首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sui  Linhui  Holman  Gordon D.  Dennis  Brian R.  Krucker  Säm  Schwartz  Richard A.  Tolbert  Kim 《Solar physics》2002,210(1-2):245-259
We have analyzed a C7.5 limb flare observed by RHESSI on 20 February 2002. The RHESSI images appear to show two footpoints and a loop-top source. Our goal was to determine if the data are consistent with a simple steady-state model in which high-energy electrons are continuously injected at the top of a semicircular flare loop. A comparison of the RHESSI images with simulated images from the model has made it possible for us to identify spurious sources and fluxes in the RHESSI images. We find that the RHESSI results are in many aspects consistent with the model if a thermal source is included between the loop footpoints, but there is a problem with the spectral index of the loop-top source. The thermal source between the footpoints is likely to be a low-lying loop interacting with the northern footpoint of a higher loop containing the loop-top source.  相似文献   

2.
We present a multi-frequency and multi-instrument study of the 20 January 2005 event. We focus mainly on the complex radio signatures and their association with the active phenomena taking place: flares, CMEs, particle acceleration, and magnetic restructuring. As a variety of energetic-particle accelerators and sources of radio bursts are present, in the flare – ejecta combination, we investigate their relative importance in the progress of this event. The dynamic spectra of ARTEMIS-IV – Wind/Waves – HiRAS, with 2000 MHz – 20 kHz frequency coverage, were used to track the evolution of the event from the low corona to the interplanetary space; these were supplemented with SXR, HXR, and γ-ray recordings. The observations were compared with the expected radio signatures and energetic-particle populations envisaged by the Standard Flare – CME model and the reconnection outflow termination shock model. A proper combination of these mechanisms seems to provide an adequate model for the interpretation of the observational data.  相似文献   

3.
The multi-wavelength analysis is performed on a flare on September 9, 2002 with data of Owens Valley Solar Arrays (OVSA), Big Bear Solar Observatory (BBSO), Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and Extreme UV Imager Telescope (EIT), and The Michelson Doppler Imager (MDI) on board of the Solar and Heliospheric Observatory (SOHO). The radio sources at 4.8 and 6.2 GHz located in the intersection of two flaring loops at 195 of SOHO/EIT respectively with two dipole magnetic fields of SOHO/MDI, in which one EIT loop was coincident with an X-ray loop of RHESSI at 12–25 keV, and two Hαbright kernels a1 and a2 of BBSO, respectively at the two footpoints of this loop; the second EIT loop connected another two Hαkernels b1 and b2 and radio sources at 7.8 and 8.2 GHz of OVSA. The maximum phase of microwave bursts was evidently later than that of hard X-ray bursts and Hαkernels a1 and a2, but consistent with that of Hαkernels b1 and b2. Moreover, the flare may be triggered by the interaction of the two flaring loops, which is suggested by the cross-correlation of radio, optical, and X-ray light curves of a common quasi-periodic oscillation in the rising phase, as well as two peaks at about 7 and 9 GHz of the microwave spectra at the peak times of the oscillation, while the bi-directional time delays at two reversal frequencies respectively at 7.8 and 9.4 GHz (similar to the peak frequencies of the microwave spectra) may indicate two reconnection sites at different coronal levels. The microwave and hard X-ray footpoint sources located in different EUV and optical loops may be explained by different magnetic field strength and the pitch angle distribution of nonthermal electrons in these two loops.  相似文献   

4.
Lee  Chik-Yin  Wang  Haimin 《Solar physics》2000,195(1):149-164
We analysed the hard X-ray and microwave flux spectra of the solar flare (BATSE No. 1791) on 2 November 1991, which started at 16:11:03 UT and ended at 16:56:10 UT. This flare is particularly interesting because of its deep cyclic intensity modulation. Data are available simultaneously from the 16-channel BATSE/LAD hard X-ray and 45-frequency OVRO microwave database. We quantitatively compare the time variations in profiles of the hard X-ray spectral photon index, the 50 keV X-ray flux, and microwave spectral indices (at both high and low frequency ends). As expected, the X-ray photon spectral index decreases as the hard X-ray flux increases. This pattern appears in all the sub-peaks. This is consistent with previous observations that hard X-ray emission hardens at the emission peak. However, the behaviour of the high-frequency microwave index is unexpected. We observe an anti-correlation between the high-frequency microwave index and the hard X-ray photon index during the course of the flare. Finally, we study the arrival time of microwave flux peaks as a function of frequency and find that the microwave peak at a higher frequency comes earlier than that at a lower frequency. A maximum delay of 72 s is found among the main peaks at different frequencies. Shorter delays are found for the other five sub-peaks.  相似文献   

5.
STEREO/EUVI observed 185 flare events (detected above the GOES class C1 level or at >?25 keV with RHESSI) during the first two years of the mission (December 2006?–?November 2008), while coronal mass ejections (CMEs) were reported in about a third of these events. We compile a comprehensive catalog of these EUVI-observed events, containing the peak fluxes in soft X rays, hard X rays, and EUV, as well as a classification and statistics of prominent EUV features: 79% show impulsive EUV emission (coincident with hard X rays), 73% show delayed EUV emission from postflare loops and arcades, 24% represent occulted flares, 17% exhibit EUV dimming, 5% show loop oscillations or propagating waves, and at least 3% show erupting filaments. We analyze an example of each EUV feature by stereoscopic modeling of its 3D geometry. We find that EUV emission can be dominated by impulsive emission from a heated, highly sheared, noneruptive filament, in addition to the more common impulsive EUV emission from flare ribbons or the delayed postflare EUV emission that results from cooling of the soft-X-ray-emitting flare loops. Occulted flares allow us to determine CME-related coronal dimming uncontaminated from flare-related EUV emission. From modeling the time evolution of EUV dimming we can accurately quantify the initial expansion of CMEs and determine their masses. Further, we find evidence that coronal loop oscillations are excited by the rapid initial expansion of CMEs. These examples demonstrate that stereoscopic EUV data provide powerful new methods to model the 3D aspects in the hydrodynamics of flares and kinematics of CMEs.  相似文献   

6.
太阳射电毫秒级尖峰辐射的寿命随频率增高而减小,长期以来这一直是个令人困惑的问题。本文从与Ⅲ型爆发相关的空心束分布的电子流所激发的回旋同步脉泽角度出发,详细讨论了尖峰辐射的寿命与特征频率比(ξ=ω_P/ω_B)以及波增长率的关系,最后得出:在分米波的不同波段,尖峰辐射是X模的不同次谐波,且寿命随频率增高发生相关的减小。  相似文献   

7.
本文分析了云南天文台四波段快速采样射电望远镜在1990年1月至1991年3月间记录到的毫秒级尖峰辐射事件。结合此期间S.G.D.公布的米波射电大爆发资料,给出了毫秒级尖峰辐射的各种特征,总结出毫秒级尖峰辐射同Ⅲ型、Ⅱ型和Ⅳ型太阳射电爆发的关系,最后做出了相应的解释和讨论。  相似文献   

8.
9.
Rolli  E.  Wülser  J. P.  Magun  A. 《Solar physics》1998,180(1-2):361-375
The 20 August 1992 flare around 14:28 UT was observed in H, H and Ca ii H with the imaging spectrographs at Locarno-Monti, Switzerland, with the radiotelescopes in Bern, and in soft and hard X-rays by the Yohkoh satellite. In this paper we discuss the analysis of the temporal and spatial evolution of this flare, well observed at chromospheric and coronal layers. We find that the chromospheric electron density shows well-correlated rises with the hard X-rays emphasizing the direct response of the chromosphere to the energy deposition. Although both footpoints of the loops show simultaneous rises of the electron density, non-thermal electron injection is only observed in one of the footpoints, while an additional heating mechanism, like thermal conduction, must be assumed for the other footpoint. However, it is puzzling that all the chromospheric observations in both footpoints are delayed by 3 s compared to the hard X-ray light curve. Although this would be compatible with the thermal heating of one footpoint, it is in contradiction to the non-thermal heating of the other one. Finally, we observed evidence that during the first part of the flare a thermal conduction front propagates at a speed of 2000 km s-1 into a second loop, in which the energy release occurs in the second part of the flare.  相似文献   

10.
Observations of a solar flare at 617 MHz with the Giant Meter-wave Radio Telescope (GMRT) are used to study the morphology of flare radio emission at decimetric wavelengths. There has been very little imaging in the 500 – 1000 MHz frequency range, but it is of great interest, since it corresponds to densities at which energy is believed to be released in solar flares. This event has a very distinctive morphology at 617 MHz: the radio emission is clearly resolved by the 30″ beam into arc-shaped sources seeming to lie at the tops of long loops, anchored at one end in the active region in which the flare occurs, with the other end lying some 200 000 km away in a region of quiet solar atmosphere. Microwave images show fairly conventional behaviour for the flare in the active region: it consists of two compact sources overlying regions of opposite magnetic polarity in the photosphere. The decimetric emission is confined to the period leading up to the impulsive phase of the flare, and does not extend over a wide frequency range. This fact suggests a flare mechanism in which the magnetic field at considerable height in the corona is destabilized a few minutes prior to the main energy release lower in the corona. The radio morphology also suggests that the radiating electrons are trapped near the tops of magnetic loops, and therefore may have pitch angles near 90˚.  相似文献   

11.
日食为射电天文提供了一维高空间分辨率太阳射电观测机会.日食射电观测在太阳射电物理的发展上起过重要的作用.文中对日食射电观测的若干重要因素作了介绍和分析.日食射电观测在我国太阳射电天文发展上也起了重要作用.文中简要介绍了在我国组织观测的1958年、1968年、1980年及1987年的太阳射电日食观测及其主要结果.  相似文献   

12.
The current fleet of space-based solar observatories offers us a wealth of opportunities to study solar flares over a range of wavelengths. Significant advances in our understanding of flare physics often come from coordinated observations between multiple instruments. Consequently, considerable efforts have been, and continue to be, made to coordinate observations among instruments (e.g. through the Max Millennium Program of Solar Flare Research). However, there has been no study to date that quantifies how many flares have been observed by combinations of various instruments. Here we describe a technique that retrospectively searches archival databases for flares jointly observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE – Multiple EUV Grating Spectrograph (MEGS)-A and -B, Hinode/(EUV Imaging Spectrometer, Solar Optical Telescope, and X-Ray Telescope), and Interface Region Imaging Spectrograph (IRIS). Out of the 6953 flares of GOES magnitude C1 or greater that we consider over the 6.5 years after the launch of SDO, 40 have been observed by 6 or more instruments simultaneously. Using each instrument’s individual rate of success in observing flares, we show that the numbers of flares co-observed by 3 or more instruments are higher than the number expected under the assumption that the instruments operated independently of one another. In particular, the number of flares observed by larger numbers of instruments is much higher than expected. Our study illustrates that these missions often acted in cooperation, or at least had aligned goals. We also provide details on an interactive widget (Solar Flare Finder), now available in SSWIDL, which allows a user to search for flaring events that have been observed by a chosen set of instruments. This provides access to a broader range of events in order to answer specific science questions. The difficulty in scheduling coordinated observations for solar-flare research is discussed with respect to instruments projected to begin operations during Solar Cycle 25, such as the Daniel K. Inouye Solar Telescope, Solar Orbiter, and Parker Solar Probe.  相似文献   

13.
利用日本“Yohkoh”卫星的资料及北京天文台2840MHz的射电观测资料,对1992年6月7日的太阳爆发事件进行了分析,结果表明,在这次爆发的脉冲相期间存在着大小两种时间尺度的脉动分量,大尺度的脉动周期约为30s,小尺度脉动周期为1-4s。利用硬X射线成像观测结果,发现大尺度的脉动与硬X射线源区的一系列变化相对应。文中给出了一个环-环相互作用的MHD振荡调制物理图像。  相似文献   

14.
Krucker  Säm  Lin  R.P. 《Solar physics》2002,210(1-2):229-243
Hard X-ray lightcurves, spectrograms, images, and spectra of three medium-sized flares observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) are presented. Imaging spectroscopy of the 20 February 2002, 11:06 UT flare at 10′′ spatial resolution, comparable to the best previous hard X-ray imaging from Yohkoh, shows two footpoints with an ∼ 8 s delay of peak emission between footpoints. Subsequent imaging at le4′′ shows three sources consistent with two separate loops and simultaneous brightening in connected footpoints. Imaging for the simple two footpoint flare of 2 June 2002 also shows simultaneous footpoint brightening. The more complex 17 March 2002 flare shows at least four different sources during the main peak of the event, and it is difficult to clearly demonstrate simultaneous brightening of connected footpoints. Non-thermal power laws are observed down to ∼ 12–13 keV without flattening in all these events, indicating the energy content in energetic electrons may be significantly greater than previously estimated from assumed 25 keV low energy cutoff. Simultaneously brightening footpoints show similar spectra, at least in the three flares investigated. Double-power-law spectra with a relatively sharp break are often observed. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1022469902940  相似文献   

15.
统计分析了太阳22周峰年期间云南天文台声光频谱仪在230—300MHz频率范围,记录到的Ⅲ型爆发和毫秒级快速脉动共存事件。发现有两种不同的脉动现象:(1)普通型脉动;(2)包迹型脉动,并在此基础上对Ⅲ型一脉动共存事件与之对应的光学活动及相关事件,脉动的形态、周期、带宽等观测特征作了分析和讨论。  相似文献   

16.
Chiuderi Drago  F.  Alissandrakis  C.E.  Bastian  T.  Bocchialini  K.  Harrison  R.A. 《Solar physics》2001,199(1):115-132
In this paper we compare simultaneous extreme ultraviolet (EUV) line intensity and microwave observations of a filament on the disk. The EUV line intensities were observed by the CDS and SUMER instruments on board SOHO and the radio data by the Very Large Array and the Nobeyama radioheliograph. The main results of this study are the following: (1) The Lyman continuum absorption is responsible for the lower intensity observed above the filament in the EUV lines formed in the transition region (TR) at short wavelengths. In the TR lines at long wavelengths the filament is not visible. This indicates that the proper emission of the TR at the filament top is negligible. (2) The lower intensity of coronal lines and at radio wave lengths is due to the lack of coronal emission: the radio data supply the height of the prominence, while EUV coronal lines supply the missing hot matter emission measure (EM). (3) Our observations support a prominence model of cool threads embedded in the hot coronal plasma, with a sheath-like TR around them. From the missing EM we deduce the TR thickness and from the neutral hydrogen column density, derived from the Lyman continuum and Hei absorption, we estimate the hydrogen density in the cool threads.  相似文献   

17.
Chertok  I.M.  Kahler  S.  Aurass  H.  Gnezdilov  A.A. 《Solar physics》2001,202(2):337-354
We discuss a little-known variety of sharp decreases of long-duration meter-wavelength noise storms and type IV bursts. A survey of the IZMIRAN and AIP radio observations shows that a decrease or nearly complete disappearance of the continuum and bursts developing over tens of minutes without a subsequent recovery of the radio flux occasionally occurs. The decrease is usually preceded by a short-duration (several tens of minutes) enhancement of the radio emission. In these events, the onset of the flux decrease drifts from high to low frequencies with a rate of –(0.05–0.35) MHz s–1, comparable to the drift rates of noise-storm onsets and of chains of type I bursts. White-light coronagraph observations, as well as the characteristics of the accompanying microwave and soft X-ray emissions, provide evidence that such radio decreases appear to be associated with coronal mass ejections (CMEs) and post-CME phenomena. Yohkoh/SXT images show radio flux decrease events which are accompanied by significant rearrangements of coronal structures. We suggest that the radio flux variations are caused by CME interactions with pre-existing coronal arcade structures which are sources of noise storms and energetic electron acceleration. The fact that the noise-storm decreases develop with delays of several tens of minutes relative to the associated microwave burst peak, when the corresponding CME front is located at heights of several R , however, is not explained.  相似文献   

18.
This paper presents the latest observations from the newly built solar radio spectrograph at the Chashan Solar Observatory. On July 18, 2016, the spectrograph records a solar spike burst event, which has several episodes showing harmonic structures, with the second, third, and fourth harmonics. The lower harmonic radio spike emissions are observed later than the higher harmonic bands, and the temporal delay of the second (third) harmonic relative to the fourth harmonic is about 30?–?40 (10) ms. Based on the electron cyclotron maser emission mechanism, we analyze possible causes of the temporal delay and further infer relevant coronal parameters, such as the magnetic field strength and the electron density at the radio source.  相似文献   

19.
Hong  Zhenxiang  Li  Dong  Zhang  Minghui  Tan  Chengming  Ma  Suli  Ji  Haisheng 《Solar physics》2021,296(11):1-28

We have performed a search for flares and quasi-periodic pulsations (QPPs) from low-mass M-dwarf stars using Transient Exoplanet Survey Satellite (TESS) two-minute cadence data. We find seven stars that show evidence of QPPs. Using Fourier and empirical mode decomposition techniques, we confirm the presence of 11 QPPs in these seven stars with a period between 10.2 and 71.9 minutes, including an oscillation with strong drift in the period and a double-mode oscillation. The fraction of flares that showed QPPs (7%) is higher than other studies of stellar flares, but it is very similar to the fraction of solar C-class flares. Based on the stellar parameters taken from the TESS Input Catalog, we determine the lengths and magnetic-field strengths of the flare coronal loops using the period of the QPPs and various assumptions about the origin of the QPPs. We also use a scaling relationship based on flares from the Sun and solar-type stars and the observed energy, plus the duration of the flares, finding that the different approaches predict loop lengths that are consistent to within a factor of about two. We also discuss the flare frequency of the seven stars determining whether this could result in ozone depletion or abiogenesis in any orbiting exoplanet. Three of our stars have a sufficiently high rate of energetic flares, which are likely to cause abiogenesis. However, two of these stars are also in the range where ozone depletion is likely to occur. We speculate on the implications of the flare rates, loop lengths, and QPPs for life on potential exoplanets orbiting in their host star’s habitable zone.

  相似文献   

20.
This work demonstrates the possibility of magnetic-field topology investigations using microwave polarimetric observations. We study a solar flare of GOES M1.7 class that occurred on 11 February, 2014. This flare revealed a clear signature of spatial inversion of the radio-emission polarization sign. We show that the observed polarization pattern can be explained by nonthermal gyrosynchrotron emission from the twisted magnetic structure. Using observations of the Reuven Ramaty High Energy Solar Spectroscopic Imager, Nobeyama Radio Observatory, Radio Solar Telescope Network, and Solar Dynamics Observatory, we have determined the parameters of nonthermal electrons and thermal plasma and identified the magnetic structure where the flare energy release occurred. To reconstruct the coronal magnetic field, we use nonlinear force-free field (NLFFF) and potential magnetic-field approaches. Radio emission of nonthermal electrons is simulated by the GX Simulator code using the extrapolated magnetic field and the parameters of nonthermal electrons and thermal plasma inferred from the observations; the model radio maps and spectra are compared with observations. We have found that the potential-magnetic-field approach fails to explain the observed circular polarization pattern; on the other hand, the Stokes-\(V\) map is successfully explained by assuming nonthermal electrons to be distributed along the twisted magnetic structure determined by the NLFFF extrapolation approach. Thus, we show that the radio-polarization maps can be used for diagnosing the topology of the flare magnetic structures where nonthermal electrons are injected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号