the area.My data show that there is certain regularity in the distribution of mercury in the Tarim Basin.Generally,the mercury concentration is high at the edge of the basin and low in the central basin.The highest mercury concentration occurs in the Southwest Depression,ranging from 15428.5 to 296763.0ng/m3 with an average of 156095.7ng/m3,followed by the Kuqa Depression ranging from 15.0 to 56964.3ng/m3 with an average of 11793.7ng/m3,and the Hade oil and gas field in the North Depression has the lowest mercury concentration ranging from 17.7 to 3339.5ng/m3 with an average of 1678.6ng/m3.The mercury concentrations in the natural gases of different structural units are various,with the highest mercury concentration in the zone of strong structural activity of Southwest Depression.It is profitable of Hg accumulation in the self sourced and self accumulated gas reservoirs or volcanic existence;in contrast,the low Hg concentration exists in the secondary gas reservoir.The mercury concentration in the natural gas generated under continental depositional environment is higher than that in marine gas.Therefore,the mercury concentration in the natural gases is constrained by gas genesis,depositional environment of source rocks,tectonic activity,and volcanic activity,and the tectonic activity is the main factor for the mercury concentration in the natural gas,followed by volcanic activity and depositional environments.  相似文献   

15.
Since the 1980s, one of the important progresses in the study of the Qinling orogenic belt is marked by findings of numerous ophiolite zones[1—4]. On the basis of the former orogenic models of the Paleozoic colli-sional orogeny[1,5,6] and the Mesozoic collision[7—9], another orogenic evolution model from the Paleozoic subduction-collision along the Shangdan suture to the Mesozoic final collision orogeny along the Mianle suture[3,10], including the relicts of the Jining orogeny, has been pr…  相似文献   

16.
The studied region is located in the Northern Qing- hai-Tibet Plateau, the southern fringe of the Qaidam Basin, about 80 km south away from Golmud City of Qinghai Province (Fig. 1). The Eastern Kunlun oro- genic belt tectonically belongs to a joint zone between the Paleo-Asian Tectonic Domain and the Tethyan- Himalayan Tectonic Domain. Owing to the repeated tectonic movements, its geological structures have become much complicated and the degrees of defor- mation, metamorphism and disl…  相似文献   

17.
Re-measured GPS data have recently revealed that a broad NE trending dextral shear zone exists in the eastern Bayan Har block about 200 km northwest of the Longmenshan thrust on the eastern margin of the Qinghai-Tibet Plateau. The strain rate along this shear zone may reach up to 4-6 mm/a. Our interpretation of satellite images and field observations indicate that this dextral shear zone corresponds to a newly generated NE trending Longriba fault zone that has been ignored before. The northeast segment of the Longriba fault zone consists of two subparallel N54°±5°E trending branch faults about 30 km apart, and late Quaternary offset landforms are well developed along the strands of these two branch faults. The northern branch fault, the Longriqu fault, has relatively large reverse component, while the southern branch fault, the Maoergai fault, is a pure right-lateral strike slip fault. According to vector synthesizing principle, the average right-lateral strike slip rate along the Longriba fault zone in the late Quaternary is calculated to be 5.4±2.0 mm/a, the vertical slip rate to be 0.7 mm/a, and the rate of crustal shortening to be 0.55 mm/a. The discovery of the Longriba fault zone may provide a new insight into the tectonics and dynamics of the eastern margin of the Qinghai-Tibet Plateau. Taken the Longriba fault zone as a boundary, the Bayan Har block is divided into two sub-blocks: the Ahba sub-block in the west and the Longmenshan sub-block in the east. The shortening and uplifting of the Longmenshan sub-block as a whole reflects that both the Longmenshan thrust and Longriba fault zone are subordinated to a back propagated nappe tectonic system that was formed during the southeastward motion of the Bayan Har block owing to intense resistance of the South China block. This nappe tectonic system has become a boundary tectonic type of an active block supporting crustal deformation along the eastern margin of the Qinghai-Tibet Plateau from late Cenozoic till now. The Longriba fault zone is just an active fault zone newly-generated in late Quaternary along this tectonic system.  相似文献   

18.
19.
Detailed studies indicate that Kangxian-Pipasi-Nanping tectonic zone is a complicated melange zone which includes many tectonic slabs of different origins. Ophiolite (MORB-type basalt), oceanic island tholeiite and alkaline basalt have been identified. Moreover, this tectonic melange zone is eastward connected with the Mianlue suture zone. The deformation characteristics, consisting components and volcanic rock geochemical features for the Kangxian-Pipasi-Nanping tectonic melange zone are much similar to those of the Mianlue suture zone and Deerni ophiolite. Therefore, the Kangxian-Pipasi-Nanping tectonic melange zone should be the westward extension part of the Mianlue suture zone. It indicates that the Mianlue suture zone had extended to the Nanping area.  相似文献   

20.
In this paper two vertical deformation maps have been drawn, based on the accurate leveling data of 1950-1980, in Jiangsu-Shandong-Anhui area. Along combining with neotectonic, geological basis and crustal deformation data, an analysis of the recent tectonic activity in the studied area has been made,and some conclusions have been drawn as follows: (1) The Tancheng-Lujiang fault zone across the studied area is the key tectonic element in recent tectonic activity, and the crustal deform...更多ation is controlled by the fault zone. (2) A study of the two deformation maps shows that the section of the Tancheng-Lujiang fault zone in this area is a creeping section, but both ends of the section are locked parts. The stress concentration ought to be accumulated in these parts. (3) Difference between the two maps suggests that the activity character of the fault zone is right lateral slip during 1950 to 1970, but reverse activity has occurred since 1982 to 1983. This suggests that the most intense earthquake in East 还原 【Abstract】 In this paper two vertical deformation maps have been drawn, based on the accurate leveling data of 1950-1980, in Jiangsu-Shandong-Anhui area. Along combining with neotectonic, geological basis and crustal deformation data, an analysis of the recent tectonic activity in the studied area has been made,and some conclusions have been drawn as follows: (1) The Tancheng-Lujiang fault zone across the studied area is the key tectonic element in recent tectonic activity, and the crustal deformation is controlled by the fault zone. (2) A study of the two deformation maps shows that the section of the Tancheng-Lujiang fault zone in this area is a creeping section, but both ends of the section are locked parts. The stress concentration ought to be accumulated in these parts. (3) Difference between the two maps suggests that the activity character of the fault zone is right lateral slip during 1950 to 1970, but reverse activity has occurred since 1982 to 1983. This suggests that the most intense  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号