首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ostreaelv Formation (latest Pliensbachian–Toarcian) of the Neill Klinter Group is exposed along a >105 km wide, ENE-trending section in Jameson Land, East Greenland. Deposition took place in a large embayment (Jameson Land Basin) that was connected to the proto-Norwegian-Greenland Sea. Lithofacies in the Ostreaelv Formation range from clean sandstone to muddy heterolithic facies typified by strong grain-size contrasts.The Ostreaelv Formation is divided into four distinct and overall retrograding allostratigraphic units each composed of a characteristic set of tide-influenced, tide-dominated and wave-influenced facies associations. The allostratigraphic units are bounded by subaerial unconformities, interpreted as sequence boundaries, and are up to 75 m thick and 16 to >20 km in width. The allostratigraphic units include a sandy heterolithic estuary bay-head delta succession overlain by two sandy tide-dominated estuary fill successions, interbedded with a muddy heterolithic offshore marine succession. Each of the three estuarine allostratigraphic units was accumulated in an incised valley formed during fall in relative sea level and filled during successive transgressions with sediment supplied from marine and reworked fluvial deposits.In the three incised valleys fluvial sediments were deposited on top of an initial subaerial unconformity surface (SU) and were later reworked by succeeding transgressive ravinement along a transgressive surface (TS), thus creating combined SU/TS sequence boundaries. The data from the Ostreaelv Formation also provides knowledge and conceptual understanding of valley infill processes (tidal current, wave and fluvial energy), and both lateral and vertical variations in lithofacies architecture within incised valleys.Moreover, the study provides quantitative input data, such as incised valley dimensions, sand-containing capacity, and geometry to subsurface reservoir characterisation and modelling efforts of estuary fill successions.  相似文献   

2.
The coast of northern Sierra Leone, between the Scarcies and Mellacoree estuaries, forms a prograding muddy Holocene plain comprising two separate, as yet undated, clusters of sand cheniers. The general coastal morpho-stratigraphy and available data on regional climatic and sealevel history suggest that alternations between muddy progradation and chenier cluster formation have been controlled by a probable conjunction of several factors, including the local geomorphic framework, a climatically induced change in mud supply, and relative sealevel oscillations since the middle Holocene. The inner chenier cluster was apparently elaborated under conditions of efficient wave action over a deep, largely unfilled Mellacoree estuary and at a time of reduced mud availability. It peters out seaward, probably in response to several factors, including an increase in mud supply from the upland, a negative sealevel pulse resulting in higher rates of mud export from accreted inner tidal flats, increased muddy sedimentation over a shallower nearshore zone, and attenuated wave action as a result of energy capture by accreted estuarine shoals. The outer cluster, which partly fringes the coast, was formed in a mayor embayment representing the terminus of longshore sand drift. It is suggested that its formation may have been favoured by a higher sealevel resulting in efficient winnowing of sands from subtidal muds, a greater propensity for accretion of tidal flats landwards and, consequently, a lower mud supply to the foreshore.

Although the timing of muddy progradation and chenier formation has not been determined, the foregoing interpretation suggests a complex sequence of events, reflecting as much the influence of local morphodynamic factors as external factors.  相似文献   


3.
《Marine Geology》2005,214(4):411-430
The Atchafalaya River in Louisiana shares the third largest drainage basin in the world with the Mississippi River. Sediment cores and seismic profiles were used to examine the development and impact on land accretion of an early-stage subaqueous delta accumulating on the shallow (<25 m water depth) continental shelf seaward of the Atchafalaya River mouths in the period (∼100 years) since the Atchafalaya has captured a significant fraction of the overall Mississippi discharge. The subaqueous clinoform is muddy (70–100% finer than 63 μm) and extends approximately 21–26 km seaward of the shell reef (to 8 m water depth) across the mouth of the Atchafalaya Bay, with a discontinuous, and, in places, mobile modern mud layer <20 cm thick covering a relict deltaic shoal area further seaward. The sigmoidal clinoform has a topset surface that steepens from east to west (1:2500 to 1:1600), a foreset with maximum slopes of about 1:550, and a limited bottomset region (<0.5 km wide). 210Pb and 137Cs geochronology show maximum sediment accumulation rates (>3 cm/year) correspond to the foreset and bottomset region, with rates decreasing to as low as 0.9 cm/year on the shelf topset region and its extension inside Atchafalaya Bay. Seven sedimentary facies are observed in the subaqueous delta, with differences created by degree of biological destruction of physical stratification, which is inversely related to sediment accumulation rate, and by the proximity of an area to the riverine sand source. There is a marked alongshore sediment dispersal pattern observed by the progressive winnowing of sand and coarse silt to the west. There is also a significant increase in shell content in Atchafalaya Bay relative to shelf facies. The resulting sigmoidal clinoform deposit (<3 m thick) more closely resembles strata geometries of subaqueous mud deltas associated with energetic systems (e.g., Amazon, Ganges–Brahmaputra, Fly), than it does the mature Mississippi delta 180 km to the east, albeit on a smaller scale and in shallow water.  相似文献   

4.
Through 10 years of support from the Minerals Management Service Association of American State Geologists' Continental Margins Program we have mapped along the Maine coast, seaward to the 100 m isobath. In all, 1,773 bottom sample stations were occupied, 3,358 km of side-scan sonar and 5,011 km of seismic reflection profiles were gathered. On the basis of these data, a surficial sediment map was created for the Maine inner continental shelf during the Year 8 project, and cores and seismic data were collected to evaluate sand thickness during Years 9 and 10. Sand covers only 8 % of the Maine shelf, and is concentrated seaward of beaches off southern Maine in water depths less than 60 m. Sand occurs in three depositional settings: (1) in shoreface deposits connected dynamically to contemporary beaches; (2) in submerged deltas associated with lower sea-level positions; and (3) in submerged lowstand shoreline positions between 50 and 60 m. Seismic profiles over the shoreface off Saco Bay, Wells Embayment, and off the Kennebec River mouth each imaged a wedge-shaped acoustic unit which tapered off between 20 and 30 m. Cores determined that this was sand that was underlain by a variable but thin (commonly 1 m) deposit of estuarine muddy sand and a thick deposit of glacial-marine mud. Off Saco Bay, more than 55 million m3 of sand exists in the shoreface, compared with about 22 million m3 on the adjacent beach and dunes. Seaward of the Kennebec River, a large delta deposited between 13 ka and the present time holds more than 300 million m3 of sand and gravel. The best sorted sand is on the surface nearshore, with increasing amounts of gravel offshore and mud beneath the surficial sand sheet. Bedforms indicate that the surficial sand is moved by waves to at least 55 m depth. Seaward of the Penobscot River, no significant sand or gravel was encountered. Muddy estuarine sediments overlie muddy glacial-marine sediment throughout the area offshore area of this river. No satisfactory explanation is offered for lack of a sandy delta seaward of Maine's largest river. Lowstand-shoreline deposits were cored in many places in Saco Bay and off the Kennebec River mouth. Datable materials from cores indicated that the lowstand occurred around 10.5 ka off the Kennebec. Cores did not penetrate glacial-marine sediment in the lowstand deposits, and seismic profiles were ambiguous about the vertical extent of sand in these units. For these reasons, no total thickness of sand was determined from the lowstand deposits, but given the area of the surficial sand, the volume is probably in the hundreds of millions of cubic meters.  相似文献   

5.
6.
Extensive vibracoring of both flood- and ebb-tidal deltas along the central Gulf Coast of the Florida peninsula reveals a strong overall similarity with subtle distinctions between flood and ebb varieties. Although the coast in question is microtidal, the inlets range from tide-dominated to distinctly wave-dominated. Both types of tidal deltas overlie a muddy sand interpreted to have been deposited in a back-barrier environment. The sharp contact at the base of the tidal delta sequence is typically overlain by a thin shell gravel layer. The ebb-tidal delta sequence is characterized by fine quartz sand with shell gravel in various concentrations; coarse and massive at the margins of the main ebb channel, and finer and imbricated at the marginal flood channels. The flood-tidal deltas are characterized by the same facies but with a small amount of mud. Shelly facies on the channels on flood deltas are not as well developed as on the ebb deltas. The combination of the stratigraphic sequence and the lithofacies make tidal deltas readily identifiable in the ancient record. The differences between flood and ebb varieties are subtle but consistent.  相似文献   

7.
This paper re-examines the Upper Miocene Upper Mount Messenger Formation, Taranaki Basin, to characterize its architecture and interpret its environmental evolution. Analysis of stratal architecture, lithofacies distributions, and paleotransport directions over the 250 m thick formation shows the outcrops provide a nearly dip parallel section displaying the lateral relationships between contemporaneous channel-levee and overbank depositional environments. At least five 30–40 m thick upward fining units are recognized in the north-central parts of the outcrop and are interpreted as large-scale overbank avulsion cycles. Each unit consists of thick- to medium-bedded predominantly planar laminated sandstone turbidites at the base that fine upward into thin- to very thin-bedded, planar laminated and ripple cross-laminated mud-rich turbidites. The units are traceable laterally over a distance exceeding 3 km where they are cut by channels that show basal mudstone draped by medium- to thin-bedded sandstone, and onlapped by thick-bedded planar laminated sandstone at the margin. The channels are separated by tapered packages of medium- to thin-bedded turbidites containing climbing-ripple cross-lamination interpreted as levees. The individual channel-levee and overbank avulsion cycles formed through four stages: 1) a channel avulsion spread sand into the overbank as an unconfined splay, 2) preferential scouring in one area of the splay led to development of a channel with small levees that prograded across the splay, 3) a deep incision followed by abandonment of the channel deposited a mud lining. Alternatively, the mud lining was formed during the first stage as the downdip portion of the channel was abandoned. 4) The channel filled at first by thick-bedded planar laminated and then by climbing-ripple cross-laminated sand. At this time, the growth of constructional levees progressively limited sand into the overbank. Ratios of Bouma division thicknesses calculated over a stratigraphic interval present a new method to distinguish deep-water depositional environments.  相似文献   

8.
Keppel Bay is a macrotidal embayment on a tectonically stable, tropical coast, which links the Fitzroy River with the Great Barrier Reef continental shelf. Estuaries and deltas act as conduits between catchments and inner shelf environments. Therefore, understanding sediment transport pathways in these complex systems is essential for the management of ecosystems such as coral-reefs that are potentially vulnerable to enhanced river sediment loads. Furthermore, the morphology and sediment dynamics of subtidal sand ridges and dunes are relatively poorly characterised in macrotidal estuaries, particularly in turbid, episodic systems such as the Fitzroy River and Keppel Bay. Our sedimentological analysis of seabed samples, shear-stress modelling and three-dimensional acoustic imaging reveals that Keppel Bay is a mixed wave- and tide-dominated estuarine system. Areas of sediment starvation and shoreward transport characterise the offshore zone, whereas a complex of both active and relict tidal sand ridges, and associated subaqueous dunes, dominate the relatively protected southern Keppel Bay. Transport within this region is highly dynamic and variable, with ebb-dominated sediment transport through tidal channels into the outer bay where there is a switch to wave-dominated shoreward transport. Ultimately, bedload sediments appear to be reworked back inshore and to the north, and are gradually infilling the bedrock-defined embayment. Our characterisation of the Keppel Bay system provides a detailed example of the physiography of the seaward portion of a tide-dominated system, and shows that sediment transport in these areas is influenced by a variable hydrodynamic regime as well as relict channels and bedrock topography.  相似文献   

9.
Odanam Satoe, a subtidal, tide-dominated sand body in the Yellow Sea, Korea, is linear in plan and asymmetrical in cross-section. It consists of fine- to medium-grained, well-sorted subangular sand. Bedforms consist of high-amplitude (1–2 m) sandwaves on the lower flanks of the gentler-sloping bar surface, and medium-amplitude (0.5-1 m) sandwaves on the sand body trough adjoining the steeper face, the bar crest and shallower parts of the gently sloping bar surface. Bedforms are absent on the relatively steeper bar surface, which is characterized by 2° slopes. Bedform orientation on the gentler slope is oblique by 30° to the bar crest, parallel to the sand-body crest on the crest itself, and opposite to the steeper sand-body face in the trough below the steeper slope of the bar.Bottom current velocity data show that tidal currents are semi-rotary with a flood time—velocity asymmetry over the gentler slope, and ebb time—velocity asymmetry over the steeper slope during most of the tidal cycle. Tidal-current flow parallels bar elongation over the steeper slope, whereas over the gentler slope, tidal-current flow is directed at 30° to the bar crest and changes to normal to the crest one hour prior to low tide. Bedform orientation mapped with side-scan sonar shows agreement with these flow directions.Sand dispersal around the sand body is controlled by time—velocity asymmetry and partial rotary flow directions of tidal currents. This circulation causes not only a trapezoidal mode of grain dispersal, but also westerly migration of the sand body documented from comparative bathymetric surveys in 1964 and 1980.  相似文献   

10.
Exceptionally high shelf-subsidence rates (0.8–6.0+ mm/yr), a marked basinward stepping (to east and northeast) of the paleo-Orinoco shelf prism and post-Pliocene uplift of Trinidad all allow the sedimentary facies, process regime and the evolution of the Late Miocene Orinoco Delta to be evaluated from extensive outcrops along the southwest, and south coasts of Trinidad. The ca. 200 km easterly growth (late Miocene to present) of the Orinoco shelf-margin was generated by repeated cross-shelf, regressive–transgressive transits of the Orinoco Delta system. The studied Late Pliocene segment of this shelf-margin prism allows insight to how this margin was built. The Morne L'Enfer Formation (Late Pliocene) along Cedros Bay and Erin Bay in SW Trinidad, provides a window into the facies and process regime of the ca. 850 m-thick deltaic succession at an inner-shelf location some 100 km landward of the coeval shelf edge. Regressive facies associations include tide-influenced delta-front to prodelta deposits (FA1) within upward coarsening units, shoreface to offshore deposits, possibly with prograding mud cape deposits (FA2), and fluvial distributary channel infills (FA3), as well as muddy sediments of floodbasins and coastal embayments between the distributary channels (FA4), and tide-influenced bay-head delta deposits (FA5). Transgressive facies associations show an overall upward fining of grain size and include inner estuary distributary channels with minimal brackish-water or tidal influence (FA6), transition zone fluvial-tidal distributary channels (FA7), tide-dominated mid-outer estuary channel-bars (FA8), and intertidal to supratidal flat units (FA9). The tidal signals in both deltaic and estuarine units include bi-directional paleocurrents (channels), frequent mud drapes within stacked sets of cross-strata (delta-front), fluid mud layers, flaser, wavy and lenticular bedding, and ubiquitous spring-neap stratal bundling. The tide dominated nature of the paleo-delta in SW Trinidad was likely due to its location within an embayed proto-Columbus Channel, though by analogy with the modern Orinoco Delta, it is predicted that the same succession becomes wave dominated to the east as the delta emerged to the open ocean and approached the outer shelf and shelf-edge region. It is difficult to estimate how much of the abundant mud in the Pliocene deltaic sequences was derived from inner-shelf littoral currents with suspended Amazon River mud. The studied Late Pliocene Morne L'Enfer succession contains some 17 high-frequency transgressive–regressive sequences, each ca. 40–60 m thick, estimated to have an average time duration of 90–120 Ky. By analogy, the last glacial cycle on the Orinoco shelf saw the delta prograding across the 200 km-wide shelf to the shelf edge in ca. 100 Ky, then transgressing back to its present position in 20 Ky. A predicted model of the linkage between the study succession on SW Trinidad and its eastward continuation offshore towards the outer shelf and shelf edge in the Columbus Basin is suggested.  相似文献   

11.
Seismic characterization of Eocene-Oligocene heterozoan carbonate strata from the Browse Basin, Northwest Shelf of Australia, defines marked progradation of nearly 10 km. Stratal terminations and stacking subdivide the succession into mappable seismic units. Stratal architecture and seismic geomorphology varies systematically through the succession.Individual surfaces, discerned by toplap, onlap, and truncation, outline sigmoidal to tangential oblique clinoforms with heights of ranging from 350 to 650 m and maximum gradients between 8 and 18°. Sigmoidal clinoforms can include aggradation in excess of ∼200 m, prograde more than 500 m, and have slopes characterized by inclined, wavy to discontinuous reflectors that represent ubiquitous gullies and channels. In contrast, the overlying tangential oblique clinoforms include downstepped shelf margins, limited on-shelf aggradation (<100 m) and toplap, subdued progradation (<500 m), and continuous parallel inclined reflectors on the slope. Wedges of basinally restricted reflectors at toe of slope onlap surfaces of pronounced erosional truncation or syndepositional structural modification. The succession includes repeated patterns of seismic units that onlap, aggrade, and prograde, interpreted to represent sequence sets and composite sequences.The associations of shelf aggradation, shelf-margin progradation, and slope channeling within sigmoidal seismic units and the less marked progradation and channeling within tangential oblique seismic units contrast with the classic sequence model in which sediment delivery to the slope and pronounced progradation is favored by limited shelf accommodation. This distinct divergence is interpreted to reflect the prolific heterozoan production across the shelf during periods of rising and high base level when the shelf is flooded, perhaps enhanced by downwelling. Comparison with purely photozoan systems reveals similarities and contrasts in seismic stratigraphic heterogeneity and architecture, interpreted to be driven by distinct characteristics of heterozoan sedimentary systems.  相似文献   

12.
Sediment vibracores and surface samples were collected from the mixed carbonate/siliciclastic inner shelf of west–central Florida in an effort to determine the three-dimensional facies architecture and Holocene geologic development of the coastal barrier-island and adjacent shallow marine environments. The unconsolidated sediment veneer is thin (generally <3 m), with a patchy distribution. Nine facies are identified representing Miocene platform deposits (limestone gravel and blue–green clay facies), Pleistocene restricted marine deposits (lime mud facies), and Holocene back-barrier (organic muddy sand, olive-gray mud, and muddy sand facies) and open marine (well-sorted quartz sand, shelly sand, and black sand facies) deposits. Holocene back-barrier facies are separated from overlying open marine facies by a ravinement surface formed during the late Holocene rise in sea level. Facies associations are naturally divided into four discrete types. The pattern of distribution and ages of facies suggest that barrier islands developed approximately 8200 yr BP and in excess of 20 km seaward of the present coastline in the north, and more recently and nearer to their present position in the south. No barrier-island development prior to approximately 8200 yr BP is indicated. Initiation of barrier-island development is most likely due to a slowing in the Holocene sea-level rise ca. 8000 yr BP, coupled with the intersection of the coast with quartz sand deposits formed during Pleistocene sea-level highstands. This study is an example of a mixed carbonate/siliciclastic shallow marine depositional system that is tightly constrained in both time and sea-level position. It provides a useful analog for the study of other, similar depositional systems in both the modern and ancient rock record.  相似文献   

13.
The Arcachon Lagoon has an important network of tidal channels and well developed tidal flats covered by the marine grass Zostera marina. Based on 66 piston cores taken from the Graveyron tidal channel, and observations on the neighbouring channels, this paper documents the facies and geometry of the channel-fill deposits. In the inner lagoon (studied area) the tidal channels are 80 to 150 m wide and have a meandering morphology with sandy point bars 2 to 5 m thick. The channel-fill does not consist of the classic inclined heterolithic bedding typical of many channel-fills (Reineck, 1958), but of cross-stratified sandy deposits characterized by the absence of slack-water clay-drapes. These unusual facies characteristics are due to the low turbidity of the lagoonal waters which is caused by the lack of significant river inflow and the dense coverage of Zostera marina on the tidal flats. The overall geometry of the channel-fill deposits is characterized by a narrow sand-ribbon shape, a few kilometres long, 80 to 150 m wide and 1 to 5 m thick. This sand ribbon is made of elliptical sand bodies, deposited as point bars, that coalesce longitudinally along the channel axis. This narrow shape is due to the fact that the lateral migration of the channel is virtually nil (reduced to a few metres). In spite of their characteristic meandering morphology, these channels do not deposit extensive tabular sand sheets of amalgamated point bars like the tidal creeks on the North Sea tidal flats. Two factors are thought to control this lack of channel migration. (1) The tidal flats adjacent to the tidal channels are made of 3- to 5-m-thick cohesive muddy sediments covered by Zostera marina that prevents the erosion of the channel banks. This first mechanism is supported by the observation that the tidal creeks that drain the muddy tidal flats covered by Zostera marina do not migrate laterally, whereas those that drain the sandy tidal flats devoid of a dense coverage of marine grass do have active lateral migration. (2) The tidal channels are not fed by any river and therefore do not receive any fluvial sand influx during the winter floods. Their morphology is in equilibrium with the tidal discharge and represents a stable stage in the development of the channel. This second mechanism is supported by the fact that the only tidal channels that actively migrate laterally in the lagoon receive sandy fluvial influx from the River Leyre located in the southeastern corner of the lagoon.  相似文献   

14.
江苏盐城沿海滩涂淤蚀及湿地植被消长变化   总被引:13,自引:0,他引:13  
目前盐城海岸有限的滩涂资源构成自然保护区用地和经济发展用地之间矛盾的焦点,滩涂的淤蚀和湿地植被消长变化是协调保护区和地方经济发展用地的主要科学依据。通过2005年7月对盐城海岸7个断面滩面高程、泥沙粒度和植被分布进行测量及调查,结合1992年6月、2002年5月、2005年4月的卫星图片资料,分析滩涂的淤蚀和植被的分布及扩展状况。研究表明,现阶段盐城海岸北部以5~45 m/a速度后退,以5~10 cm/a的平均速度下蚀;新洋港以南高滩不断向海推进,平均淤进速度为50~200 m/a,淤高速度为2~5 cm/a;滩涂湿地高等植物面积迅速增长,平均增长率为2 000 hm2/a,湿地植被结构和生态服务功能有所改变。近时期内滩涂总体面积不断扩大,新洋港以南岸段高滩面积持续增长,这为盐城自然保护区及地方经济发展提供不断增长的区域空间保障。  相似文献   

15.
Facies architecture and bedding patterns of the Kimmeridgian Pozuel Formation (Iberian Basin) evidence that this 50–70-m thick oolitic-grainstone unit conforms to the Infralittoral Prograding Wedge (ILPW) model instead of the classic models used for interpreting oolitic grainstones sandbodies on carbonate ramps or platforms (i.e., bank-margin shoal complexes, beaches and beach ridges).Ten lithofacies have been distinguished in the Pozuel Formation: 5–10° dipping clinobedded oolitic grainstone foresets passing to tabular oolitic packstones-grainstones, which interfinger the muddy basinal bottomsets. Landwards, the clinobeds pass into subhorizontal topsets composed of trough cross-bedded to structureless oolitic grainstones; oolitic-skeletal grainstones with stromatoporoids and coral-stromatoporoid-microbial mounds. Siliciclastic lithofacies and oncolitic/peloidal packstones occur at the innermost position. These lithofacies stack in strike elongated, 5–20-m thick, 0,5–2 km dip-oriented wide, aggradational-progradational packages with complex sigmoid-oblique geometries.Lithofacies, depositional geometries and stacking pattern permit to summarize the main characteristic of such Upper Jurassic oolitic infralittoral prograding wedge potentially to be applied in other oolitic sandbodies both in outcrops and subsurface: 1) sediment production within the wave action zone, 2) grainstone-dominated textures, 3) prograding basinward onto basinal muds, 4) laterally (strike) extensive, paralleling the shoreline, 5) variable thickness, commonly of few tens of meters, 6) broadly sigmoidal to oblique internal architecture, with topsets, foresets and bottomsets, 7) dip of foresets close to the angle of repose, 8) topsets deposited in shallow-water, extending through the shoreface, from the shoreline down to the wave base, 9) mounds, either microbial or skeletal, may occur in the topsets.The coated-grains factory was along the high-energy, wave-dominated outer platform (topset beds), from where the mud was winnowed and the grains transported both landward to the platform interior, and seaward to the platform edge, from were the grains cascaded down the slopes as grain flows and mass flows, forming clinobeds. This genetic model can be applied to other grain-dominated lithosomes, some of them forming hydrocarbon reservoirs, e.g., the Jurassic Hanifa Formation and some Arab-D (e.g., Qatif Field) in Arabia, the Smackover Formation in northern Louisiana and south Arkansas, the Aptian Shuaiba Formation (e.g., Bu Hasa Field) and the Cenomanian Mishrif Formation (e.g., Umm Adalkh Field) of the Arabian Gulf.  相似文献   

16.
Predicting the hydrodynamics, morphology and evolution of ancient deltaic successions requires the evaluation of the three-dimensional depositional process regime based on sedimentary facies analysis. This has been applied to a core-based subsurface facies analysis of a mixed-energy, clastic coastal-deltaic succession in the Lower-to-Middle Jurassic of the Halten Terrace, offshore mid-Norway. Three genetically related successions with a total thickness of 100–300 m and a total duration of 12.5 Myr comprising eight facies associations record two initial progradational phases and a final aggradational phase. The progradational phases (I and II) consist of coarsening upward successions that pass from prodelta and offshore mudstones (FA1), through delta front and mouth bar sandstones (FA2) and into erosionally based fluvial- (FA3) and marine-influenced (FA4) channel fills. The two progradational phases are interpreted as fluvial- and wave-dominated, tide-influenced deltas. The aggradational phase (III) consists of distributary channel fills (FA3 and FA4), tide-dominated channels (FA5), intertidal to subtidal heterolithic fine-grained sandstones (FA6) and coals (FA7). The aggradational phase displays more complex facies relationships and a wider range of environments, including (1) mixed tide- and fluvial-dominated, wave-influenced deltas, (2) non-deltaic shorelines (tidal channels, tidal flats and vegetated swamps), and (3) lower shoreface deposits (FA8). The progradational to aggradational evolution of this coastal succession is represented by an overall upward decrease in grain size, decrease in fluvial influence and increase in tidal influence. This evolution is attributed to an allogenic increase in the rate of accommodation space generation relative to sediment supply due to tectonic activity of the rift basin. In addition, during progradation, there was also an autogenic increase in sediment storage on the coastal plain, resulting in a gradual autoretreat of the depositional system. This is manifested in the subsequent aggradation of the system, when coarse-grained sandstones were trapped in proximal locations, while only finer grained sediment reached the coastline, where it was readily reworked by tidal and wave processes.  相似文献   

17.
A large sand bar develops in the inner Qiantang River Estuary, China. It is a unique sedimentary system,elongating landwards by about 130 km. Based on long-term series of bathymetric data in each April, July, and November since the 1960 s, this study investigated the morphological behavior of this bar under natural conditions and the influence of a large-scale river narrowing project(LRNP) implemented in the last decades. The results show that three timescales, namely the seasonal, interannual a...  相似文献   

18.
全新世长江三角洲地区砂体的特征和分布   总被引:15,自引:2,他引:15  
砂体是三角洲的重要沉积单元,它构成三角洲的骨架,决定三角洲的形态,反映三角洲的演变过程,是认识三角洲的关键.砂体的矿物组分能为推断三角洲的物质来源提供重要线索,而其内部特征则是判断沉积环境最灵敏、最可靠的因素.三角洲砂体的上覆和下伏层及其与砂体的接触关系,有助于辩认海进海退和沉积盆地发育历史.此外,三角洲砂体紧靠富含有机质的泥质沉积,是石油和天然气储集的良好场所,是勘探的主要目标.因此,研究三角洲砂体不仅具有理论意义,而且能为沉积矿产资源的勘探提供有价值的资料.  相似文献   

19.
The Sardinian Graben System was a part of a NE-SW-oriented extensional basin, rotated counter-clockwise into a N-S-elongate basin, as consequence of the eastward migration of the Apennine orogenic front, in the western Mediterranean during the Neogene.Starting from the early Miocene, the Sardinian Graben was inundated by marine waters, turning progressively into a seaway, characterized by a tidal circulation as consequence of the connection between the Atlantic Ocean to the west and the Paratethys Ocean to the east.In this work, we investigate an area located marginally to the mid-seaway, whose well-exposed volcaniclastic deposits record the local expression of a tidal amplification occurring in a coastal peripheral embayment of the wider Sardinian Seaway.The studied succession is ca. 140 m thick and includes three main units: (i) the 20-m-thick lowermost unit consists of fluvio-lacustrine sandstones and conglomerates belonging to lower delta-plain and delta-platform environments; (ii) the second unit is 60–70 m thick and includes heterolithic sandstones and mudstones, exhibiting a variety of tidal sedimentary structures, and lies on the previous deposits through a tidal ravinement surface; these two units are mostly volcaniclastic in composition, reflecting the dominance of a magmatic source over other extrabasinal components; (iii) the uppermost unit is ca. 50 m thick, erosionally overlies the previous deposits and is made up of shoreface sandstones and open-shelf mudstones, whose composition indicates even less volcaniclastic elements and the prevalence of other clastic alongshore-derived components.Based on the results of the facies analysis, the study succession is interpreted as the infill of an incised valley along the southern flank of a structural high. The valley was excavated during a phase of relative sea-level lowstand (Aquitanian?) preceding a subsequent stage of major transgression (Burdigalian). Initially, a fluvial system impinged the valley from the west favoring the progradation of a deltaic system in a shallow-marine embayment. During an early stage of transgression, the isolation of a part of this coastal area generated by the building of a barrier island, produced the onset of a tidal-flat sedimentation over the previous deposits. A late transgression occurred through the inundation of this coastal area by marine waters and the consequent back-stepping of beach-barrier and open-shelf strata.The sedimentological features of this stratigraphic succession indicate as this valley was filled in a tectonic setting with a high rate of accommodation, where the tidal influence progressively increased during sediment accumulation, possibly due to the marginal position respect to a wider tide-dominated marine conduit.The present paper thus: (i) documents for the first time a tidal signature in the lower Miocene strata of Sardinia; (ii) indicates new possible relationships with other, coeval seaway successions of the western and northern Mediterranean area; (iii) suggests constrains for palaeogeographic reconstructions; (iv) and throws the basis for future researches on the Sardinian Seaway.  相似文献   

20.
Current velocity and suspended sediment concentration measurements at anchor stations in the downstream extremity of the Gironde estuary indicate that during periods of high river discharge, a significant amount of suspended sediment is transported out of the estuary onto the adjacent continental shelf. The vertical profile of the residual (non-tidal) suspended sediment flux is similar to that of the residual current velocity, with a net upstream flux near the bottom and an overlying seaward-directed transport. The overall, depth-integrated result is a net seaward transport of suspended sediment out of the estuary. It appears that this net seaward transport varies directly with tidal amplitude.Aerial photography and water sampling indicate that during high river inflow, the downstream extremity of the turbidity maximum extends onto the continental shelf at ebb tide. The tidal and coastal current patterns of the inlet and inner shelf induce a northward transport of the turbid estuarine water, and at each tidal cycle, a certain amount of suspended sediment leaves the estuary; part of this sediment is deposited in a silt and clay zone on the continental shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号