首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Groundwater is the main source of irrigation within south Al Madinah Al Munawarah region. It is also an important source of drinking water in many areas including Madinah city. The wells installed in the aquifer of the study area (south Madinah city) are not currently regulated by the local authorities although they are a key component of water supply. The aquifers in the study area range from unconfined to semi-confined and confined. The main aim of this study is to assess the groundwater in the region for drinking and agricultural uses. For this purpose, hydrochemical analyses of major, minor and trace constituents and nutrients were performed on 29 groundwater samples from the aquifer located about 20 km south of Madinah. The recharge rate of the aquifer of the study area was estimated to be 6.58 % of the annual precipitation using the chloride mass-balance method. Chloride was positively correlated with major ions, which suggests that agricultural activities have some effect on groundwater chemistry through leaching of readily soluble salts from the soil zone. Groundwater of the study area is characterized by dominance of Na over Ca. Chloride was found to be the most dominant anion and replaced by HCO3, thus reflecting geochemical evolution in the study area. The groundwater of the study area is not safe for drinking but can be safely used for salt-tolerant crops.  相似文献   

2.
The present study deals with the hydrochemical characteristics of groundwater in the upper catchment of Wadi Fatimah basin. The analysis of data indicated strongly that the chloride and sulfate in the groundwater are mainly of marine origin, concentrated by high evaporation processes. Flushing is the most important factor that modifies the ionic concentrations and almost stands for the short-term variation in groundwater chemistry. Weathering reactions of the rock-forming minerals take place under relatively high PCO2 condition in water and soil zone; it can be an important long-term neutralization process. It is accounted as a contributor for Ca and Mg ions in the groundwater. Using the chloride method the recharge rate has been estimated at 72 mm yr–1.  相似文献   

3.
The central region of Saudi Arabia is underlain by thick sedimentary formations belonging to the Mesozoic and Cenozoic era. These sedimentary formations form a prolific aquifer supplying groundwater for agricultural and domestic usage in and around Riyadh. The region south of Riyadh City is well known for agricultural activities. Wadi Sahba, which is an eastward extension of Wadi Nisah, has readily available groundwater resources in the Cretaceous Biyadh sandstone aquifer to sustain agricultural activities. The objective of the present study was the hydrochemical assessment of groundwater in the area to understand the main hydrological processes which influence groundwater chemistry. To achieve this objective, 20 groundwater samples were collected from agricultural farms in the Wadi Sahba in central Saudi Arabia, and the major physiochemical constituents were analyzed and interpreted. The average TDS value of the analyzed samples is 1578.05 mg/l, whereas the average EC concentration is 3220.05 μS/cm. Groundwater facies classification inferred from the Piper plot shows that groundwater in the study area belongs to the Ca-SO4-Cl type and Ca-Na-SO4-Cl type. The Ca-SO4-Cl type of groundwater facies is influenced mainly by gypsum dissolution and base ion exchange, whereas the Ca-Na-SO4-Cl type is influenced by gypsum and halite dissolution. All the groundwater samples are undersaturated with respect to these two principal mineral phases. The Q-mode cluster analysis results in two main groups of groundwater samples, mainly based on the TDS content. Cluster 1 has an average TDS value of 1980 mg/l, whereas cluster 2 has an average TDS of 1176 mg/l. The groundwater facies identified through the Piper plot reflects the major hydrological processes controlling groundwater chemistry in the area and was found to be more useful in this study as compared to cluster analysis.  相似文献   

4.
Groundwater recharge by natural replenishment for the unconsolidated alluvial aquifer in Wadi Al-Yammaniyah is estimated on a daily basis instead of the conventional monthly basis The study reveals that during the two-year period (1978 and 1979), the estimated recharge in the area is about 40% of the total average annual rainfall of 155 mm Subsurface underflow estimated at 36×10−6 m3/yr from the Wadi Al-Yammaniyah aquifer occurs in the vicinity of Wadi Ash-Shamiyah A comparison of the recharge and extracted volumes of water from the aquifer indicates that there is a net increase of 10 million m3 and 38 million m3 of water in the storage for 1978 and 1979, respectively  相似文献   

5.
A classification approach has been implemented in the present work by integrating traditional water sample analysis methods and Geographic Information System (GIS) capabilities in order to classify zones with acceptable groundwater quality for drinking. GIS extrapolation capabilities with their multi-conditional layering facilities were integrated together in order to assess in the determination of areas suitable for drinking purposes. This technique was implemented in Wadi Rabigh, Western Saudi Arabia, due to its significance as one of the most promising areas in the Western Province in the Kingdom of Saudi Arabia, owing to the establishment of King Abdullah Commercial City and King Abdullah University for Science and Technology (KAUST) nearby. Results show that only a limited area in the aquifer can be used for domestic purposes. This area is located in two separate patches in the upstream part of the aquifer while most of the aquifer water is categorized as brackish which might be used for agriculture purposes to a certain extent. The downstream area of the aquifer is very saline due to sea water intrusion effect.  相似文献   

6.
A hydrogeochemical study was conducted on the groundwater of south Al Madinah Al Munawarah City, Saudi Arabia, to assess the quality of groundwater for drinking and irrigation uses. Groundwater samples have been collected and analyzed for major and some trace constituents from the study area. The nitrate concentration in most groundwater samples of the study area exceeded the safe limits for drinking purposes, whereas the concentrations of phosphate, boron, and trace constituents were below the maximum permissible limit for drinking purposes; Cr in two samples showed high content over the recommended limits of drinking purposes. Uncontrolled abstraction of groundwater in Abar Al Mashi area caused many environmental problems including water resource depletion and contamination. Correlations between chloride and major ions were positive and may be attributed to impact of agricultural activities on groundwater chemistry. Groundwater of the study area was classified into six water types. The chemical water types of groundwater in the study area contain CaHCO3 in the eastern and southeastern parts and NaCl in western and northwestern parts, reflecting different land use characteristics and pollution sources. Piper diagram showed that almost all the samples fall in one zone, indicating similar chemical signature. Groundwater can be used safely for drinking with special treatments to eliminate the effect of increased concentrations of total dissolved solids, nitrate, and chromium. The groundwater of the study area can be used safely for irrigation on clay soil; however, specific crops should be selected according to their salt tolerance.  相似文献   

7.
In Wadi Tharad the groundwater has been subjected to hydrochemical study to identify the process (s) that led to the formation of relatively highly saline water in shallow alluvial aquifer. The chemical analyses results show that the groundwater salinity was highly variable and randomly distributed along the wadi course. This variation could be attributed to intensive evaporation on effluent prone surface irrigation water that led to precipitation of evaporates (e.g., calcite, dolomite, gypsum and probably halite). The intensive irrigation practice through mineral dissolution recharged the groundwater with a marked increase in the salinity. The local hydrogeological condition is also involved in determining the risk of the groundwater salinity as a consequence of irrigation practice. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Groundwater quality in the Madinah city is increasingly endangered by expanding urbanization, industrial activities, and intensified agricultural land use. In order to investigate the pollution of Madinah groundwater resources, 32 samples have been gathered and examined for major, trace, and nutrient components. Results of groundwater characterization and groundwater quality assessment show that Na+ and Cl? are the main anion and cation in the groundwater, respectively. Depletion of HCO3 that interacts with water increases salinity. Cluster analysis and principal component analysis were applied in the current study to obtain relationship between parameters and sampling site in order to identify the factors and sources influencing groundwater quality. The CA allowed the formation of three clusters between the sampling wells reflecting differences on water quality at different locations. Four major PCs were extracted, which accounted 86.05 % variance of the original data structure. Forty-four percent of the groundwater samples have high values of NO3, due to human and agricultural activities. Four samples in the southwestern part of the study area show high content of Pb, Cd, Cr, Ni, As, and Al. This may be due to the influence of anthropogenic activities that resulted from the southwestern industrial area of Madinah. The present study illustrates explicitly the stress on groundwater quality and its vulnerability in the aquifer system.  相似文献   

9.
Fifty groundwater samples were collected from Al-Hasa to analyze the pH, electrical conductivity (EC, dS m?1), total dissolved solids (TDS), major anions (HCO3?, CO32?, Cl?, SO42?, and NO3?), major cations (Ca2+, Mg2+, Na+, and K+), and total hardness. The analyzed data plotted in the Piper, Gibbs, and Durov diagrams, and water quality index (WQI) were calculated to evaluate the groundwater geochemistry and its water quality. The results reveal that most of the investigated samples are Ca2+, Mg2+, SO42?, Cl? and Na+, and HCO3? water types using the Piper diagram. Na+?>?Ca2+?>?Mg2+ are the dominant cations, while Cl??>?HCO3??>?SO42??>?CO32? are the dominant anions. Sodium adsorption ratio (SAR) values varied from 0.79 to 10; however, the Kelly ratio (KR) ranged between 0.1 and 2.2. The permeability index (PI) showed that well water is suitable for irrigation purposes with 75% or more of maximum permeability. The US salinity diagram revealed that the water quality classes of studied waters were CIII-SI, CIII-SII, and CIV-SII, representing height hazards of salinity and medium- to low-sodium hazard. The water quality index (WQI) results indicated that total dissolved solids are out of the drinking water standard limits in Saudi Arabia. The WQI revealed that 38% of the studied wells were considered as poor water (class III), 52% are found as very poor water class (IV), and 10% are unsuitable water for drinking class (V).  相似文献   

10.
Earth Fissures in Wadi Najran,Kingdom of Saudi Arabia   总被引:1,自引:0,他引:1  
The formation of earth fissures due to groundwater depletion has been reported in many places in North America, Europe, and Asia. Najran Basin is in the southern part of the Kingdom of Saudi Arabia, and agricultural activities and other groundwater uses have caused significant groundwater depletion there. The basin recently experienced a sudden appearance of numerous earth fissures. An interdisciplinary study consisting of an evaluation of land-use changes, and hydrological, hydrogeological, and geophysical investigations was conducted to determine the reason for the formation of the earth fissures. The hydrological analysis strongly revealed that the groundwater level is decreasing with time. Groundwater depletion would lead to the accumulation of subsurface stress, causing soil hydro-consolidation which creates the ideal condition for the formation of earth fissures. Electrical resistivity, data indicated that there are anomalies in the profiles, which are most probably due to the presence of subsurface topography, another key factor for the formation of the earth fissures.  相似文献   

11.
A simple, physically based method is developed in this paper to assist in the allocation of areas with high groundwater potential and for the determination of maximum allowed pumping rate to ensure proper groundwater management. This method utilizes the aquifer physical properties as well as GIS technology to accomplish this purpose. The design of this method was considered to be applicable in areas with little data, such as in most arid regions. This technique was applied to a catchment in an arid environment where qualitative as well as quantitative analyses of the results were undertaken. Locations of available groundwater and rates of maximum allowable pumping were compared with observations and experiments in the field and a good agreement was found. It was concluded that the best groundwater location was in the alluvial area, which represents only 16% of the total aquifer, which is a typical case in arid region catchments. The rate of maximum pumping was estimated to be 65 m3/h. However, to benefit 55% of the area, the maximum pumping rate should only be 40 m3/h with an average rate throughout the area (55%) of about 24 m3/h.This revised version was published online in December 2004 with corrections to the category.  相似文献   

12.
13.
Wadi Qudaid is present about 120 km northeast of Jeddah, Saudi Arabia. The area includes Precambrian Arabian Shield, Tertiary sedimentary rocks, Tertiary basic volcanics (harrat), and finally Quaternary wadi deposits which represent the main aquifer of Wadi Qudaid area. The present study indicates the presence of pronounced geochemical variations in the groundwater characters along the main channel of Wadi Qudaid from the southwestern part (downstream) to the northeastern (upstream) part. The groundwater-bearing horizon is thicker in the downstream part than the upstream part. The study also revealed that the groundwater is of good quality in the upstream (NE) part than the downstream (SW) part. This is related to the addition and depletion of many elements during the groundwater trip from NE to SW and the addition and depletion of some elements. The downstream part is of high hardness and TDS when compared with the upstream part. Also, the downstream part is of high bisnous element (As, Co, Ni) than the upstream part. The groundwater of the southwestern part of Wadi Qudaid are free from the following elements: i.e., Al, Mn, Fe, Ni, Cu, Zn, and Pb.  相似文献   

14.
Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes (Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.  相似文献   

15.
UNESCO promotes geoconservation through various programs intended to establish an inventory of geologically and geomorphologically significant features worldwide that can serve as an important database to understand the Earth’s global geoheritage. An ultimate goal of such projects globally is to establish geoparks that represent an integrated network of knowledge transfer opportunities, based on a specific array of geological and geomorphological sites able to graphically demonstrate how the Earth works to the general public. In these complex geoconservation and geoeducational programs, the identification of significant geological and geomorphological features is very important. These are commonly referred to as ‘geosites’ or ‘geomorphosites’, depending on whether the feature or processes the site demonstrates is more geological or geomorphological, respectively. The Kingdom of Saudi Arabia is an extraordinary place due to its arid climate and therefore perfect exposures of rock formations. The Kingdom is also home to extensive volcanic fields, named “harrats” in Arabic, referring particularly to the black, basaltic lava fields that dominate the desert landscape. Current efforts to increase awareness of the importance of these volcanic fields in the geological landscape of Arabia culminated in the first proposal to incorporate the superbly exposed volcanic features into an integrated geoconservation and geoeducation program that will hopefully lead to the development of a geopark named, “The Harrat Al Madinah Volcanic Geopark” [1]. Here we describe one of the extraordinary features of the proposed Harrat Al Madinah Volcanic Geopark, namely a steep lava spatter cone formed during a historical eruption in 1256 AD.  相似文献   

16.
This is an experimental work on a local oolitic iron ore deposit. The objective was to determine the operating conditions of batch rod mill operations which yield maximum liberation of the oolites from the cementing gangue minerals. The recommended operating conditions were expressed as size of crushing rods, rods/ore mass ratio and time of operation. Also calculated is Bond's constant to be used for estimating the power requirements of large mills. Scaling up of the results could be done using Gow's formula.  相似文献   

17.
Integrated geophysical techniques including resistivity image, vertical electrical sounding (VES), and seismic refraction have been conducted to investigate the Wadi Hanifah water system. The groundwater in Wadi Hanifah has problems caused by the high volumes of sewage water percolating into the ground. The combination of VES, resistivity image, and seismic refraction has made a valuable contribution to the identification of the interface between the contaminated and fresh water in Wadi Hanifah area. The contaminated groundwater has lower resistivity values than fresh groundwater due to the higher concentration of ions which reduces the resistivity. Resistivity image and sounding in this area clearly identified the nature of the lithological depth and proved useful at identifying water-bearing zones. Fresh groundwater was found in the study area at a depth of 100 m within the fractured limestone. Water-bearing zones occur in two aquifers, shallow contaminated water at 10 m depth in alluvial deposits and the deeper fresh water aquifer at a depth of about 100 m in fractured limestone. The interface between the contaminated water (sanitary water) and fresh water marked out horizontally at 100 m distance from the main channel and vertically at 20 m depth.  相似文献   

18.
19.
Detailed field-structural mapping of Neoproterozoic basement rocks exposed in the Wadi Yiba area, southern Arabian Shield, Saudi Arabia illustrates an important episode of late Neoproterozoic transpression in the southern part of the Arabian-Nubian Shield (ANS). This area is dominated by five main basement lithologies: gneisses, metavolcanics, Ablah Group (meta-clastic and marble units) and syn- and post-tectonic granitoids. These rocks were affected by three phases of deformation (D1–D3). D1 formed tight to isoclinal and intrafolial folds (F1), penetrative foliation (S1), and mineral lineation (L1), which resulted from early E-W (to ENE-WSW) shortening. D2 deformation overprinted D1 structures and was dominated by transpression and top-to-the-W (?WSW) thrusting as shortening progressed. Stretching lineation trajectories, S-C foliations, asymmetric shear fabrics and related mylonitic foliation, and flat-ramp and duplex geometries further indicate the inferred transport direction. The N- to NNW-orientation of both “in-sequence piggy-back thrusts” and axial planes of minor and major F2 thrust-related overturned folds also indicates the same D2 compressional stress trajectories. The Wadi Yiba Shear Zone (WYSZ) formed during D2 deformation. It is one of several N-S trending brittle-ductile Late Neoproterozoic shear zones in the southern part of the ANS. Shear sense indicators reveal that shearing during D2 regional-scale transpression was dextral and is consistent with the mega-scale sigmoidal patterns recognized on Landsat images. The shearing led to the formation of the WYSZ and consequent F2 shear zone-related folds, as well as other unmappable shear zones in the deformed rocks. Emplacement of the syn-tectonic granitoids is likely to have occurred during D2 transpression and occupied space created during thrust propagation. D1 and D2 structures are locally overprinted by mesoscopic- to macroscopic-scale D3 structures (F3 folds, and L3 crenulation lineations and kink bands). F3 folds are frequently open and have steep to subvertical axial planes and axes that plunge ENE to ESE. This deformation may reflect progressive convergence between East and West Gondwana.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号