首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fresh groundwater reserves on small coral islands are under continual threat of salinization and contamination because of droughts, storm‐surge overwash events, over‐extraction, island community urbanization, and sea level rise. Whereas storm‐surge overwash events can cause sudden groundwater salinization, long‐term changes in rainfall patterns and sea level elevation have the potential of rendering these islands uninhabitable in the coming decades. This study demonstrates the use of a tested freshwater lens thickness simulator to estimate the groundwater resources of a set of atoll islands in the coming decades. The method uses ranges of projected rates of annual rainfall and sea level rise (SLR) to provide a range of probable lens thickness for each island. Projected rainfall is provided by General Circulation Models that accurately replicate the historical rainfall patterns in the geographic region of the islands. Methodology is applied to 68 atoll islands in the Federated States of Micronesia. These islands have widths that range between 150 and 1000 m, and experience annual rainfall rates of between 2.8 and 4.8 m. Results indicate that under average conditions of SLR, beach slope, and rainfall, almost half of the island will experience a 20% decrease in lens thickness by the year 2050. For worst‐case scenarios (high SLR, low rainfall), average decrease in lens thickness is 55%, with almost half of the islands experiencing a decrease of greater than 75% and half of the islands having a lens thickness less than 1.0 m. Small islands (widths less than 400 m) are particularly vulnerable because of shoreline recession. Groundwater on islands in the western region is less vulnerable to SLR because of a projected increase in rainfall during the coming decades. Results indicate the vulnerability of small islands to changing climatic conditions, and can be used for water resources management and community planning. Methodology can be applied to any group of islands as a first approximation of the effect of future climate conditions on groundwater resources. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Allan Rodhe  Jan Seibert 《水文研究》2011,25(12):1899-1909
Knowledge of groundwater dynamics is important for the understanding of hydrological controls on chemical processes along the water flow pathways. To increase our knowledge of groundwater dynamics in areas with shallow groundwater, the groundwater dynamics along a hillslope were studied in a boreal catchment in Southern Sweden. The forested hillslope had a 1‐ to 2‐m deep layer of sandy till above bedrock. The groundwater flow direction and slope were calculated under the assumption that the flow followed the slope of the groundwater table, which was computed for different triangles, each defined by three groundwater wells. The flow direction showed considerable variations over time, with a maximum variation of 75°. During periods of high groundwater levels the flow was almost perpendicular to the stream, but as the groundwater level fell, the flow direction became gradually more parallel to the stream, directed in the downstream direction. These findings are of importance for the interpretation of results from hillslope transects, where the flow direction usually is assumed to be invariable and always in the direction of the hillslope. The variations in the groundwater flow direction may also cause an apparent dispersion for groundwater‐based transport. In contrast to findings in several other studies, the groundwater level was most responsive to rainfall and snowmelt in the upper part of the hillslope, while the lower parts of the slope reached their highest groundwater level up to 40 h after the upper parts. This can be explained by the topography with a wetter hollow area in the upper part. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Numerical Modeling of Atoll Island Hydrogeology   总被引:3,自引:0,他引:3  
We implemented Ayers and Vachers' (1986) inclusive conceptual model for atoll island aquifers in a comprehensive numerical modeling study to evaluate the response of the fresh water lens to selected controlling climatic and geologic variables. Climatic factors include both constant and time-varying recharge rates, with particular attention paid to the effects of El Niño and the associated drought it brings to the western Pacific. Geologic factors include island width; hydraulic conductivity of the uppermost Holocene-age aquifer, which contains the fresh water lens; the depth to the contact with the underlying, and much more conductive, Pleistocene karst aquifer, which transmits tidal signals to the base of the lens; and the presence or absence of a semiconfining reef flat plate on the ocean side. Sensitivity analyses of steady-steady simulations show that lens thickness is most strongly sensitive to the depth to the Holocene-Pleistocene contact and to the hydraulic conductivity of the Holocene aquifer, respectively. Comparisons between modeling results and published observations of atoll island lens thicknesses suggest a hydraulic conductivity of approximately 50 m/d for leeward islands and approximately 400 m/d for windward islands. Results of transient simulations show that lens thickness fluctuations during average seasonal conditions and El Niño events are quite sensitive to island width, recharge rate, and hydraulic conductivity of the Holocene aquifer. In general, the depletion of the lens during drought conditions is most drastic for small, windward islands. Simulation results suggest that recovery from a 6-month drought requires about 1.5 years.  相似文献   

5.
Micro-erosion meter sites, installed on Aldabra Atoll, Indian Ocean in 1969 to measure erosion rates in coastal and subaerial sites, were remeasured in 1971 and again in 1982. The orders of magnitude of calculated erosion rates are comparable but the precise figures and patterns differ. For subaerial sites the short term (1969–71) range of 0·11–0·58 mm a?1 compares with a long term (1971–82) range of 0·06–0·75 mm a?1; for coastal sites short term ranges of 0·002–7·5 mm a?1 compare with long term rates of 0·09–2·7 mm a?1. Interpretation and extrapolation of short term data should only be made with caution.  相似文献   

6.
This paper describes the in situ response of groundwater biofilms in an alluvial gravel aquifer system on the Canterbury Plains, New Zealand. Biofilms were developed on aquifer gravel, encased in fine mesh bags and suspended in protective columns in monitoring wells for at least 20 weeks. Four sites were selected in the same groundwater system where previous analyses indicated a gradient of increasing nitrate down the hydraulic gradient from Sites 1 to 4. Measurements during the current study classified the groundwater as oligotrophic. Biofilm responses to the nutrient gradients were assessed using bioassays, with biomass determined using protein and cellular and nucleic acid staining and biofilm activity using enzyme assays for lipid, carbohydrate, phosphate metabolism, and cell viability. In general, biofilm activity decreased as nitrate levels increased from Sites 1 to 4, with the opposite relationship for carbon and phosphorus concentrations. These results showed that the groundwater system supported biofilm growth and that the upper catchment supported efficient and productive biofilms (high ratio of activity per unit biomass).  相似文献   

7.
Baseline measurements were made of the amount and weight of beached marine debris on Sand Island, Midway Atoll, June 2008-July 2010. On 23 surveys, 32,696 total debris objects (identifiable items and pieces) were collected; total weight was 740.4 kg. Seventy-two percent of the total was pieces; 91% of the pieces were made of plastic materials. Pieces were composed primarily of polyethylene and polypropylene. Identifiable items were 28% of the total; 88% of the identifiable items were in the fishing/aquaculture/shipping-related and beverage/household products-related categories. Identifiable items were lowest during April-August, while pieces were at their lowest during June-August. Sites facing the North Pacific Gyre received the most debris and proportionately more pieces. More debris tended to be found on Sand Island when the Subtropical Convergence Zone was closer to the Atoll. This information can be used for potential mitigation and to understand the impacts of large-scale events such as the 2011 Japanese tsunami.  相似文献   

8.
9.
Sampling of seagrass cover and sediment nutrients was undertaken in lagoonal habitats of Laamu Atoll (Republic of Maldives) adjacent to three traditional fishing villages (fishing the predominant economic activity for more than 30 yr), three other villages (not traditional landing sites), and four uninhabited islands to determine if chronic input of organic fishing waste from the traditional fishing villages could explain spatial distribution of seagrass cover. Results indicated significantly greater cover of seagrass at the traditional fishing village sites than the other two site groups. Analysis of dried sediments showed sediments at traditional fishing village sites were significantly enriched with phosphorus, though no significant difference in nitrogen was found between groups of sites. These results, together with studies showing that sediment nutrient pools can limit seagrass bed development, suggest that anthropogenic enrichment of lagoonal sediments by fishing waste over generational time scales may have caused substantial proliferation of seagrass beds.  相似文献   

10.
11.
12.
13.
14.
Human impacts on sand-producing, large benthic foraminifers were investigated on ocean reef flats at the northeast Majuro Atoll, Marshall Islands, along a human population gradient. The densities of dominant foraminifers Calcarina and Amphistegina declined with distance from densely populated islands. Macrophyte composition on ocean reef flats differed between locations near sparsely or densely populated islands. Nutrient concentrations in reef-flat seawater and groundwater were high near or on densely populated islands. δ15N values in macroalgal tissues indicated that macroalgae in nearshore lagoons assimilate wastewater-derived nitrogen, whereas those on nearshore ocean reef flats assimilate nitrogen from other sources. These results suggest that increases in the human population result in high nutrient loading in groundwater and possibly into nearshore waters. High nutrient inputs into ambient seawater may have both direct and indirect negative effects on sand-producing foraminifers through habitat changes and/or the collapse of algal symbiosis.  相似文献   

15.
A systematic study of the chemo-isotopic characteristics and origin of the groundwater was carried out at six major qanats in the hyper-arid Gonabad area, eastern Iran. These qanats as a sustainable groundwater extraction technology have a long history, supporting human life for more than a thousand years in this region. The Gonabad qanats are characterized by outlet electrical conductivity (EC) values of 750 to 3900 µS/cm and HCO3-Na-Mg and Cl-Na water types. The Gonabad meteoric water line (GnMWL) was drawn at the local scale as δ2H = 6.32×δ18O + 8.35 (with R2 = 0.90). It has a lower slope and intercept than the global meteoric water line due to different water vapor sources and isotope kinetic fractionation effects during precipitation in this arid region. The altitude effects on isotopic content of precipitation data were derived as δ18O = (−0.0031 × H(m.a.s.l))−1.3). The δ2H and δ18O isotopes signatures demonstrate a meteoric origin of the groundwater of these qanats. The shift of the qanat's water samples from the local meteoric water line (LMWL) in a dry period with higher temperatures is most probably due to evaporation during the infiltration process and water movement in qanat gallery. Based on the isotopic results and mass balance calculations, the qanats are locally recharged from an area between 2000 to 2400 m.a.s.l of nearby carbonate formations and coarse alluvial sediments. The dissolution of evaporate interlayers in Neogene deposits deteriorates the groundwater quality, especially in Baidokht qanat.  相似文献   

16.
17.
Inundation of atoll islands by marine overwash is a serious threat to fresh groundwater, which can be a critical emergency water resource after artificial storage or other water resource infrastructure has been exhausted or destroyed. In contrast to drought, which slowly exhausts water supplies and often can be forecasted in time, overwash can occur with little warning and can ruin both rain catchment storage and groundwater reserves. In this study, a SUTRA‐based model is applied to estimate how groundwater contamination by overwash and subsequent recovery of fresh groundwater are influenced by geologic factors (aquifer hydraulic conductivity, dispersivity, and the presence or absence of a reef flat plate), the seasonal timing of the event (wet vs. dry), and the presence of hand‐dug wells that penetrate the reef flat plate. Actual tidal and rainfall data from regions in the western Pacific are applied to simulated 30‐month recovery periods for hypothetical islands with properties and conditions characteristic of the western Pacific. For all scenarios, results indicate that 12 to 16 months are required to achieve 60% recovery of fresh groundwater. However, the time required to restore useful quantities of groundwater to acceptable salt concentration at depths typical of hand‐dug wells is only 3 to 6 months. Of particular interest is the influence of the reef flat plate, which acts as a barrier to infiltrating seawater, thus preserving a pocket of confined freshwater during an overwash event and the recovery, which could probably be utilized if the necessary tools and equipment are on hand.  相似文献   

18.
Two interdisciplinary cruises aimed at relating the ecology of marine fish populations to oceanographic conditions were fielded during the late summer and late winter seasons near Palmyra Atoll (5.9°N, 162.1°W) in the Line Islands. Ocean current and hydrographic measurements revealed interaction of the flow with the steep topography. During the first cruise (August/September 1990) satellite-tracked surface drifters and acoustic Doppler current profiler (ADCP) measurements showed a strong eastward setting North Equatorial Counter Current (NECC) with maximum speeds exceeding 1 m s–1 at 80 m depth approximately. This current turned southeastward on closer approach to Palmyra. The drifter paths exhibited excursions with zonal wavelength of approximately 250 km, meridional amplitude of 25 km and period of approximately 5 days. During the second cruise (February/March 1992), the ADCP-derived speeds of the NECC were weaker (maxima approximately 33 cm s–1) while the relative geostrophic flow component was of magnitude similar to 1990 and the signal of zonal geostrophic currents reached much deeper to approximately 650 m depth (150 m in 1990). Doming isopycnals beneath the surface mixed layer as well as thick (10–25 m) internal mixed layers were found near Palmyra during both cruises, with slightly different positions relative to the island. The discontinuous vertical temperature profiles may have been a result of strong boundary mixing due to breaking internal waves on Palmyras steep slopes. In the immediate vicinity of the island variations in flow speed, stratification and mixing in both the alongshore and cross-isobath directions were observed. Overall, the current speeds were reduced during February/March 1992, the peak time of the 1991–1993 warm event in the tropical Pacific. While parameters of turbulent two-dimensional wake theory are suggestive of formation and shedding of eddies in the lee of the island, no direct observations of circular motions were made in either expedition.Responsible Editor: Hans Burchard  相似文献   

19.
A hydrogeological investigation of the Bandung area, Java, Indonesia, is described. The investigation was carried out as part of a feasibility study directed towards improvement and development of the city's water supply.The area is situated in a tropic mountainous region, dominated by pyroclastic volcanic deposits and with abundant rainfall. The main activities of the investigation were compilation and evaluation of existing climatological and hydrogeological data, testing of four existing wells, a geo-electrical survey, drilling and testing of a new test well, study of water quality by analysis of samples from both springs and wells, and measurements of spring yields.The results of the investigation indicated presence of large groundwater resources within a distance of 15–20 km from the city. The feasibility study recommended that Bandung's water supply be based on these groundwater resources and this recommendation is being implemented.During the investigation some results concerning rainfall, infiltration, aquifers, geoelectrical surveying, and groundwater quality were obtained, which may be of general interest for hydrologists and geologists working in tropical volcanic and mountainous regions. These results are summarized in the conclusion of this paper.  相似文献   

20.
A community-based, real-time, groundwater level monitoring network consisting of 11 sites was built in Nova Scotia, Canada, using privately owned domestic wells and low-cost, custom-made water level meters. The real-time meters use an ultrasonic sensor to measure water levels and an Internet-of-Things device to transmit the data to the Internet by WiFi or cellular connection. The water level data are plotted in real-time on a time-series graph and are available immediately for online viewing and downloading. Based on observations at three sites, the real-time water level meter data compare well to pressure transducer measurements, with mean absolute errors of less than 0.02 m. The meters are simple to build, and components are readily available from online suppliers at low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号