首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the kinematic dynamo theory, we construct a mathematical model for the evolution of the solar toroidal magnetic field, excited by the differential rotation of the convective zone in the presence of a poloidal field of a relic origin. We use a velocity profile obtained by decoding the data of helioseismological experiments. For the model of ideal magnetic hydrodynamics, we calculate the latitudinal profiles of the increasing-with-time toroidal field at different depths in the solar convection zone. It is found that, in the region of differential rotation, the excited toroidal field shows substantial fluctuations in magnitude with depth. Based on the simulations results, we propose an explanation for the “incorrect polarity” of magnetic bipolar sunspot groups in solar cycles.  相似文献   

2.
Dynamo action within the cores of Ap stars may offer intriguing possibilities for understanding the persistent magnetic fields observed on the surfaces of these stars. Deep within the cores of Ap stars, the coupling of convection with rotation likely yields magnetic dynamo action, generating strong magnetic fields. However, the surface fields of the magnetic Ap stars are generally thought to be of primordial origin. Recent numerical models suggest that a primordial field in the radiative envelope may possess a highly twisted toroidal shape. We have used detailed 3-D simulations to study the interaction of such a twisted magnetic field in the radiative envelope with the core-dynamo operating in the interior of a 2 solar mass A-type star. The resulting dynamo action is much more vigorous than in the absence of such a fossil field, yielding magnetic field strengths (of order 100 kG) much higher than their equipartition values relative to the convective velocities. We examine the generation of these fields, as well as the growth of large-scale magnetic structure that results from imposing a fossil magnetic field. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We study the influence of different magnetic boundary conditions on the generation of magnetic fields by turbulent convection. It is found that the structure and strength of the generated field in the vicinity of the boundary is strongly dependent on the choice of boundary conditions. In the convective interior, however, the solutions remain largely insensitive to the boundary conditions. In all cases the overall efficiency of the dynamo process remains high with a steady state magnetic energy density between 12 and 25 per cent of the turbulent kinetic energy, and peak field values exceeding the equipartition level. These results support the idea that the solar granulation may constitute a dynamo source for magnetic fields in the quiet photosphere.  相似文献   

4.
An Exploration of Non-kinematic Effects in Flux Transport Dynamos   总被引:1,自引:0,他引:1  
Recent global magnetohydrodynamical simulations of solar convection producing a large-scale magnetic field undergoing regular, solar-like polarity reversals also present related cyclic modulations of large-scale flows developing in the convecting layers. Examination of these simulations reveal that the meridional flow, a crucial element in flux transport dynamos, is driven at least in part by the Lorentz force associated with the cycling large-scale magnetic field. This suggests that the backreaction of the field onto the flow may have a pronounced influence on the long-term evolution of the dynamo. We explore some of the associated dynamics using a low-order dynamo model that includes this Lorentz force feedback. We identify several characteristic solutions which include single period cycles, period doubling and chaos. To emulate the role of turbulence in the backreaction process we subject the model to stochastic fluctuations in the parameter that controls the Lorentz force amplitude. We find that short term fluctuations produce long-term modulations of the solar cycle and, in some cases, grand minima episodes where the amplitude of the magnetic field decays to near zero. The chain of events that triggers these quiescent phases is identified. A subsequent analysis of the energy transfer between large-scale fields and flows in the global magnetohydrodynamical simulation of solar convection shows that the magnetic field extracts energy from the solar differential rotation and deposits part of that energy into the meridional flow. The potential consequences of this marked departure from the kinematic regime are discussed in the context of current solar cycle modeling efforts based on flux transport dynamos.  相似文献   

5.
Our global 3D simulations of convection and dynamo action in a Sun-like star reveal that persistent wreaths of strong magnetism can be built within the bulk of the convention zone. Here we examine the characteristics of buoyant magnetic structures that are self-consistently created by dynamo action and turbulent convective motions in a simulation with solar stratification but rotating at three times the current solar rate. These buoyant loops originate within sections of the magnetic wreaths in which turbulent flows amplify the fields to much higher values than is possible through laminar processes. These amplified portions can rise through the convective layer by a combination of magnetic buoyancy and advection by convective giant cells, forming buoyant loops. We measure statistical trends in the polarity, twist, and tilt of these loops. Loops are shown to preferentially arise in longitudinal patches somewhat reminiscent of active longitudes in the Sun, although broader in extent. We show that the strength of the axisymmetric toroidal field is not a good predictor of the production rate for buoyant loops or the amount of magnetic flux in the loops that are produced.  相似文献   

6.
Generation of the Sun‘s magnetic fields by self-inductive processes in the solar electrically conducting interior, the solar dynamo theory, is a fundamentally important subject in astrophysics. The kinematic dynamo theory concerns how the magnetic fields are produced by kinematically possible flows without being constrained by the dynamic equation. We review a number of basic aspects of the kinematic dynamo theory, including the magnetohydrodynamic approximation for the dynamo equation, the impossibility of dynamo action with the solar differential rotation, the Cowling‘s anti-dynamo theorem in the solar context, the turbulent alpha effect and recently constructed three-dimensional interface dynamos controlled by the solar tachocline at the base of the convection zone.  相似文献   

7.
We summarize new and continuing three-dimensional spherical shell simulations of dynamo action by convection allowed to penetrate downward into a tachocline of rotational shear. The inclusion of an imposed tachocline allows us to examine several processes believed to be essential in the operation of the global solar dynamo, including differential rotation, magnetic pumping, and the stretching and organization of fields within the tachocline. In the stably stratified core, our simulations reveal that strong axisymmetric magnetic fields (of ∼ 3000 G strength) can be built, and that those fields generally exhibit a striking antisymmetric parity, with fields in the northern hemisphere largely of opposite polarity to those in the southern hemisphere. In the convection zone above, fluctuating fields dominate over weaker mean fields. New calculations indicate that the tendency toward toroidal fields of antisymmetric parity is relatively insensitive to initial magnetic field configurations; they also reveal that on decade-long timescales, the magnetic fields can briefly enter (and subsequently emerge from) states of symmetric parity.We have not yet observed any overall reversals of the field polarity, nor systematic latitudinal propagation. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Following a brief overview of the two main approaches to investigate the interaction between magnetic fields and convective flows near the solar surface layers by numerical simulation, namely idealized model problems and ‘realistic’ large‐eddy simulations, we present first results obtained with a newly developed MHD code. The first example concerns the realistic simulation of the magnetic field dynamics in a solar plage region while the second example demonstrates small‐scale dynamo action in idealized compressible convection.  相似文献   

9.
It is thought that the large-scale solar-cycle magnetic field is generated in a thin region at the interface of the radiative core (RC) and solar convection zone (SCZ). We show that the bulk of the SCZ virogoursly generates a small-scale turbulent magnetic field. Rotation, while not essential, increases the generation rate of this field.Thus, fully convective stars should have significant turbulent magnetic fields generated in their lower convection zones. In these stars the absence of a radiative core, i.e., the absence of a region of weak buoyancy, precludes the generation of a large-scale magnetic field, and as a consequence the angular momentum loss is reduced. This is, in our opinion, the explanation for the rapid rotation of the M-dwarfs in the Hyades cluster.Adopting the Utrecht's group terminology, we argue that the residual chromospheric emission should have three distinctive components: the basal emission, the emission due to the large-scale field, and the emission due to the turbulent field, with the last component being particularly strong for low mass stars.In the conventional dynamo equations, the dynamo frequencies and the propagation of the dynamo wave towards the equator are based on the highly questionable assumption of a constant . Furthermore, meridional motions, a necessary consequence of the interaction of rotation with convection, are ignored. In this context we discuss Stenflo's results about the global wave pattern decomposition of the solar magnetic field and conclude that it cannot be interpreted in the framework of the conventional dynamo equations.We discuss solar dynamo theories and argue that the surface layers could be essential for the generation of the poloidal field. If this is the case an -effect would not be needed at the RC-SCZ interface (where the toroidal field is generated). The two central problems facing solar dynamo theories may the transport of the surface poloidal field to the RC-SCZ interface and the uncertainty about the contributions to the global magnetic field by the small-scale magnetic features.Visitor, National Solar Observatory, National Optical Astronomy Observatories.The National Optical Astronomy Observatories are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.  相似文献   

10.
Self‐consistent convective dynamo simulations in wedge‐shaped spherical shells are presented. Differential rotation is generated by the interaction of convection with rotation. Equatorward acceleration and dynamo action are obtained only for sufficiently rapid rotation. The angular velocity tends to be constant along cylinders. Oscillatory large‐scale fields are found to migrate in the poleward direction. Comparison with earlier simulations in full spherical shells and Cartesian domains is made (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The spectroscopic variability of Arcturus hints at cyclic activity cycle and differential rotation. This could provide a test of current theoretical models of solar and stellar dynamos. To examine the applicability of current models of the flux transport dynamo to Arcturus, we compute a mean‐field model for its internal rotation, meridional flow, and convective heat transport in the convective envelope. We then compare the conditions for dynamo action with those on the Sun. We find solar‐type surface rotation with about 1/10th of the shear found on the solar surface. The rotation rate increases monotonically with depth at all latitudes throughout the whole convection zone. In the lower part of the convection zone the horizontal shear vanishes and there is a strong radial gradient. The surface meridional flow has maximum speed of 170 m/s and is directed towards the equator at high and towards the poles at low latitudes. Turbulent magnetic diffusivity is of the order 1015–1016 cm2/s. The conditions on Arcturus are not favorable for a circulation‐dominated dynamo (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We briefly describe historical development of the concept of solar dynamo mechanism that generates electric current and magnetic field by plasma flows inside the solar convection zone. The dynamo is the driver of the cyclically polarity reversing solar magnetic cycle. The reversal process can easily and visually be understood in terms of magnetic field line stretching and twisting and folding in three-dimensional space by plasma flows of differential rotation and global convection under influence of Coriolis force. This process gives rise to formation of a series of huge magnetic flux tubes that propagate along iso-rotation surfaces inside the convection zone. Each of these flux tubes produces one solar cycle. We discuss general characteristics of any plasma flows that can generate magnetic field and reverse the polarity of the magnetic field in a rotating body in the Universe. We also mention a list of problems which are currently being disputed concerning the solar dynamo mechanism together with observational evidences that are to be constraints as well as verifications of any solar cycle dynamo theories of short and long term behaviors of the Sun, particularly time variations of its magnetic field, plasma flows, and luminosity.  相似文献   

13.
The change of sound speed has been found at the base of the convection during the solar cycles,which can be used to constrain the solar internal magnetic field.We aim to check whether the magnetic field generated by the solar dynamo can lead to the cyclic variation of the sound speed detected through helioseismology.The basic configuration of magnetic field in the solar interior was obtained by using a Babcock-Leighton(BL) type flux transport dynamo.We reconstructed one-dimensional solar models by assimilating magnetic field generated by an established dynamo and examined their influences on the structural variables.The results show that magnetic field generated by the dynamo is able to cause noticeable change of the sound speed profile at the base of the convective zone during a solar cycle.Detailed features of this theoretical prediction are also similar to those of the helioseismic results in solar cycle 23 by adjusting the free parameters of the dynamo model.  相似文献   

14.
Flux-dominated solar dynamo models have demonstrated to reproduce the main features of the large scale solar magnetic cycle, however the use of a solar like differential rotation profile implies in the the formation of strong toroidal magnetic fields at high latitudes where they are not observed. In this work, we invoke the hypothesis of a thin-width tachocline in order to confine the high-latitude toroidal magnetic fields to a small area below the overshoot layer, thus avoiding its influence on a Babcock-Leighton type dynamo process. Our results favor a dynamo operating inside the convection zone with a tachocline that essentially works as a storage region when it coincides with the overshoot layer. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The solar dynamo     
A. A. Ruzmaikin 《Solar physics》1985,100(1-2):125-140
The basic features of the solar activity mechanism are explained in terms of the dynamo theory of mean magnetic fields. The field generation sources are the differential rotation and the mean helicity of turbulent motions in the convective zone. A nonlinear effect of the magnetic field upon the mean helicity results in stabilizing the amplitude of the 22-year oscillations and forming a basic limiting cycle. When two magnetic modes (with dipole and quadrupole symmetry) are excited nonlinear beats appear, which may be related to the secular cycle modulation.The torsional waves observed may be explained as a result of the magnetic field effect upon rotation. The magnetic field evokes also meriodional flows.Adctual variations of the solar activity are nonperiodic since there are recurrent random periods of low activity of the Maunder minimum type. A regime of such a magnetic hydrodynamic chaos may be revealed even in rather simple nonlinear solar dynamo models.The solar dynamo gives rise also to three-dimensional, non-axisymmetric magnetic fields which may be related to a sector structure of the solar field.  相似文献   

16.
We present a series of numerical simulations of the quiet-Sun plasma threaded by magnetic fields that extend from the upper convection zone into the low corona. We discuss an efficient, simplified approximation to the physics of optically thick radiative transport through the surface layers, and investigate the effects of convective turbulence on the magnetic structure of the Sun’s atmosphere in an initially unipolar (open field) region. We find that the net Poynting flux below the surface is on average directed toward the interior, while in the photosphere and chromosphere the net flow of electromagnetic energy is outward into the solar corona. Overturning convective motions between these layers driven by rapid radiative cooling appears to be the source of energy for the oppositely directed fluxes of electromagnetic energy.  相似文献   

17.
The concept of the solar general magnetic field is extended from that of the polar fields to the concept of any axisymmetric fields of the whole Sun. The poloidal and toroidal general magnetic fields are defined and diagrams of their evolutionary patterns are drawn using the Mount Wilson magnetic synoptic chart data of Carrington rotation numbers from 1417 to 1620 covering approximately half of cycle 19 and cycle 20. After averaging over many rotations long-term regularities appear in the patterns. The diagrams of the patterns are compared with the Butterfly Diagram of sunspots of the same period. The diagram of the poloidal field shows that the Sun behaves like a magnetic quadrupole, each hemisphere having two branches of opposite polarities with mirror images on the other hemisphere. This was predicted by a solar cycle model driven by the dynamo action of the global convection by Yoshimura and could serve as a verification of the model. The diagram of the toriodal field is similar to the Butterfly Diagram of sunspots. The slight differences which do exist between the two diagrams seems to show that the fields responsible for the two may originate from different zones of the Sun. Common or different characteristics of the three diagrams are examined in terms of dynamical structure of the convection zone referring to the theoretical model of the solar cycle driven by the dynamo action of the global convection.  相似文献   

18.
A model for the solar dynamo, consistent in global flow and numerical method employed with the differential rotation model, is developed. The magnetic turbulent diffusivity is expressed in terms of the entropy gradient, which is controlled by the model equations. The magnetic Prandtl number and latitudinal profile of the alpha-effect are specified by fitting the computed period of the activity cycle and the equatorial symmetry of magnetic fields to observations. Then, the instants of polar field reversals and time-latitude diagrams of the fields also come into agreement with observations. The poloidal field has a maximum amplitude of about 10 Gs in the polar regions. The toroidal field of several thousand Gauss concentrates near the base of the convection zone and is transported towards the equator by the meridional flow. The model predicts a value of about 1037 erg for the total magnetic energy of large-scale fields in the solar convection zone.  相似文献   

19.
We consider the conditions in the transition from the tachocline to the solar convective zone with changing diffusion coefficient. The topology of the magnetic fields involved in the solar dynamo is revised under the assumption that intermediate fields (of the order of 10 mT) have a dominant role in generating the fields in new cycle. The inclusion of meridional circulation is found to increase the dynamo wave period in comparison to the observed period. This suggests that the αΩ-effects are unimportant in calculating the solar cycle period but hold significance in determining the cycle amplitude.  相似文献   

20.
S. V. Berdyugina 《Solar physics》2004,224(1-2):123-131
The modulation of solar activity closely follows the solar rotation period suggesting the existence of long-lived active regions at preferred longitudes. For instance, two preferred active longitudes in both southern and northern hemispheres are found to be persistent at the century time scale. These regions migrate with differential rotation and periodically alternate their activity levels showing a flip-flop cycle. The pattern and behaviour of active longitudes on the Sun is similar to that on cool, rapidly rotating stars with outer convective envelopes. This suggests that the magnetic dynamo, including non-axisymmetric magnetic fields and flip-flop cycles, is also similar in these stars. This allows us to overview the phenomenon of stellar magnetic activity and to study it in detail on the Sun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号