首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A realistic definition of seismic input for the Catania area is obtained using advanced modeling techniques that allow us the computation of synthetic seismograms, containing body and surface waves. With the modal summation technique, extended to laterally heterogeneous anelastic structural models, we create a database of synthetic signals which can be used for the study of the local response in a set of selected sites located within the Catania area. We propose a ground shaking scenario corresponding to a source spectrum of an earthquake that mimics the destructive event that occurred on 11 January 1693. Making use of the simplified geotechnical map for the Catania area, we produce maps which illustrate the spatial variability of the SH waveforms over the entire area. Using the detailed geological and geotechnical information along a selected cross section, we study the site response to the SH and P-SV motion in a very realistic case, adopting and comparing different estimation techniques.  相似文献   

2.
Many of the numerical techniques used for seismic zonation studies treat one-dimensional structural models and/or the incidence of plane polarized body waves. These techniques are often not adequate for laterally heterogeneous structures and for sources that are not located beneath the site of interest. In such cases a more rigorous treatment of the combined effects of the source, the path and the site response is needed. This can be accomplished with a hybrid approach combining modal summation and the finite-difference technique. To demonstrate the differences between these techniques, the ground motion in the city of Benevento (Italy) is modelled. We first compare the results obtained with one-and two-dimensional structural models for vertical incidence of plane polarized body waves. These results are then compared with those obtained with the hybrid approach for two-dimensional structural models.The comparisons have allowed us to find important differences in the response obtained with the different modelling techniques. For the same site, these differences consist of strong variations in amplitude and in the shape of the spectral amplifications. For a seismic source which is not located beneath the site, vertical incidence of waves significantly overestimates the local hazard in a laterally homogeneous structure. For a laterally heterogeneous area, we can conclude that one-dimensional modelling fails to estimate the seismic hazard, whereas for a seismic source which is not located beneath the site of interest, two-dimensional modelling with vertical incidence of plane polarized body waves may not allow reliable estimates to be made of the frequency bands at which amplifications occur. The results obtained for two-dimensional structural models are used for a zonation of the city of Benevento.  相似文献   

3.
The microtremor spectra observed at the sediment-filled basin of Zafarraya show a peak near 2·8 Hz, independent of the local basin depth. Based on geoelectric and geologic data we constructed a tentative model of the site. The seismic response for vertically incident plane waves, both SH and P-SV, was computed by the finite-difference method. The observed spectral peak was found to be due to a combined effect of the 2-D basin bottom shape and the horizontally layered basin fill. Neither of the two effects explain the spectra when treated separately. Synthetic seismo-grams indicate a transitional basin behaviour, little investigated so far, between that typical of local basin-induced surface waves and a global 2-D resonance. A practical conclusion is that the site effects cannot be simply assessed by means of the basin shape ratio (thickness to half-width ratio) and the velocity contrast at the bottom.  相似文献   

4.
A hybrid method combining finite element and 4th-order finite difference techniques is developed to model SH and P-SV seismic wave propagation in a 2D elastic medium with irregular surface topography. Both the classic staggered grid finite difference scheme and the partially staggered grid scheme are tested. The accuracy of the hybrid method is studied by comparison with a semi-analytical and another numerical method. Subsequently, to study the amplification, numerical simulations of seismic wave propagation in a series of hills are carried out and compared with the single-hill case. Depending on the position of the source in relation to the topography, the ratio between the heights and lengths of the hills or the ratio between the lengths of the hills and the wavelength, the presence of several hills as opposed to a single one can increase the amplification effect due to topography. This study highlights the fact that, when evaluating topographic site effects, surrounding topography must be taken into account in addition to local topography.  相似文献   

5.
v--vAn estimation of local site effects in the Volvi basin as derived from observation and modeling is presented in this paper. The Volvi basin is located in the Mygdonian graben in northern Greece near the city of Thessaloniki. This test site has been studied and instrumented in the framework of the "EURO-SEISTEST" and "EURO-SEISMOD" projects funded by the European Union, aimed at improving knowledge of the influence of the local geology on the seismic response of a target area. In this context we calculate synthetic seismograms along a 2-D profile intersecting the graben, instrumented and accurately investigated with a geophysical survey and geotechnical tests. The seismic wavefield from the source to the target area has been computed with the modal summation method, while inside two of the investigated models representing the 2-D section, the wavefield has been numerically propagated with the finite-difference method. We compare the results of the two simulations, both in the time and frequency domain. We also compare the results with experimental data related to an event recorded by the Reftek network installed in the target area. This permits a better understanding of how the structural features of the 2-D models affect the seismic wavefield, especially in the frequency range between 2 Hz and 4 Hz, where one can observe differences between the simulations and the observations. This means that the general features of the models are able to reproduce observed amplification effects, apart from some discrepancies due to still unresolved structural features of the site.  相似文献   

6.
— We estimate the theoretical site response along seven cross sections located in the city of Thessaloniki (Greece). For this purpose the 2-D structural models used are based on the known geometry and the dynamic soil properties derived from borehole measurements and other geophysical techniques. Several double-couple sources have been employed to generate the seismic wavefield, and a hybrid method that combines the modal summation with finite differences, has been deployed to produce synthetic accelerograms to a maximum frequency of 6 Hz for all components of motion. The ratios between the response spectra of signals derived for the 2-D local model and the corresponding spectra of signals derived for the 1-D bedrock reference model at the same site, allow us to estimate the site response due to lateral heterogeneities. We interpret the results in terms of both geological and geometrical features of the models and of the characteristics of the wave propagation. The cases discussed confirm that the geometry and depth of the rock basement, along with the impedance contrast, are responsible for ground amplification phenomena such as edge effects and generation and entrapment of local surface waves. Our analysis also confirms that the peak ground acceleration is not well correlated with damage and that a substantially better estimator for possible damage is the spectral amplification.  相似文献   

7.
— To check the reliability and the quality of the theoretically estimated ground responses obtained from the 2-D simulation by the application of the hybrid method in PART-I, we compare some of them with those obtained at the same sites from observed data using the Standard Spectral Ratio (SSR). The comparison validates our synthetic modeling and shows that in cases of complex geometries, the use of at least 2-D numerical simulations is required in order to reliably evaluate site effects and thus facilitate the microzonation of the city of Thessaloniki.  相似文献   

8.
The city of Benevento (Southern Italy) has been repeatedly struck by large historical earthquakes. A heterogeneous geologic structure and widespread soft soil conditions make the estimation of site effects crucial for the seismic hazard assessment of the city. From 2000 until 2004, we installed seismic stations to collect earthquake data over zones with different geological conditions. Despite the high level of urban noise, we recorded more than 150 earthquakes at twelve sites. This data set yields the first, well documented experimental evidence for weak to moderate local amplifications. We investigated site effects primarily by the classical spectral ratio technique (CSR) using a rock station placed on the Benevento hill as reference. All sites in the Calore river valley and in the eastern part of the Benevento hill show a moderate high-frequency (f > 4 Hz) amplification peak. Conversely, sites in the Sabato river valley share weak-to-moderate amplification in a wide frequency band (from 1–2 to 7–10 Hz), without evident frequency peaks. Application of no-reference-site techniques to earthquake and noise data confirms the results of the CSRs in the sites of the Calore river valley and of the eastern part of the Benevento hill, but fails in providing indications for site effects in the Sabato river valley, being the H/V ratios nearly flat. One-dimensional modeling indicates that the ground motion amplification can be essentially explained in terms of a vertically varying geologic structure. High-frequency narrow peaks are caused by the strong impedance contrast existing between near-surface soft deposits and stiff cemented conglomerates. Conversely, broad-band amplifications in the Sabato river valley are likely due to a more complex layering with weak impedance contrasts both in the shallow and deep structure of the valley.  相似文献   

9.
The vertical component of the seismic noise has been recorded in two different sites near the towns of Mercato S. Severino and Benevento in Southern Italy by a small aperture array, in order to investigate the characteristics of the noise propagation and to study the site response. Three different array techniques have been applied in the two investigated sites: Beam Forming, High Resolution and Spatial Correlation methods. We used two simple array geometry for localising possible noise sources and estimating local shallow structure using ambient noise. The cross shaped array results effective for determining the phase velocity of waves in the case when the noise is from a single localised source; the circular array, on the other hand, is successfully used when the noise sources are distributed. The main results are: the analysis of a coherent component of the noise recorded in the two sites, interpreted as Rayleigh waves, results in reasonable velocity models; the noise recorded in the M.S.S. Plain is a space stationary signal, while the noise at the Benevento site is possibly produced by a stable noise source located close to the array. Due to this evidence, the correlation method does not yield satisfactory results when applied to the Benevento site. The 2–6 Hz spectral peaks of the noise recorded in the M.S.S. Plain can be interpreted as due to a site effect, considering the satisfactory agreement of the noise spectrum at those frequencies with the theoretical transfer function computed on the basis of the velocity model deduced from the Rayleigh waves dispersion analysis.  相似文献   

10.
三维并行合成震源记录叠前深度偏移   总被引:15,自引:1,他引:14       下载免费PDF全文
提出了一种基于波动理论的三维合成震源记录叠前深度偏移方法,该方法不含任何物理假设,利用波动方程算子的3个性质,合成炮震源及炮震源记录,将面炮记录合成与相位编码合成两种方法在理论上和计算上合二为一,成为一个统一的合成理论. 通过双重叠加把三维叠前五维数据转换为三维数据,既保证了成像质量同炮记录偏移成像一样精确,又显著地提高了计算效率,且适于复杂地质构造成像. 针对不同情况,给出了几种不同的合成算子,使方法在实际应用中有较大的灵活性和选择性. 基于MPI并行算法的实现,进一步提高了计算效率. SEG\EAGE盐丘C3_NA数据模型上的试算结果和新疆三维起伏地表实际地震资料的处理结果进一步说明了该方法的有效性和实用性.  相似文献   

11.
The goal of seismic reflection surveys is the derivation of petrophysical subsurface parameters from surface measurements. Today's well established technique in data acquisition, as well as processing terms, is based on the acoustic approximation to the real world's wave propagation. In recent years a lot of work has been done to extend the technique to the elastic approximation. There was especially an important trend towards elastic inversion techniques operating on plane-wave seismograms, called simultaneous P-SV inversion (or short P-SV inversion) within this paper. Being still under investigation, some important aspects of P-SV inversion concerning data acquisition as well as pre-processing, should be pointed out. To fit the assumptions of P-SV inversion schemes, at least a two-dimensional picture of the reflected wavefield with vertical and in-line horizontal receivers has to be recorded. Moreover, the theoretical work done suggests that in addition to a survey with a compressional wave source, a second survey should be done using sources radiating vertically polarized shear waves, is needed. Finally, proper slant stacking must be performed to get plane-wave seismograms. The P/S separated plane-wave seismograms are then well prepared for feeding into the inversion algorithms. P/S separated planewave seismograms are then well prepared for feeding into the inversion algorithm.s In this paper, a tutorial overview of the data acquisition and pre-processing in accordance with the P-SV inversion philosophy is given and illustrated using synthetic seismograms. A judgement on the feasibility of the P-SV inversion philosophy must be left to ongoing research.  相似文献   

12.
When comparing solutions for the propagation of SH waves in plane parallel layered elastic and viscoelastic (anelastic) media, one of the first things that becomes apparent is that in the elastic case the location of the saddle points required to obtain a high frequency approximation are located on the real p axis. This is true of the branch points also. In a viscoelastic medium this is not typical. The saddle point corresponding to an arrival lies in the first quadrant of the complex p-plane as do the branch points. Additionally, in the elastic case the saddle point and branch points lie on a straight line drawn through the origin (the positive real axis in the complex p-plane), while in the viscoelastic case this is generally not the case and the saddle point and branch points lie in such a manner as to indicate the degree of their complex values.In this paper simple SH reflected and transmitted particle displacement arrivals due to a point torque source at the surface in a viscoelastic medium composed of a layer over a half space will be considered. The path of steepest descent defining the saddle point in the first quadrant will be parameterized in terms of a real variable and the high frequency solutions and intermediate analytic results obtained will be used to formulate more specific constraints and observations regarding saddle point location relative to branch point locations in the complex p-plane.As saddle point determination for an arrival is, in general, the solution of a non-linear equation in two unknowns (the real and imaginary parts of the complex saddle point p 0), which must be solved numerically, the use of analytical methods for investigating this problem type is somewhat limited.Numerical experimentation using well documented solution methods, such as Newton's method, was undertaken and some observations were made. Although fairly basic, they did provide for the design of algorithms for the computation of synthetic traces that displayed more efficient convergence and accuracy than those previously employed. This was the primary motivation for this work and the results from the SH problem may be used with minimal modifications to address the more complicated subject of coupled P-SV wave propagation in viscoelastic media.Another reason for revisiting a problem that has received some attention in the literature was to approach it in a fairly comprehensive manner so that a number of specific observations may be made regarding the location of the saddle point in the complex p-plane and to incorporate these into computer software. These have been found to result in more efficient algorithms for the SH wave propagation and a significant enhancement of the comparable software in the P-SV problem.  相似文献   

13.
Seismic risk analysis and mitigation of spatially extended structures require the synthesis of spatially varying ground motions in the response history analysis of these structures. These synthetic motions are usually desired to be spatially correlated, site reflected, nonstationary, and compatible with target design response spectra. In this paper, a method is presented for simulating spatially varying ground motions considering the nonstationarity, local site effects, and compatibility of response spectra. The scheme for generating spatially varying and response spectra compatible ground motions is first established for spatial locations on the ground surface with varying site conditions. The design response spectrum is introduced as the “power” spectrum at the base rock. The site amplification approach is then derived based on the deterministic wave propagation theory, by assuming that the base rock motions consist of out-of-plane SH wave or in-plane combined P and SV waves propagating into the site with assumed incident angles, from which tri-directional spatial ground motions can be generated. The phase difference spectrum is employed to model ground motions exhibiting nonstationarity in both frequency and time domains with different site conditions. The proposed scheme is demonstrated with numerical examples.  相似文献   

14.
Any calculation of seismic wave propagation comprising the seismic source, the travel path, and the receiver site in a single finite-difference (FD) model requires a considerable amount of computer time and memory. Moreover, the methods currently available for including point sources in the 2D FD calculations are far-field approximations only. Therefore we have developed a new hybrid method for treating the seismic wave fields at localized 2D near-surface structures embedded in a 1D background medium, and excited by a point source. The source radiation and propagation in the background model is solved by the discrete-wave number (DW) method, while the propagation in the local 2D structure is calculated by the FD method. The coupling between the two sets of calculations is performed on a rectangular excitation box surrounding the local structure. We show the usefulness of the method in ground-motion studies where both near-field source effects and local site effects are important. Technical problems connected with the inconsistency between the 3D source radiation and the 2D FD calculation are minor for the relatively distant in-plane point explosive sources, but are more serious for the in-plane dislocation sources.  相似文献   

15.
In this paper, closed-form analytic expressions for the frequency-wave number domain Fourier amplitudes of the displacement field at the free surface of a layered, anelastic half-space are established. The displacement field is caused by a seismic source described by a shear dislocation propagating with constant velocity over a rectangular fault (Haskell's model). Three-dimensional plane wave propagation is considered in the layered half-space using a propagator-based formalism. The wave radiation from the source is decoupled into P-SV and SH motions and the two problems are treated separately. First, analytic expressions are calculated for the displacement field at the free surface due to unidirectional unit impulses. Then, these expressions are used to compute solutions for the displacement field due to effective point sources associated with a pure strike slip and a pure dip slip. Finally, these solutions are combined and integrated over the rectangular fault area to establish closed-form analytic expressions of the total displacement field at the free surface.  相似文献   

16.
This paper presents results of numerical modelling of site response for Thessaloniki, obtained with two different 2D methods; a finite difference and a finite element method. Ground motion across a 2D model of the subsoil of the city has been simulated for vertically incident SH waves. The predominance of locally generated surface waves is very clear in the synthetic seismograms of a weak event and of stronger ones. These results are then compared with the observations in time domain and frequency domain. The role of the soil formations with high attenuation in the lateral propagation and the effect of the differential motion close to the lateral variations are also pinpointed. The stronger events were finally used to compute strong ground motion in order to reveal and to discuss practical engineering aspects such as peak ground acceleration value, the most familiar indicator in seismic norms, the soil to rock spectral coefficients for the period bandwidth of interest, and the aggravation factor in terms of 2D to 1D response spectra as a useful ruler to account for complex site effects.  相似文献   

17.
A hybrid technique consisting of modal summation and subsequent finite differences modelling is applied for the computation of synthetic accelerograms along a profile crossing the city of Zagreb, the capital of Croatia. Assuming the source geometry is known, the amplification properties of the underlying soil may be determined by comparison of synthetics and their response spectra computed for a bedrock model with the ones obtained under the assumption of a realistic laterally varying local model. The peak ground acceleration is larger by a factor of up to 3.5 than the value obtained for the bedrock model. The amplification of the response spectra is most prominent for frequencies below 2 Hz, and increases sharply to the SW from the mapped fault running through the centre of the city.  相似文献   

18.
Retrieving the parameters of a seismic source from seismograms involves deconvolving the response of the medium from seismic records. Thus, in general, source parameters are determined from both seismograms and the Green functions describing the properties of the medium in which the earthquake focus is buried. The quality of each of these two datasets is equally significant for the successful determination of source characteristics. As a rule, both sets are subject to contamination by effects that decrease the resolution of the source parameters. Seismic records are generally contaminated by noise that appears as a spurious signal unrelated to the source. Since an improper model of the medium is quite often employed, due to poor knowledge of the seismic velocity of the area under study, and since the hypocentre may be mislocated, the Green functions are not without fault. Thus, structures not modelled by Green functions are assigned to the source, distorting the source mechanism. To demonstrate these effects, we performed a synthetic case study by simulating seismic observations in the Dobrá Voda area of the Little Carpathians region of Slovakia. Simplified 1-D and 3-D laterally inhomogeneous structural models were constructed, and synthetic data were calculated using the 3-D model. Both models were employed during a moment tensor inversion. The synthetic data were contaminated by random noise up to 10 and 20 % of the maximum signal amplitude. We compared the influence of these two effects on retrieving moment tensors, and determined that a poor structural model can be compensated for by high-quality data; and that, in a similar manner, a lack of data can be compensated for by a detailed model of the medium. For examples, five local events from the Dobrá Voda area were processed.  相似文献   

19.
宁夏及周边地区爆破的基本概况   总被引:1,自引:0,他引:1  
研究收集了宁夏全区及周边地区的爆破258次,对这些爆破丛集发生的地点进行现场落实,收集爆破类型、爆破时间、炸药量等资料。从爆破分布、不同类型爆破波形特征、场地及传播路径对爆破衰减影响等三方面进行研究。结果表明:爆破的波形记录特征不仅和爆破的类型有关,不同爆破场地及波传播路径在初动、周期、衰减速度均有不同表现,并解析了存在差别的原因与台站场地响应有关。  相似文献   

20.
二维线性流变体波的有限元模拟   总被引:4,自引:7,他引:4       下载免费PDF全文
用加里津方法推导了二维线性流变体内波传播的有限元方程,方程内包含了边界项,使得处理人工边界影响有较好的结果.同时考虑了其它一些因素,例如,吸收介质、爆炸源、自激自收等.实例表明,作者在仿真性方面的努力是成功的,计算的垂直地震剖面理论地震图质量比较好,结果也显示了地表低速层对地表水平记录剖面的干扰.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号