首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 93 毫秒
1.
In areas with topographic heterogeneity, land use change is spatially variable and influenced by climate, soil properties, and topography. To better understand this variability in the high-sediment region of the Loess Plateau in which soil loss is most severe and sediment diameter is larger than in other regions of the plateau, this study builds some indicators to identify the characteristics of land use change and then analyze the spatial variability as it is affected by climate, soil property, and topography. We build two indicators, a land use change intensity index and a vegetation change index, to characterize the intensity of land use change, and the degree of vegetation restoration, respectively. Based on a subsection mean method, the two indicators are then used to assess the spatial variability of land use change affected by climatic, edaphic, and topographic elements. The results indicate that: 1) Land use changed significantly in the period 1998-2010. The total area experiencing land use change was 42,302 km2, accounting for 22.57%of the study area. High-coverage grassland, other woodland, and forest increased significantly, while low-coverage grassland and farmland decreased in 2010 compared with 1998.2) Land use change occurred primarily west of the Yellow River, between 35 and 38 degrees north latitude. The four transformation types, including (a) low-coverage grassland to medium-coverage grassland, (b) medium-coverage grassland to high-coverage grassland, (c) farmland to other woodland, and (d) farmland to medium-coverage grassland, were the primary types of land use change, together constituting 60% of the area experiencing land use change. 3) The spatial variability of land use change was significantly affected by properties of dryness/wetness, soil conditions and slope gradient. In general, land use changed dramatically in semi-arid regions, remained relatively stable in arid regions, changed significantly in clay-rich soil, remained relatively stable in clay-poor soil, changed dramatically in steeper slopes, and remained relatively stable in tablelands and low-lying regions. The increase in vegetation coincided with increasing changes in land use for each physical element. These findings allow for an evaluation of the effect of the Grain to Green Program, and are applicable to the design of soil and water conservation projects on the Loess Plateau of China.  相似文献   

2.
Serious soil erosion is one of the major issues threatening sustainable land use in semiarid areas, especially in the Loess Plateau of China. Understanding the effects of land use on soil and water loss is important for sustainable land use strategy. Two sub-catchments: catchment A (CA) and catchment B (CB) with distinct land uses were selected to measure soil moisture, runoff and soil nutrient loss in Da Nangou catchment of the Loess Plateau of China. The effects of land use patterns on runoff and nutrient losses were analyzed based on soil moisture pattern by kriging and soil nutrients using multiple regression model. The results indicated that there were significant differences in runoff yield and soil nutrient losses between the two sub-catchments. With similar land uses, the CA produced an average sediment yield of 49 kg ha-1 and 22.27 kg ha-1 during two storm events.Meanwhile, there was almost no runoff in the CB with dissimilar land uses during the same events.Buffer zones should be established to re-absorb runoff and to trap sediments in catchment with similar land use structure such as the CA. Moreover, land use management strategy aiming to increase the infiltration threshold of hydrological response units could decrease the frequency of runoff occurrence on a slope and catchment scale.  相似文献   

3.
Serious soil erosion is one of the major issues threatening sustainable land use in semiarid areas, especially in the Loess Plateau of China. Understanding the effects of land use on soil and water loss is important for sustainable land use strategy. Two sub-catchments: catchment A (CA) and catchment B (CB) with distinct land uses were selected to measure soil moisture, runoff and soil nutrient loss in Da Nangou catchment of the Loess Plateau of China. The effects of land use patterns on runoff and nutrient losses were analyzed based on soil moisture pattern by kriging and soil nutrients using multiple regression model. The results indicated that there were significant differences in runoff yield and soil nutrient losses between the two sub-catchments. With similar land uses, the CA produced an average sediment yield of 49 kg ha-1 and 22.27 kg ha-1 during two storm events. Meanwhile, there was almost no runoff in the CB with dissimilar land uses during the same events. Buffer zones should be established to re-absorb runoff and to trap sediments in catchment with similar land use structure such as the CA. Moreover, land use management strategy aiming to increase the infiltration threshold of hydrological response units could decrease the frequency of runoff occurrence on a slope and catchment scale.  相似文献   

4.
山区土地利用/覆被变化对土壤侵蚀的影响   总被引:36,自引:6,他引:36  
本文以福建省山区为例,在对福建省水土保持实验站、建瓯市牛坑龙水土保持试验站长期观测、实验资料深入分析对比的基础之上,探讨了土地利用/土地覆被变化对土壤侵蚀的影响规律。分析结果表明,土地利用/土地覆被变化对径流的产生和土壤侵蚀有重要影响,植被的覆盖度的变化直接影响着径流系数和土壤侵蚀模数;植被的覆盖度和径流系数呈负线性关系,随着覆盖度的增加径流系数逐渐减小;植被覆盖度和土壤侵蚀模数为负指数关系,随着植被覆盖度的增大,土壤侵蚀模数急剧下降。  相似文献   

5.
Five typical land covers in West Tiaoxi catchment of China, including mulberry garden, bamboo forest, pinery, vegetable plot and paddy field, were studied on nitrogen loss in artificial rainstorm runoff and sediment. Triple duplication experiments have been carried out under the artificial rain condition with an intensity of 2 mm.mm−1 and lasting 32 minutes in 3 m2 field. Export of various species of nitrogen in runoff and sediment were investigated. The results show that nitrogen loss amount and rate are quite different among five kinds of land covers. The loss of total nitrogen in runoff of mulberry is the largest and that of paddy field is the smallest. Particle nitrogen accounts for 70–90% of total nitrogen in runoff of various kinds of land covers. Loss of dissolved nitrogen in pinery is much higher than in other kinds of land covers, which are similar among them. More detailed species of dissolved nitrogen show their respective features among various land covers. Total amounts of nitrogen loss from the top 10 cm layer of 5 kinds of soils are estimated as high as 4.66–9.40 g.m−2, of which nitrogen loss through sediment of runoff accounts for more than 90%. The rate of total nitrogen losses are ranged in 2.68–14.48 mg.m−2.min−1 in runoff, which is much lower than that of 100.01–172.67 mg.m−2.min−1 in sediment of runoff.  相似文献   

6.
Soil erosion has become a major global environmental problem and is particularly acute on the Loess Plateau (LP), China. It is therefore highly important to control this process in order to improve ecosystems, protect ecological security, and maintain the harmonious relationship between humans and nature. We compared the effects of rainfall and land use (LU) patterns on soil erosion in different LP watersheds in this study in order to augment and improve soil erosion models. As most research on this theme has so far been focused on individual study areas, limited analyses of rainfall and LU patterns on soil erosion within different- scale watersheds has so far been performed, a discrepancy which might influence the simulation accuracies of soil erosion models. We therefore developed rainfall and LU pattern indices in this study using the soil erosion evaluation index as a reference and applied them to predict the extent of this process in different-scale watersheds, an approach which is likely to play a crucial role in enabling the comprehensive management of this phenomenon as well as the optimized design of LU patterns. The areas considered in this study included the Qingjian, Fenchuan, Yanhe, and Dali river watersheds. Results showed that the rainfall erosivity factor (R) tended to increase in these areas from 2006 to 2012, while the vegetation cover and management factor (C) tended to decrease. Results showed that as watershed area increased, the effect of rainfall pattern on soil erosion gradually decreased while patterns in LU trended in the opposite direction, as the relative proportion of woodland decreased and the different forms of steep slope vegetation cover became more homogenous. As watershed area increased, loose soil and craggy terrain properties led to additional gravitational erosion and enhanced the effects of both soil and topography.  相似文献   

7.
In this study, short-term gully retreat was monitored from the active gullies selected in representative black soil area, using differential global positioning system (GPS). With the support of geographic information system (GIS), multi-temporal digital elevation models (DEM) were constructed from the data collected by GPS and used for further analysis. Based on the analysis of multi-temporal DEM, we discussed the erosion–deposition characteristics within gully and a developing model for black soil gully area of Northeast China was proposed. The results are: (1) The analysis of the monitored gully data in 2004 indicated that the retreat of gully head reached more than 10 m, gully area extended 170–400 m2, net gully eroded volume 220–320 m3,and gully erosion modulus 2200–4800 t?km?2?a?1. (2) Compared with the mature gully the initial gully grows rapidly, and its erosion parameters are relatively large. The erosion parameters have not only to do with flow energy, but also with the growth phase. (3) There are significant seasonal differences in gully erosion parameters. The extension of gully area and width dominates in winter and spring without marked net erosion while changes mainly occur in gully head and net erosion in rainy season. (4) It is remarkable for freeze-thaw erosion in the black soil area of NE China. The gully wall of SG2 extended 0.45 m under freeze-thaw effect in 2004, and the distance of gully head retreated maximally 6.4 m. (5) Due to freeze-thaw action and snowmelt, gully is primarily in the interior adjustment process in winter and early spring. There are much more depositions compared with that during rainy season, which can almost happen throughout the gully, while erosion mostly occurs near head, esp. for gullies having a relatively long history of development. On the other hand, the process of energy exchange with exterior dominates in rainy season. It is considered that this cyclic process is an important mechanism for gully growth in high latitude or/and high attitude regions.  相似文献   

8.
中国东北漫岗黑土区切沟侵蚀发育特征   总被引:4,自引:0,他引:4  
In this study, short-term gully retreat was monitored from the active gullies selected in representative black soil area, using differential global positioning system (GPS). With the support of geographic information system (GIS), multi-temporal digital elevation models (DEM) were constructed from the data collected by GPS and used for further analysis. Based on the analysis of multi-temporal DEM, we discussed the erosion-deposition characteristics within gully and a developing model for black soil gully area of Northeast China was proposed. The results are: (1) The analysis of the monitored gully data in 2004 indicated that the retreat of gully head reached more than 10 m, gully area extended 170–400 m2, net gully eroded volume 220–320 m3, and gully erosion modulus 2200–4800 t·km−2·a−1. (2) Compared with the mature gully the initial gully grows rapidly, and its erosion parameters are relatively large. The erosion parameters have not only to do with flow energy, but also with the growth phase. (3) There are significant seasonal differences in gully erosion parameters. The extension of gully area and width dominates in winter and spring without marked net erosion while changes mainly occur in gully head and net erosion in rainy season. (4) It is remarkable for freeze-thaw erosion in the black soil area of NE China. The gully wall of SG2 extended 0.45 m under freeze-thaw effect in 2004, and the distance of gully head retreated maximally 6.4 m. (5) Due to freeze-thaw action and snowmelt, gully is primarily in the interior adjustment process in winter and early spring. There are much more depositions compared with that during rainy season, which can almost happen throughout the gully, while erosion mostly occurs near head, esp. for gullies having a relatively long history of development. On the other hand, the process of energy exchange with exterior dominates in rainy season. It is considered that this cyclic process is an important mechanism for gully growth in high latitude or/and high attitude regions. Foundation: Key Project for National Natural Science Foundation of China, No.40235056; The Ph.D. Programs Foundation of Ministry of Education of China, No.20030027015; China Postdoctoral Science Foundation, No.20070410482; Doctoral Foundation of University of Jinan, No.B0620; National Natural Science Foundation of China, No.40672158; Key Subject Foundation Supported by Shandong Province Author: Hu Gang (1976–), Ph.D and Associate Professor, specialized in soil erosion, environmental evolution and regional planning.  相似文献   

9.
钟莉娜  王军  赵文武 《地理学报》2017,72(3):432-443
土壤侵蚀是制约黄土高原可持续发展的瓶颈因素,为分析不同面积流域降雨和土地利用格局对土壤侵蚀影响的变化趋势,本文基于土壤侵蚀评价指数,发展了降雨和土地利用格局对土壤侵蚀影响的表征方法,探讨了多流域降雨和土地利用格局对土壤侵蚀的影响。结果表明:① 2006-2012年,研究区降雨侵蚀力因子R总体上呈现上升的趋势,植被覆盖与管理因子C呈现下降趋势;② 随流域面积的增加,研究区内降雨格局对土壤侵蚀的影响逐渐降低,而土地利用格局对土壤侵蚀的影响变大;③ 在流域面积较小时,降雨格局对土壤侵蚀的影响要大于土地利用格局对土壤侵蚀的影响,而在流域面积较大时,土地利用格局对土壤侵蚀的影响大于降雨格局对土壤侵蚀的影响;④ 随着流域面积的增加,研究区的林地比例有所下降,陡坡植被覆盖类型趋于单一,这是在流域面积增大时土地利用格局对土壤侵蚀影响增加的主要原因。同时,流域面积较小时,降雨对土壤侵蚀的影响较大,但随着流域面积的增加,松软的土壤性质和沟壑纵横的地形增大了发生重力侵蚀的可能性,土壤和地形对土壤侵蚀的影响增大。  相似文献   

10.
Zhang  Bailin  Sun  Piling  Jiang  Guanghui  Zhang  Ruijuan  Gao  Jiangbo 《地理学报(英文版)》2019,29(10):1713-1730
Journal of Geographical Sciences - The cultivation of mountainous land results in water loss and soil erosion. With rapid urbanization and industrialization in China, labor emigration relieves the...  相似文献   

11.
陕北长城沿线地区土地退化态势分析   总被引:77,自引:1,他引:77  
刘彦随  Jay GAO 《地理学报》2002,12(4):443-450
以陕北长城沿线农牧交错区为例,运用遥感与GIS技术,定性与定量相结合的方法,对研究区1985-1998年土地利用类型转换及土地退化时空规律,趋势和机制等进行了评价与分析。研究表明:该区土地退化的主导类型及土地沙漠化。从成因分析,土地沙漠化主要是长期以来的人口超载,不合理的土地利用方式和高强度的土地开发行为激发了地表自然过程伯退化性演替,致使潜在的自然环境脆弱怀转化为现实的破坏。过去13年土地退化程度部体上在不断剧,而且退化类型正向多样化发展。最后,依据评价与分析结果,进一步对该区土地退化防治和沙漠化土地生态恢复的措施与对策进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号