首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 609 毫秒
1.
Previous studies suggest that spring SST anomalies over the northern tropical Atlantic(NTA) affect the tropical cyclone(TC) activity over the western North Pacific(WNP) in the following summer and fall. The present study reveals that the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is not stationary. The influence of spring NTA SST on following summer–fall WNP TC genesis frequency is weak and insignificant before, but strong and significant after, the late 1980 s. Before the late 1980 s, the NTA SST anomaly-induced SST anomalies in the tropical central Pacific are weak, and the response of atmospheric circulation over the WNP is not strong. As a result, the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is insignificant in the former period. In contrast,after the late 1980 s, NTA SST anomalies induce pronounced tropical central Pacific SST anomalies through an Atlantic–Pacific teleconnection. Tropical central Pacific SST anomalies further induce favorable conditions for WNP TC genesis,including vertical motion, mid-level relative humidity, and vertical zonal wind shear. Hence, the connection between NTA SST and WNP TC genesis frequency is significant in the recent period. Further analysis shows that the interdecadal change in the connection between spring NTA SST and following summer–fall WNP TC genesis frequency may be related to the climatological SST change over the NTA region.  相似文献   

2.
Although it is well known that the tropical easterly jet(TEJ)has a significant impact on summer weather and climate over India and Africa,whether the TEJ exerts an important impact on tropical cyclone(TC)activity over the western North Pacific(WNP)remains unknown.In this study,we examined the impact of the TEJ on the interannual variability of TC genesis frequency over the WNP in the TC season(June-September)during 1980-2020.The results show a significant positive correlation between TC genesis frequency over the WNP and the jet intensity in the entrance region of the TEJ over the tropical western Pacific(in brief WP_TEJ),with a correlation coefficient as high as 0.66.The intensified WP_TEJ results in strong ageostrophic northerly winds in the entrance region and thus upper-level divergence to the north of the jet axis over the main TC genesis region in the WNP.This would lead to an increase in upward motion in the troposphere with enhanced low-level convergence,which are the most important factors to the increases in low-level vorticity,mid-level humidity and low-level eddy kinetic energy,and the decreases in sea level pressure and vertical wind shear in the region.All these changes are favorable for TC genesis over the WNP and vice versa.Further analyses indicate that the interannual variability of the WP_TEJ intensity is likely to be linked to the local diabatic heating over the Indian Ocean-western Pacific and the central Pacific El Ni?o-Southern Oscillation.  相似文献   

3.
The contribution of tropical cyclones(TCs)to the East Asia–Pacific(EAP)teleconnection pattern during summer was investigated using the best track data of the Joint Typhoon Warning Center and NCEP-2 reanalysis datasets from 1979 to2018.The results showed that the TCs over the western North Pacific(WNP)correspond to a strengthened EAP pattern:During the summers of strong convection over the tropical WNP,TC days correspond to a stronger cyclonic circulation anomaly over the WNP in the lower troposphere,an enhanced seesaw pattern of negative and positive geopotential height anomalies over the subtropical WNP and midlatitude East Asia in the middle troposphere,and a more northward shift of the East Asian westerly jet in the upper troposphere.Further analyses indicated that two types of TCs with distinctly different tracks,i.e.,westward-moving TCs and northward-moving TCs,both favor the EAP pattern.The present results imply that TCs over the WNP,as extreme weather,can contribute significantly to summer-mean climate anomalies over the WNP and East Asia.  相似文献   

4.
The westward migration of tropical cyclone(TC) activity has been identified in the western North Pacific(WNP),but the related features and causes remain elusive. Here, based on the best track data from China, Japan, and the US,and the NCEP–NCAR reanalysis data in 1982–2020, we investigate characteristics of the westward migration of the WNP TC activity with various metrics, and reveal possible causes for the migration of TC tracks through analyzing its seasonality and dependence on environmental...  相似文献   

5.
In summer 2018, a total of 18 tropical cyclones(TCs) formed in the western North Pacific(WNP) and South China Sea(SCS), among which 8 TCs landed in China, ranking respectively the second and the first highest since 1951.Most of these TCs travelled northwest to northward, bringing in heavy rainfall and strong winds in eastern China and Japan. The present study investigates the impacts of decaying La Ni?a and intraseasonal oscillation(ISO) on the extremely active TCs over the WNP and SCS in summer 2018 by use of correlation and composite analyses. It is found that the La Ni?a episode from October 2017 to March 2018 led to above-normal sea surface temperature(SST) over central–western Pacific, lower sea level pressure and 500-hPa geopotential height over WNP, and abnormally strong convective activities over the western Pacific in summer 2018. These preceding oceanic thermal conditions and their effects on circulation anomalies are favorable to TC genesis in summer. Detailed examination reveals that the monsoon trough was located further north and east, inducing more TCs in northern and eastern WNP; and the more eastward WNP subtropical high as well as the significant wave train with a "-+-+" height anomaly pattern over the midlatitude Eurasia–North Pacific region facilitated the northwest to northward TC tracks. Further analyses reveal that two successively active periods of Madden–Julian Oscillation(MJO) occurred in summer 2018 and the boreal summer intraseasonal oscillation(BSISO) was also active over WNP, propagating northward significantly, corresponding to the more northward TC tracks. The MJO was stagnant over the Maritime Continent to western Pacific,leading to notably enhanced convection in the lower troposphere and divergence in the upper troposphere, conducive to TC occurrences. In a word, the extremely active TC activities over the WNP and SCS in summer 2018 are closely linked with the decaying La Ni?a, and the MJO and BSISO; their joint effects result in increased TC occurrences and the TC tracks being shifted more northwest to northward than normal.  相似文献   

6.
This study focuses on the decadal variability of tropical cyclones (TC) over the Western North Pacific (WNP) and how these changes are related to the Madden–Julian Oscillation (MJO). It was done with the help of the Real-time Multivariate MJO index from the Australian Government Bureau of Meteorology of the Centre for Australian Weather and Climate Research, TC data from the Joint Typhoon Warming Center best track datasets, and daily and monthly datasets from the NCEP/NCAR reanalysis center. The results show that the TC frequency in the WNP exhibited a statistically significant decrease during 1998–2010 compared to during 1979–1997. The decrease in TC frequency in the WNP mainly occurred during MJO active phases (i.e., phases 4, 5, 6, and 7). Further investigation of the climate background and the propagation differences of the MJO between 1979–1997 and 1998–2010 was performed. The La Ni?a-like tropical sea surface temperature cooling caused stronger Walker circulation and thus induced unfavorable atmosphere conditions for WNP TC genesis including a low-level easterly anomaly, a negative relative vorticity anomaly, an increase in sea-level pressure, and stronger vertical wind shear. Moreover, shortening of the MJO cycle, decline in the duration of the active phases in the WNP, and easterly anomaly and shrinkage of the convection area during MJO active phases may also partly explain the decadal variation of TC.  相似文献   

7.
The influence of the interannual variation of cross-equatorial flow(CEF) on tropical cyclogenesis over the western North Pacific(WNP) is examined in this paper by using the tropical cyclone(TC) best track data from the Joint Typhoon Warning Center and the JRA-25 reanalysis dataset. The results showed that the number of TCs forming to the east of 140°E over the southeastern part of the western North Pacific(WNP) is in highly positive correlation with the variation of the CEF near 125° E and 150° E, i.e., the number of tropical cyclogeneses increases when the cross-equatorial flows are strong. Composite analyses showed that during the years of strong CEF, the variations of OLR, vertical wind shear between 200-850 h Pa, 850 h Pa relative vorticity and 200 h Pa divergence are favorable for tropical cyclogenesis to the east of 140°E over the tropical WNP, and vice versa. Moreover, it is also discussed from the view of barotropic energy conversion that during the years of strong CEF, an eastward-extended monsoon trough leads to the rapid growth of eddy kinetic energy over the eastern part of WNP, which is favorable for tropical cyclogenesis;but during the years of weak CEF, the monsoon trough is located westward in the western part of the WNP, consistent with the growth area of eddy kinetic energy. As a result, there are fewer TC geneses over the eastern part of WNP.Besides, the abrupt strengthening of a close-by CEF 2-4 days before tropical cyclogenesis may be the one of its triggers.  相似文献   

8.
An observational study focusing on the contribution of tropical cyclones(TCs)that form over the western North Pacific(WNP)to the synoptic-scale transient eddy activity(STEA)over the North Pacific during the boreal autumn and early winter in the period 1979–2019 is presented in this paper.Statistical results show that WNP TCs entering the midlatitudinal North Pacific provide significant positive effects on the pentad mean strength of STEA,which is primarily concentrated over the Kuroshio/Oyashio Extensions(KOE)and regions from east of Japan to 160°W in the lower and midto-upper troposphere,respectively.TC intensity is highly indicative of the subsequent STEA with a correlation coefficient of 0.37/0.33/0.45 at 300 hPa/500 hPa/850 hPa exceeding the 99%confidence level for the period 1979–2019.The strength of STEA in the upper troposphere associated with TCs presents a more significant linear growth with TC intensity than that at the mid-to-lower levels after the cyclones enter the KOE region,suggesting that the impact of TCs on STEA gradually increases with height.Further analyses reveal that the contribution of TCs accounts for 4%–6%of the total STEA change over the KOE region during the late autumn and early winter.In addition,the influence of TCs on STEA experienced an interdecadal decrease from the early 2000 s through the early 2010 s.  相似文献   

9.
This study investigates the influences of tropical Indian Ocean(TIO) warming on tropical cyclone(TC)genesis in different regions of the western North Pacific(WNP) from July to October(JASO) during the decaying El Nio. The results show significant negative TC frequency anomalies localized in the southeastern WNP. Correlation analysis indicates that a warm sea surface temperature anomaly(SSTA) in the TIO strongly suppresses TC genesis south of 21°N and east of 140°E in JASO. Reduced TC genesis over the southeastern WNP results from a weak monsoon trough and divergence and subsidence anomalies associated with an equatorial baroclinic Kelvin wave. Moreover,suppressed convection in response to a cold local SSTA, induced by the increased northeasterly connected by the wind-evaporation-SST positive feedback mechanism, is found unfavorable for TC genesis. Positive TC genesis anomalies are observed over higher latitudinal regions(at around 21°N, 140°E) and the western WNP because of enhanced convection along the northern flank of the WNP anomalous anticyclone and low-level convergence,respectively. Although local modulation(e.g., local SST) could have greater dominance over TC activity at higher latitudes in certain anomalous years(e.g., 1988), a warm TIO SSTA can still suppress TC genesis in lower latitudinal regions of the WNP. A better understanding of the contributions of TIO warming could help improve seasonal TC predictions over different regions of the WNP in years of decaying El Nio.  相似文献   

10.
This study introduces a new global climate model—the Integrated Climate Model(ICM)—developed for the seasonal prediction of East Asian–western North Pacific(EA–WNP) climate by the Center for Monsoon System Research at the Institute of Atmospheric Physics(CMSR, IAP), Chinese Academy of Sciences. ICM integrates ECHAM5 and NEMO2.3 as its atmospheric and oceanic components, respectively, using OASIS3 as the coupler. The simulation skill of ICM is evaluated here, including the simulated climatology, interannual variation, and the influence of El Nińo as one of the most important factors on EA–WNP climate. ICM successfully reproduces the distribution of sea surface temperature(SST) and precipitation without climate shift, the seasonal cycle of equatorial Pacific SST, and the precipitation and circulation of East Asian summer monsoon. The most prominent biases of ICM are the excessive cold tongue and unrealistic westward phase propagation of equatorial Pacific SST. The main interannual variation of the tropical Pacific SST and EA–WNP climate—El Nińo and the East Asia–Pacific Pattern—are also well simulated in ICM, with realistic spatial pattern and period. The simulated El Nińo has significant impact on EA–WNP climate, as in other models. The assessment shows ICM should be a reliable model for the seasonal prediction of EA–WNP climate.  相似文献   

11.
The performance of climate models in simulating the linkage of the spring Hadley circulation (HC) to the vertical zonal wind shear and atmospheric divergence in the lower and upper troposphere, which are related to the tropical cyclone frequency over the western North Pacific (WNPTCF) during June-September (JJAS), is evaluated on the basis of the 20th century climate simulations (20C3M). It is found that four models can simulta-neously reproduce the pattern revealed in the observation, with the spring HC in the Northern Hemisphere being positively correlated to the vertical zonal wind shear in the major tropical cyclone (TC) genesis region and negatively (positively) correlated to the atmospheric diver- gence in the upper (lower) troposphere over the western North Pacific (WNP) in the following JJAS. These four models are further used to project their relationship in the late 21st century under the A1B scenario. The results show that the association of spring HC with the vertical zonal wind shear and the upper-and lower-tropospheric divergence over the WNP will weaken in the late 21st century, thereby resulting in a weak relationship between the spring HC and the JJAS WNPTCF.  相似文献   

12.
Five sets of model sensitivity experiments are conducted to investigate the influence of tropical cyclone (TC) genesis location and atmospheric circulation on interannual variability of TC intensity in the western North Pacific (WNP). In each experiment, bogus TCs are placed at different initial locations, and simulations are conducted with identical initial and boundary conditions. In the first three experiments, the specified atmospheric and SST conditions represent the mean conditions of El Nio, La Nia, and neutral years. The other two experiments are conducted with the specified atmospheric conditions of El Nio and La Nia years but with SSTs exchanged. The model results suggest that TCs generated in the southeastern WNP incurred more favorable environmental conditions for development than TCs generated elsewhere. The different TC intensities between El Nio and La Nia years are caused by difference in TC genesis location and low-level vorticity (VOR). VOR plays a significant role in the intensities of TCs with the same genesis locations between El Nio and La Nia years.  相似文献   

13.
探讨了夏季(6—8月)西北太平洋(Western North Pacific,WNP)热带气旋生成频次(Tropical Cyclone Genesis Frequency,TCGF)与热带海温关系的年代际变化,发现影响WNP TCGF的热带海温型在1991/1992年发生了年代际变化。在1990年代初之前,TCGF正异常对应的热带海温异常(Sea Surface Temperature Anomaly,SSTA)呈现东部型La Ni?a衰减位相,前冬至春季WNP局地暖SSTA在其西北侧激发气旋异常,夏季时由热带印度洋冷SSTA继续维持。在1990年代初之后,TCGF正异常对应的热带SSTA呈现东部型La Ni?a向中部型El Ni?o快速转换的位相,夏季中太平洋暖SSTA在其西北侧激发气旋异常,同时热带东印度洋至海洋性大陆以及热带大西洋的冷SSTA通过垂直环流圈加强中太平洋的辐合上升运动,进一步维持其西北侧气旋异常。由于激发气旋异常的暖SSTA在第二个年代相较第一个年代明显偏南偏东,气旋异常和TCGF正异常在第二个年代也整体偏南且向东扩展至更远的区域。WNP TCGF与热带海温关系的年代际变化与1990年代初之后厄尔尼诺-南方涛动演变速率加快有关。   相似文献   

14.
现阶段使用的热带气旋潜在生成指数(Genesis Potential Index,GPI)在气候场的空间分布上能很好地拟合热带气旋的生成情况,但在热带气旋的年际变化拟合上效果很差。本研究考虑了相对涡度在热带气旋年际变化拟合上的重要作用,并以此为出发点,尝试改善GPI在西北太平洋地区的拟合效果。基于对1979—2011年美国联合飓风警报中心提供的热带气旋最佳路径数据和NCEP/NCAR再分析资料数据集的研究,将之前GPI中的绝对涡度项替换为修正过的相对涡度项。科氏力项仍然保留;将南海(100°~120°E,5°~25°N)与西北太平洋地区(120°~180°E,5°~40°N)热带气旋生成的差异性也纳入了考量,并在这两个区域分别构建GPI公式,改善了对热带气旋生成的气候分布模拟。除此之外,较之已存的GPI指数,改进后的GPI还很大程度提高了GPI对热带气旋生成年际变化的拟合效果,特别是对弱热带气旋年际变化的拟合效果有了显著提升。  相似文献   

15.
The relationship between the interannual variation in tropical cyclone (TC) activity over the western North Pacific (WNP) and the thermal state over the warm pool (WP) is examined in this paper. The results show that the subsurface temperature in the WP is well correlated with TC geographical distribution and track type. Their relation is linked by the East Asian monsoon trough. During the warm years, the westward-retreating monsoon trough creates convergence and vorticity fields that are favorable for tropical cyclogenesis in the northwest of the WNP, whereas more TCs concentrating in the southeast result from eastward penetration of the monsoon trough during the cold years. The steering flows at 500 hPa lead to a westward displacement track in the warm years and recurving prevailing track in the cold years.
The two types of distinct processes in the monsoon environment triggering tropical cyclogenesis are hypothesized by composites centered for TC genesis location corresponding to two kinds of thermal states of the WP. During the warm years, low-frequency intraseasonal oscillation is active in the west of the WNP such that eastward-propagating westerlies cluster TC genesis in that region. In contrast, during the cold years, the increased cyclogenesis in the southeast of the WNP is mainly associated with tropical depression type disturbances transiting from equatorially trapped mixed Rossby gravity waves. Both of the processes may be fundamental mechanisms for the inherent interannual variation in TC activity over the WNP.  相似文献   

16.
Using tropical cyclone (TC) observations over a 58-yr period (1949-2006) from the China Meteorological Administration, the 40-year ECMWF Reanalysis (ERA-40), NCEP-NCAR reanalysis, and the Hadley Centre sea ice and sea surface temperature (HadISST) datasets, the authors have examined the behaviors of tropical cyclones (TCs) in the western north Pacific (WNP) in boreal winter (November-December-January-February). The results demonstrate that the occurrences of wintertime TCs, including super typhoons, have decreased over the 58 years. More TCs are found to move westward than northeastward, and the annual total number of parabolic-track-type TCs is found to be decreasing. It is shown that negative sea surface temperature anomalies (SSTAs) related to La Nifia events in the equatorial central Pacific facilitate more TC genesis in the WNP region. Large-scale anomalous cyclonic circulations in the tropical WNP in the lower troposphere are observed to be favorable for cyclogenesis in this area. On the contrary, the positive SSTAs and anomalous anticyclonic circulations that related to E1 Nifio events responsible for fewer TC genesis. Under the background of global warming, the western Pacific subtropical high tends to intensify and to expand more westward in the WNP, and the SSTAs display an increasing trend in the equatorial eastern-central Pacific. These climate trends of both atmospheric circulation and SSTAs affect wintertime TCs, inducing fewer TC occurrences and causing more TCs to move westward.  相似文献   

17.
利用1979—2012年西北太平洋热带气旋最佳路径资料,Hadley中心的海温资料和NCEP/NCAR再分析资料等,研究了夏季(6—10月)热带北大西洋海温异常与西北太平洋热带气旋(Tropical Cyclone,TC)生成的关系及其可能机制。结果表明,夏季热带北大西洋海温异常与同期西北太平洋TC生成频次之间存在显著的负相关关系。热带北大西洋海温的异常增暖可产生一对东—西向分布的偶极型低层异常环流,其中气旋性异常环流位于北大西洋/东太平洋地区,反气旋异常环流位于西北太平洋地区。该反气旋环流异常使得TC主要生成区的对流活动受到抑制、低层涡度正异常、中低层相对湿度负异常、中层下沉气流异常,这些动力/热力条件均不利于TC生成。此外,西北太平洋地区低层涡旋动能负异常,同时来自大尺度环流的涡旋动能的正压转换也受到抑制,不能为TC的生成和发展提供额外能量源。反之亦然。  相似文献   

18.
热带气旋潜势指数可以合理刻画热带气旋生成的位置与范围, 被广泛应用于评估气候系统模式对热带气旋的模拟。本文使用区域海—气耦合模式FROALS对西北太平洋地区1982~2007年的积分结果, 检验了该模式对热带气旋潜势指数的气候态和年际变率模拟能力, 并从决定热带气旋潜势的五个变量角度, 分析了造成模式模拟偏差的原因。结果表明, 模式可以合理再现西北太平洋地区热带气旋潜势指数的分布, 但由于西北太平洋季风槽模拟偏弱且耦合后模拟海温偏冷, 使得耦合试验模拟的热带气旋潜势指数分布偏弱, 尽管较之单独大气模式, 其模拟的空间分布有改善。在年际变率方面, 模式可以合理再现年际变率中热带气旋潜势指数对ENSO的响应, 且耦合模式优于单独大气模式, 分析表明其原因在于耦合模式模拟的850 hPa季风槽强度与年际变率优于单独大气模式。因此区域耦合模式在模拟热带气旋指数年际变率方面相较大气模式有优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号