首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Broadband sensors aboard the Naval Research Laboratory's SOLRAD 11 satellites measured solar emission in the 0.5 to 3 Å, 1 to 8 Å, 8 to 20 Å, 100 to 500 Å, 500 to 800 Å, and 700 to 1030 Å bands. Data from sixteen large flares show that the EUV emission is dominated by gradual emission which parallels the soft X-ray emission in duration and magnitude. The data are consistent with the separation of EUV and X-ray flare emission into two distinct components. A persistent component is made up of gradual EUV and gradual soft X-ray emissions. A brief component consists of hard X-rays, impulsive soft X-rays, and impulsive EUV emission.  相似文献   

2.
McDonald  L.  Harra-Murnion  L.K.  Culhane  J.L. 《Solar physics》1999,185(2):323-350
We analyse four solar flares which have energetic hard X-ray emissions, but unusually low soft X-ray flux and GOES class (C1.0–C5.5). These are compared with two other flares that have soft and hard X-ray emission consistent with a generally observed correlation that shows increasing hard X-ray accompanied by increasing soft X-ray flux. We find that in the four small flares only a small percentage of the nonthermal electron beam energy is deposited in a location where the heating rate of the electron beam exceeds the radiative cooling rate of the ambient plasma. Most of the beam energy is subsequently radiated away into the cool chromosphere and so cannot power chromospheric evaporation thus reducing the soft X-ray emission. We also demonstrate that in the four small flares the nonthermal electron beam energy is insufficient to power the soft X-ray emitting plasma. We deduce that an additional energy source is required, and this could be provided by a DC-electric field (where quasi-static electric field channels in the coronal loops accelerate electrons, and those electrons with velocity below a critical velocity will heat the ambient plasma via Joule heating) in preference to a loop-top thermal source (where heat flux deposited in the corona is conducted along magnetic field lines to the chromosphere, heating the coronal plasma and giving rise to further chromospheric evaporation).  相似文献   

3.
We have developed expressions which give the effective color temperatures and corresponding emission measures for solar X-ray events observed with instruments onboard any of the GOES satellites. Since 1976, these satellites have been used to monitor continuously the full-Sun X-ray emission in two broadband wavelength intervals (approximately 0.5–4 Å and 1–8 Å) with a time resolution of 3 s. To simulate the solar X-ray input at a variety of plasma temperatures, we used theoretical spectra provided by D. L. McKenzie. These spectra were folded through the wavelength dependent transfer functions for the two GOES detectors as given by Donnelly et al. (1977). The resulting detector responses and their ratio as a function of plasma temperature were then fit with simple analytic curves. Over the entire range between 5 and 30 million degrees, these fits reproduce the calculated color temperatures within 2% and the calculated emission measures within 5%. With the theoretical spectra provided by McKenzie, we can determine similar expressions for any pair of broadband X-ray detectors whose sensitivities are limited to wavelengths between 0.2 and 100 Å.  相似文献   

4.
5.
Our main goal is to show that the spatial and temporal dynamics of the temperature content for plasma structures in the solar corona can be described quantitatively in principle, which is necessary for understanding the formation mechanisms of soft X-ray emission. An approach based on a consistent modeling of complex data from the CORONAS-F, GOES, and RHESSI satellites is suggested. A basically new element of this approach is the use of time series of monochromatic full-Sun images in the X-ray MgXII 8.42 Å line and EUV lines obtained in the SPIRIT experiment onboard CORONAS-F. Two inversion procedures have been used to determine the volume and column differential emission measures defined by the Stieltjes integral: an optimization one based on a multitemperature parametric model and an iterative one based on the Bayesian theorem, respectively. The calculations with coronal abundances agree with the RHESSI data within the experimental error limits, while those with photospheric abundances give no satisfactory agreement. The relatively cold (with temperature 2–4 MK) and transient (4–10 MK) plasmas are shown to play a significant role in producing soft X-ray emission during flare events and in their energy budget. The spatial electron density and temperature distributions and their time evolution have been obtained for long-duration events that were first observed in the monochromatic MgXII channel and were previously called “spiders.” The method used has allowed us to verify the absolute intercalibration of the fluxes recorded in all experiments and to reference the SPIRIT MgXII images to the solar disk. We also consider possible flare plasma heating mechanisms for impulsive and long-duration (spider) flare events.  相似文献   

6.
To compare mm-wave and X-ray diagnostics of solar flare plasma, five flares observed in 1980–1991 in Metsähovi at 22 and 37 GHz and with GOES, SMM, and GRO are studied. The first impulsive peak of the mm-wave bursts under investigation coincides in time with hard X-ray emission. The second gradual component in mm-wave emission coincides with the maximum of the soft X-ray emission measure. The bremsstrahlung mm-wave radiation from hot chromospheric plasma and gyrosynchrotron radiation driven by common population of superthermal electrons are calculated. It is shown that for mm-wave events with the first peak intensity 100 s.f.u., the thermal bremsstrahlung is more important than the gyrosynchrotron emission. The total energy of fast electrons deduced from the first peak of mm-wave bursts is one to two orders of magnitude less than that determined from the hard X-ray emission in the approximation of a thick-target nonthermal model. That can testify in favour of the hybrid thermal/nonthermal model proposed by Holman and Benka (1992). The emission measure and the energy of evaporated plasma using both mm-wave and soft X-ray data are also determined. For events investigated here the energy of evaporated chromospheric plasma is larger than the total energy of fast electron beams. We have concluded that, for evaporation, additional energy release in the chromosphere is needed. The possibility of such energy release in the framework of an advanced circuit model for solar flares is discussed.  相似文献   

7.
With increasing solar activity since 2010, many flares from the backside of the Sun have been observed by the Extreme Ultraviolet Imager (EUVI) on either of the twin STEREO spacecraft. Our objective is to estimate their X-ray peak fluxes from EUVI data by finding a relation of the EUVI with GOES X-ray fluxes. Because of the presence of the Fe xxiv line at 192 Å, the response of the EUVI 195 Å channel has a secondary broad peak around 15 MK, and its fluxes closely trace X-ray fluxes during the rise phase of flares. If the flare plasma is isothermal, the EUVI flux should be directly proportional to the GOES flux. In reality, the multithermal nature of the flare and other factors complicate the estimation of the X-ray fluxes from EUVI observations. We discuss the uncertainties, by comparing GOES fluxes with the high cadence EUV data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). We conclude that the EUVI 195 Å data can provide estimates of the X-ray peak fluxes of intense flares (e.g., above M4 in the GOES scale) to small uncertainties. Lastly we show examples of intense flares from regions far behind the limb, some of which show eruptive signatures in AIA images.  相似文献   

8.
We have studied the energetics of two impulsive solar flares of X-ray class X1.7 by assuming the electrons accelerated in several episodes of energy release to be the main source of plasma heating and reached conclusions about their morphology. The time profiles of the flare plasma temperature, emission measure, and their derivatives, and the intensity of nonthermal X-ray emission are compared; images of the X-ray sources and magnetograms of the flare region at key instants of time have been constructed. Based on a spectral analysis of the hard X-ray emission from RHESSI data and GOES observations of the soft X-ray emission, we have estimated the spatially integrated kinetic power of nonthermal electrons and the change in flare-plasma internal energy by taking into account the heat losses through thermal conduction and radiation and determined the parameters needed for thermal balance. We have established that the electrons accelerated at the beginning of the events with a relatively soft spectrum directly heat up the coronal part of the flare loops, with the increase in emission measure and hard X-ray emission from the chromosphere being negligible. The succeeding episodes of electron acceleration with a harder spectrum have virtually no effect on the temperature rise, but they lead to an increase in emission measure and hard X-ray emission from the footpoints of the flare loops.  相似文献   

9.
We analyze the observations of the hard (ACS SPI, > 150 keV) and soft (GOES, 1–8 Å) X-ray emissions and the microwave (15.5 GHz) emission in the solar flares on September 7, 2005 and December 6 and 13, 2006. The time profiles of the nonthermal emission from these flares had a complex structure, suggesting that active processes in the flare region continued for a long time (more than an hour). We have verified the linear relationship between the nonthermal flux and the time derivative of the soft X-ray flux (the Neupert effect) in the events under consideration. In the first two cases, the Neupert effect held at the time of the most intense nonthermal emission peak, but not at the decay phase of the soft X-ray emission, when the intensity of the nonthermal emission was much higher than the background values. At the same time, the hard X-ray emission was suppressed compared to the main peak, while the microwave emission remained approximately at the same level. In the December 13, 2006 event, the prolonged hard X-ray emission was difficult to observe due to the fast arrival of solar protons, but the Neupert effect did not hold for its main peak either. At comparable intensities of the microwave emission on December 6 and 13, the intensity of the hard X-ray emission on December 13 at the time of the main peak was suppressed approximately by an order of magnitude. These observational facts are indicative of several particle acceleration and interaction episodes under various physical conditions during one flare. When the Neupert effect did not hold, the interaction of electrons took place mainly in a low-density medium. An effective escape of accelerated particles into interplanetary space rather than their precipitation into dense layers of the solar atmosphere may take place precisely at this time.  相似文献   

10.
The observations of the solar radio emission on September 11, 2001, with the RATAN-600 radio telescope (southern sector) at four centimeter wavelengths (1.92, 2.24, 2.74, and 3.21 cm) revealed synchronous brightenings in solar radio sources. These were identified on the solar photosphere with active regions that were spaced up to ~106 km apart (AR 9608 and AR 9616). We discuss manifestations of the possible mechanisms of synchronous brightenings in solar sources in a narrow microwave spectral band. The significant linear correlation (ρc = 0.84–0.92) between the relative fluxes of AR 9610 and AR 9608 at 1.92 and 2.24 cm and the significant linear correlation (ρc = 0.65–0.84) between the relative fluxes of AR 9606 and AR 9608 at 3.21 cm in a two-hour interval of observations are indicative of the interconnection between these active regions not only during flares and bursts, but also in the periods of their absence. This confirms the existence of a large-scale temporal component in the dynamics of the radio flux variations for these active regions. We found a difference between the temporal variations of the radio emission from the halo and the solar radio sources under consideration. The times of increase in the total solar soft X-ray (0.5–4.0 Å, 1.0–8.0 Å; GOES 8, GOES 10) flux are shown to coincide with the times of increase in the fluxes from the solar radio sources at short centimeter wavelengths.  相似文献   

11.
Willson  R. F.  Kile  J. N.  Rothberg  B. 《Solar physics》1997,170(2):299-320
The presence of coronal magnetic fields connecting active regions is inferred from decimetric observations of solar noise storms with the Very Large Array (VLA) and from soft X-ray images taken by Yohkoh. Temporal changes in the noise storms appear to be correlated with some soft X-ray bursts detected by both Yohkoh and the GOES satellite. Combined analysis of the radio and X-ray data suggests a re-arrangement of the coronal magnetic field during the onset of impulsive noise storm burst emission. On one day during the combined VLA–Yohkoh–GOES observations, two widely-separated active regions appear to be connected by a faint trans-equatorial 91 cm source as well as two distinct soft X-ray loops. The two active regions show anti-correlated fluctuations in decimetric radio emission. On another day of combined VLA–Yohkoh observations, a series of 91 cm noise storm bursts are observed along the major axis of the associated noise storm continuum. Time sequences of Yohkoh soft X-ray images show a contraction of coronal loops prior to the onset of this series of bursts and a corresponding increase in the X-ray flux in the apparent footpoint of the overarching loop containing the noise storm. These observations imply that energy from a realignment of the magnetic field is being transferred, possibly by accelerated particles, along loops connecting separated active regions on the Sun.  相似文献   

12.
13.
Observations of a rare long-duration solar event of GOES class X1.2 from 26?October 2003 are presented. This event showed a pronounced burst of hard X-ray and microwave emission, which was extremely delayed (>?60?min) with respect to the main impulsive phase and did not have any significant response visible in soft X-ray emission. We refer to this phenomenon as a ??burst-on-tail??. Based on TRACE observations of the growing flare arcade and some simplified estimation, we explain why a reaction of active region plasma to accelerated electrons may change drastically over time. We suggest that, during the ??burst-on-tail??, non-thermal electrons were injected into magnetic loops of larger spatial scale than during the impulsive phase bursts, thus resulting in much smaller values of plasma temperature and emission measure in their coronal volume, and hence little soft X-ray flux. The?nature of the long gap between the main impulsive phase and the ??burst-on-tail?? is, however, still an open question.  相似文献   

14.
Concurrent observations of solar soft X-ray photometers aboard the US weather and space environment monitoring satellite GOES 6 and the USSR geophysical research satellite PROGNOZ 9 made it possible to compare physical parameters of flare plasmas obtained from both instruments as they observed the same solar events. Because of significant instrumental differences, a new method for comparing results had to be developed; this method is described.This paper addresses two related topics: (1) the intercomparison of two dissimilar X-ray photometers that cover approximately the same region of the X-ray spectrum, and (2) the analysis of flare plasma during the rise and decay phases, utilizing the dissimilar response characteristics of the X-ray sensors to discriminate the non-isothermal from isothermal epochs and to identify some of the main properties of those epochs.The intercomparison work considered the different spectral responses of the two photometers, but it was found that the residual differences in the respective X-ray fluxes were apparently due to a combination of environmental factors and uncertainties in the sensor calibrations. These sources of error affected the overall output of the photometers and the relative output of the two channels within each instrument. The effect of the error sources was largest at low flux levels and low temperatures; consequently the computed temperatures and emission measures were in relatively good agreement near X-ray maximum, particularly for those flares registering the highest temperatures.The analysis of flare plasma composition indicated that at the initial stage the plasma is strongly non-isothermal; it then thermalizes gradually, becoming mainly isothermal during the decay phase. A method for quantifying the distribution of the non-isothermal plasma is presented.  相似文献   

15.
Daily solar radio flux at six different frequencies in dm, cm and mm wavelength regions has been studied for 182 days from December 1, 1970 to May 30, 1971. It is found that the slowly varying component of the centimeter wave emission correlates well with the physical model of the coronal active regions derived by Sengupta (Sengupta, 1971b) from which, as he showed earlier, most of the solar soft X-rays of wavelength less than 20 Å comes. It is also found that the cm wave emission is consistent with the assumption that the emitting regions are optically thin in this wavelength range.Emissions in dm and mm wavelength ranges, however, show poor correlation with the physical model of the soft X-ray emitting regions.It is concluded that the preferred regions of cm wave emission are located in the same region of solar corona from where most of the soft X-rays comes, but are different from the preferred regions of mm and dm emission.  相似文献   

16.
We provide a brief overview of the main methods and results of spectroscopic studies of several active plasma structures in the solar corona with the RES spectroheliograph in the SPIRIT experiment. This instrument has allowed ~ 150 monochromatic images of the entire Sun in extreme UV (EUV) lines in the 175-to 205-and 280-to 330-Å spectral bands and in the X-ray Mg XII 8.42-Å line to be simultaneously obtained for the first time. The RES instrument has taken ~ 300000 spectroheliograms with a high time resolution over the period of its operation since the launch of the satellite on July 31, 2001. The accumulated data were used to construct and calibrate the spectra of solar flares and compact active regions with a spectral resolution of 0.04 Å. Based on EUV spectra, we determined the temperature distributions of the electron density and differential emission measure (DEM) for several active plasma structures observed in the RES X-ray channel: active regions, flares, and spiders. The results of modeling the physical conditions in an emitting plasma were used to analyze the formation and dynamics of plasma structures detected in the monochromatic X-ray images of the entire Sun.  相似文献   

17.
Previous sub-THz studies were derived from single-event observations. We here analyze for the first time spectral trends for a larger collection of sub-THz bursts. The collection consists of a set of 16 moderate to small impulsive solar radio bursts observed at 0.2 and 0.4 THz by the Solar Submillimeter-wave Telescope (SST) in 2012?–?2014 at El Leoncito, in the Argentinean Andes. The peak burst spectra included data from new solar patrol radio telescopes (45 and 90 GHz), and were completed with microwave data obtained by the Radio Solar Telescope Network, when available. We critically evaluate errors and uncertainties in sub-THz flux estimates caused by calibration techniques and the corrections for atmospheric transmission, and introduce a new method to obtain a uniform flux scale criterion for all events. The sub-THz bursts were searched during reported GOES soft X-ray events of class C or larger, for periods common to SST observations. Seven out of 16 events exhibit spectral maxima in the range 5?–?40 GHz with fluxes decaying at sub-THz frequencies (three of them associated to GOES class X, and four to class M). Nine out of 16 events exhibited the sub-THz spectral component. In five of these events, the sub-THz emission fluxes increased with a separate frequency from that of the microwave spectral component (two classified as X and three as M), and four events have only been detected at sub-THz frequencies (three classified as M and one as C). The results suggest that the THz component might be present throughout, with the minimum turnover frequency increasing as a function of the energy of the emitting electrons. The peculiar nature of many sub-THz burst events requires further investigations of bursts that are examined from SST observations alone to better understand these phenomena.  相似文献   

18.
Radio noise storms show that suprathermal electrons (a few tens of keV) are present in the vicinity of active regions during several hours or even a few days. Where and how these electrons are energized is not yet well known. A flare-like sudden energy release in the active region is in general observed at the onset of noise storms, either as a fully developed flare or, more often, as a soft X-ray brightening without conspicuous H signature. In order to investigate to what extent electrons energized in the active region contribute to the noise-storm emission in the overlying coronal structures, we combine radio imaging (Nançay radioheliograph) with X-ray spectral observations at photon energies of a few keV (GOES) and - for the first time - around 10 keV (WATCH/GRANAT). In two of four studied events the WATCH data show a significant excess of the deka-keV count rate above the expectation from an isothermal fit to the GOES fluxes. Although the electron population producing the deka-keV X-ray emission would be energetic enough to power the simultaneous radio noise storm, the much longer duration of the radio emission requires time-extended particle acceleration. The acceleration probably occurs in the corona overlying the X-ray emitting region, triggered by the processes which give rise to the X-ray brightenings.  相似文献   

19.
The light curves of solar ?ares in the impulsive phase are complex in general, indicating that multiple physical processes are involved in. With the GOES (Geostationary Operational Environmental Satellite) observations, we ?nd that there are a subset of ?ares, whose impulsive phases are dominated by a period of exponential growth of the emission measure. The ?ares occurred from January 1999 to December 2002 are analyzed, and the results from the observations made with both GOES 8 and GEOS 10 satellites are compared to estimate the instrumental uncertainties. Their mean temperatures during this exponential growth phase have a normal distribution. Most ?ares within the 1σ range of this temperature distribution belong to the GOES class B or C, with the peak ?uxes at the GOES low-energy channel following a log-normal distribution. The growth rate and duration of the exponential growth phase also follow a log- normal distribution, in which the duration is distributed in the range from half a minute to about half an hour. As expected, the growth time is correlated with the decay time of the soft X-ray ?ux. We also ?nd that the growth rate of the emission measure is strongly anti-correlated with the duration of the exponential growth phase, and the mean temperature increases slightly with the increase of the growth rate. The implications of these results on the study of energy release in solar ?ares are discussed in the end.  相似文献   

20.
1–8 Å, 2–12 Å and 8–20 Å non-flare X-ray flux data and 9.1 cm spectroheliograms for 1237 days during the period July 1966 to June 1970 have been studied to derive physical models of λ < 20 Å X-ray emitting regions on the Sun under quiescent (non-flare) conditions. The preferred regions of emission below 20 Å which coincide with the coronal active regions characterised by enhanced 9.1 cm microwave emission are found to have temperature lying between 1.8 and 3 × 106 K, emission measure 1049–1050 and electron density 109-1010 per cc. The average area of an active region is 1020 cm2. A slow gradient of temperature and electron density is seen to exist around a region of peak activity, both temperature and electron density decreasing outwards. Based on the derived physical model of the emitting regions a new method is presented for calculating X-ray flux and spectral energy distribution in this wave length region using daily 9.1 cm solar spectroheliograms. The calculated values are in good agreement with the observed values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号