首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
台湾及其邻海的重力特征与构造、地震的关系   总被引:1,自引:0,他引:1  
张赤军  方剑 《台湾海峡》2001,20(1):101-109
分析认为,在台湾及其邻海的重力场中,具有短波长特征的空间重力异常受地形与海深所制约.玉山的200×10  相似文献   

2.
The Blake Outer Ridge is a 480–kilometer long linear sedimentary drift ridge striking perpendicular to the North American coastline. By modeling free-air gravity anomalies we tested for the presence of a crustal feature that may control the location and orientation of the Blake Outer Ridge. Most of our crustal density models that match observed gravity anomalies require an increase in oceanic crustal thickness of 1–3 km on the southwest side of the Blake Outer Ridge relative to the northeast side. Most of these models also require 1–4 km of crustal thinning in zone 20–30 km southwest of the crest of the Blake Outer Ridge. Although these features are consistent with the structure of oceanic fracture zones, the Blake Outer Ridge is not parallel to adjacent known fracture zones. Magnetic anomalies suggest that the ocean crust beneath this feature formed during a period of mid-ocean ridge reorganization, and that the Blake Outer Ridge may be built upon the bathymetric expression of an oblique extensional feature associated with ridge propagation. It is likely that the orientation of this trough acted as a catalyst for sediment deposition with the start of the Western Boundary Undercurrent in the mid-Oligocene.  相似文献   

3.
Short wave gravity anomaly is correlated to sea floor topography in the gravity field of Taiwan and its adjacent seas. Gravity values of 200 × 10-5ms-2 at Yushang and -160 × 10-5ms-2 at Liuqiu sea trench are respectively the maximum and minimum gravity values in this area.Bouguer gravity anomaly reflects not only Moho interface undulation, but also fault distribution.The inflexion of gradient belt of Bouguer gravity anomaly is a spot liable to earthquakes. Middlelong wave geoid is the best data to invert crustal thickness. We calculate crustal thickness by using geoid data, and the maximum value is 38km; the minimum value is 12km in Taiwan and its adjacent seas.  相似文献   

4.
使用BEDMAP2关于南极大陆及周围海域和JGP95E关于全球表面高程、冰厚和冰下及水深地形数据,采用球坐标系下的扇形球壳块重力效应公式,在极方位投影直角坐标网格节点上计算了南极大陆及周围海域的近区及远区的地形和艾黎均衡重力效应。南极大陆冰盖带来可观的正重力效应,南大洋负重力效应又影响到了南极内陆,全球地形/均衡重力效应与局部地形高低有关联性,而低负值区主要分布在环南极的陆坡。获得的约1n mile间距的地形和艾黎均衡重力效应网格数据可用于南极大陆及周边海域的重力改正,提供准确、一致的布格重力异常和艾黎均衡重力异常。  相似文献   

5.
This study presents the results of a seismic refraction experiment that was carried out off Dronning Maud Land (East Antarctica) along the Explora Escarpment (14° W–12° W) and close to Astrid Ridge (6°E). Oceanic crust of about 10 km thickness is observed northwest of the Explora Escarpment. Stretched continental crust, observed southeast of the escarpment, is most likely intruded by volcanic material at all crustal levels. Seismic velocities of 7.0–7.4 km/s are modelled for the lower crust. The northern boundary of this high velocity body coincides approximately with the Explora Escarpment. The upper crystalline crust is overlain by a 4-km thick and 70-km wide wedge of volcanic material: the Explora Wedge. Seismic velocities for the oceanic crust north of the Explora Escarpment are in good agreement with global studies. The oceanic crust in the region of the Lazarev Sea is also up to 10-km thick. The lower crystalline crust shows seismic velocities of up to 7.4 km/s. This, together with the larger crustal thickness might point to higher mantle temperatures during the formation of the oceanic crust. The more southerly rifted continental crust is up to 25-km thick, and also has seismic velocities of 7.4 km/s in the lower crystalline crust. This section is interpreted to consist of stretched continental crust, which is heavily intruded by volcanic material up to approximately 8-km depth. Multichannel seismic data indicate that, in this region, two volcanic wedges are present. The wedges are interpreted to have evolved during different time/rift periods. The wedges have a total width of at least 180 km in the Lazarev Sea. Our results support previous findings that the continental margin off Dronning Maud Land between ≈2°E and ≈13°E had a complex and long-lived rift history. Both continental margins can be classified as rifted volcanic continental margins that were formed during break-up of Gondwana.  相似文献   

6.
东海莫霍面起伏与地壳减薄特征初步分析   总被引:3,自引:0,他引:3  
收集、整理大量由地震剖面提供的沉积层厚度资料,得到东海沉积层等厚图。对完全布格重力异常进行沉积层重力效应改正后,得到剩余重力异常,利用地震资料揭示的莫霍面深度值来约束界面反演得到东海莫霍面埋深。结果表明,东海陆架盆地莫霍面深度在25~28 km之间平缓变化,地壳厚度为14~26 km,西厚东薄;冲绳海槽盆地莫霍面深度为16~26 km,地壳厚度为12~22 km,北厚南薄。东海陆架盆地东部与冲绳海槽盆地南部地壳减薄明显,拉张因子分别达到2.6和3。初步分析认为冲绳海槽地壳以过渡壳为主,并未形成洋壳。  相似文献   

7.
All anomalous masses of the Earth are reflected in the free air gravity anomalies and the geoidal undulations. The low viscosity of the asthenosphere significantly reduces the possibility of existence of density inhomogeneities in the layer. This fact provides some physical basis for the separation of the gravity field anomalies. It has been shown by power spectrum analysis of the free air anomalies and gravity field of isostatically compensated model of the lithosphere for the North Atlantic and adjacent areas of America, Europe and Mediterranean, that the attraction of isostatically compensated model is significant for any wave length of the field. It causes significant error in the interpretation if long wavelength constituents of the free air gravity anomalies are considered as a field of deep anomalous masses. The isostatic anomalies und isostatic geoid are free from the influences of isostatically compensated lithosphere. The characteristic feature of the isostatic anomalies power spectrum is a pronounced minimum at the wavelength of about 1000 km. The relative homogeneity of the asthenosphere may explain this minimum. It means that principal density inhomogeneities of the Earth's interior are separated by the asthenospheric layer. Such a minimum has not been observed at the power spectrum of free air anomalies being masked by corresponding wavelength of the field of isostatically compensated lithosphere. Isostatic anomalies that reflect the differences between the real structure of the lithosphere and its isostatically compensated model have wavelengths less than 1000 km. Isostatic anomalies with the wavelength more than 1000 km reflect the attraction of density inhomogeneities situated under the level of isostatic compensation. The basic features of power spectrum of isostatic anomalies are the same for oceanic and continental areas. The method based on Kolmogorov-Wiener filtration which consideres statistical characteristics of the field has been developed to divide the isostatic gravity anomalies into lithosphere and mantle components. For the North Atlantic and adjacent areas the field of mantle inhomogeneities has been determined.  相似文献   

8.
翁通爪哇高原、凯尔盖朗高原与沙茨基海隆是全球三大洋底高原, 是大量岩浆喷发到地表的结果, 火山面积分别达1.90×106、1.25×106、0.53×106km2。本文详细分析了该三大洋底高原的地形、剩余地幔布格重力异常(residual mantle Bouguer anomaly, RMBA)与重力反演的相对地壳厚度, 并结合地质与地球化学特征约束进行对比研究。结果显示, 翁通爪哇高原、凯尔盖朗高原与沙茨基海隆分别高出周围海底约4.3、5、4km, 相应的地幔布格重力异常最大变化值分别为250、330、200mGal, 以及相应的相对地壳厚度变化分别为11、13、9km, 表明形成三大洋底高原的岩浆量远远大于正常洋中脊的岩浆量。此外, 三大洋底高原皆形成于洋中脊附近。Nd、Pb、Hf同位素比值分析表明, 翁通爪哇高原的玄武岩组分为洋岛玄武岩; 凯尔盖朗高原大部分类似于洋岛玄武岩, 并含有洋中脊玄武岩组分; 沙茨基海隆的玄武岩组分主要为东太平洋海隆正常洋中脊玄武岩, 却又存在少量位于全球洋岛玄武岩范围内。这些特征揭示了三大洋底高原可能形成于“地幔柱-洋中脊相互作用”。对此本文提出了两种模式: 一为洋中脊被地幔柱拖拽至其上方; 二为洋中脊之下的软流圈受到地幔柱影响, 从而产生超常熔融与超厚地壳。  相似文献   

9.
Four uniformly spaced regional gravity traverses and the available seismic data across the western continental margin of India, starting from the western Indian shield extending into the deep oceanic areas of the eastern Arabian Sea, have been utilized to delineate the lithospheric structure. The seismically constrained gravity models along these four traverses suggest that the crustal structure below the northern part of the margin within the Deccan Volcanic Province (DVP) is significantly different from the margin outside the DVP. The lithosphere thickness, in general, varies from 110–120 km in the central and southern part of the margin to as much as 85–90 km below the Deccan Plateau and Cambay rift basin in the north. The Eastern basin is characterised by thinned rift stage continental crust which extends as far as Laxmi basin in the north and the Laccadive ridge in the south. At the ocean–continent transition (OCT), crustal density differences between the Laxmi ridge and the Laxmi basin are not sufficient to distinguish continental as against an oceanic crust through gravity modeling. However, 5-6 km thick oceanic crust below the Laxmi basin is a consistent gravity option. Significantly, the models indicate the presence of a high density layer of 3.0 g/cm3 in the lower crust in almost whole of the northern part of the region between the Laxmi ridge and the pericontinental northwest shield region in the DVP, and also below Laccadive ridge in the southern part. The Laxmi ridge is underlain by continental crust upto a depth of 11 km and a thick high density material (3.0 g/cm3) between 11–26 km. The Pratap ridge is indicated as a shallow basement high in the upper part of the crust formed during rifting. The 15 –17 km thick oceanic crust below Laccadive ridge is seen further thickened by high density underplated material down to Moho depths of 24–25 km which indicate formation of the ridge along Reunion hotspot trace.  相似文献   

10.
The Atlantis Fracture Zone (30° N) is one of the smallest transform faults along the Mid-Atlantic Ridge with a spatial offset of 70 km and an age offset of ~ 6 Ma. The morphology of the Atlantis Fracture Zone is typical of that of slow-slipping transforms. The transform valley is 15–20 km wide and 2–4 km deep. The locus of strike-slip deformation is confined to a narrow band a few kilometers wide. Terrain created at the outside corners of the transform is characterized by ridges which curve toward the ridge-transform intersections and depressions which resemble nodal basins. Hooked ridges are not observed on the transform side of the ridge-transform intersections. Results of the three-dimensional inversion of the surface magnetic field over our survey area suggest that accretionary processes are sufficiently organized within 3–4 km of the transform fault to produce lineated magnetic anomalies. The magnetization solution further documents a 15-km, westward relocation of the axis of accretion immediately south of the transform about 0.25 Ma ago. The Atlantis Transform is associated with a band of high mantle Bouguer anomalies, suggesting the presence of high densities in the crust and/or mantle along the transform, or anomalously thin crust beneath the transform. Assuming that all the mantle Bouguer anomalies are due to crustal thickness variations, we calculate that the crust may be 2–3 km thinner than a reference 6-km thickness beneath the transform valley, and 2–3 km thicker beneath the mid-points of the spreading segments which bound the transform. Our results indicate that crustal thinning is not uniform along the strike of the fracture zone. Based on studies of the state of compensation of the transform, we conclude that the depth anomaly associated with the fracture zone valley is not compensated everywhere by thin crust. Instead, the regional relationship between bathymetry and gravity is best explained by compensation with an elastic plate with an effective thickness of ~ 4 km or greater. However, the remaining isostatic anomalies indicate that there are large variations away from this simple model which are likely due to variations in crustal thickness and density near the transform.  相似文献   

11.
Results are presented from a deep seismic sounding experiment with the research vessel POLARSTERN in the Scoresby Sund area, East Greenland. For this continental margin study 9 seismic recording landstations were placed in Scoresby Sund and at the southeast end of Kong Oscars Fjord, and ocean bottom seismographs (OBS) were deployed at 26 positions in and out of Scoresby Sund offshore East Greenland between 70° and 72° N and on the west flank of the Kolbeinsey Ridge. The landstations were established using helicopters from RV POLARSTERN. Explosives, a 321 airgun and 81 airguns were used as seismic sources in the open sea. Gravity data were recorded in addition to the seismic measurements. A free-air gravity map is presented. The sea operations — shooting and OBS recording — were strongly influenced by varying ice conditions. Crustal structure 2-D models have been calculated from the deep seismic sounding results. Free-air gravity anomalies have been calculated from these models and compared to the observed gravity. In the inner Scoresby Sund — the Caledonian fold belt region — the crustal thickness is about 35 km, and thins seaward to 10 km. Sediments more than 10 km thick on Jameson Land are of mainly Mesozoic age. In the outer shelf region and deep sea a ‘Moho’ cannot clearly be identified by our data. There are only weak indications for the existence of a ‘Moho’ west of the Kolbeinsey Ridge. Inside and offshore Scoresby Sund there is clear evidence for a lower crust refractor characterised byp-velocities of 6.8–7.3 km s?1 at depths between 6 and 10 km. We believe these velocities are related to magmatic processes of rifting and first drifting controlled by different scale mantle updoming during Paleocene to Eocene and Late Oligocene to Miocene times: the separation of Greenland/Norway and the separation of the Jan Mayen Ridge/Greenland, respectively. A thin igneous upper crust, interpreted to be of oceanic origin, begins about 50 km seaward of the Liverpool Land Escarpment and thickens oceanward. In the escarpment zone the crustal composition is not clear. Probably it is stretched and attenuated continental crust interspersed with basaltic intrusions. The great depth of the basement (about 5000 m) points to a high subsidence rate of about 0.25 mm yr?1 due to sediment loading and cooling of the crust and upper mantle, mainly since Miocene time. The igneous upper crust thickens eastward under the Kolbeinsey Ridge to about 2.5 km; the thickening is likely caused by higher production of extrusives. The basementp-velocity of 5.8–6.0 km s?1 is rather high. Such velocities are associated with young basalts and may also be caused by a higher percentage of dykes. Tertiary to recent sediments, about 5000 m thick, form most of the shelf east of Scoresby Sund, Liverpool Land and Kong Oscars Fjord. This points to a high sedimentation rate mainly since the Miocene. The deeper sediments have a rather high meanp-velocity of 4.5 km s?1, perhaps due to pre-Cambrian to Caledonian deposits of continental origin. The upper sediments offshore Scoresby Sund are thick and have a rather low velocity. They are interpreted as eroded material transported from inside the Sund into the shelf region. Offshore Kong Oscars Fjord the upper sediments, likely Jurassic to Devonian deposits, are thin in the shelf region but thicken to more than 3000 m in the slope area. The crust and upper mantle structure in the ocean-continent transition zone is interpreted to be the result of the superposition of the activities of three rifting phases related to mantle plumes of different dimensions:
  1. the ‘Greenland/Norway separation phase’ of high volcanic activity,
  2. the ‘Jan Mayen Ridge/Greenland separation phase’ and
  3. the ‘Kolbeinsey Ridge phase’ of ‘normal’ volcanic activity related to a more or less normal mantle temperature.
During period 2 and 3 only a few masses of extrusives were produced, but large volumes of intrusives were emplaced. So the margin between Scoresby Sund and Jan Mayen Fracture Zone is interpreted to be a stretched margin with low volcanic activity.  相似文献   

12.
In 2001 and 2002, Australia acquired an integrated geophysical data set over the deep-water continental margin of East Antarctica from west of Enderby Land to offshore from Prydz Bay. The data include approximately 7700 km of high-quality, deep-seismic data with coincident gravity, magnetic and bathymetry data, and 37 non-reversed refraction stations using expendable sonobuoys. Integration of these data with similar quality data recorded by Japan in 1999 allows a new regional interpretation of this sector of the Antarctic margin. This part of the Antarctic continental margin formed during the breakup of the eastern margin of India and East Antarctica, which culminated with the onset of seafloor spreading in the Valanginian. The geology of the Antarctic margin and the adjacent oceanic crust can be divided into distinct east and west sectors by an interpreted crustal boundary at approximately 58° E. Across this boundary, the continent–ocean boundary (COB), defined as the inboard edge of unequivocal oceanic crust, steps outboard from west to east by about 100 km. Structure in the sector west of 58° E is largely controlled by the mixed rift-transform setting. The edge of the onshore Archaean–Proterozoic Napier Complex is downfaulted oceanwards near the shelf edge by at least 6 km and these rocks are interpreted to underlie a rift basin beneath the continental slope. The thickness of rift and pre-rift rocks cannot be accurately determined with the available data, but they appear to be relatively thin. The margin is overlain by a blanket of post-rift sedimentary rocks that are up to 6 km thick beneath the lower continental slope. The COB in this sector is interpreted from the seismic reflection data and potential field modelling to coincide with the base of a basement depression at 8.0–8.5 s two-way time, approximately 170 km oceanwards of the shelf-edge bounding fault system. Oceanic crust in this sector is highly variable in character, from rugged with a relief of more than 1 km over distances of 10–20 km, to rugose with low-amplitude relief set on a long-wavelength undulating basement. The crustal velocity profile appears unusual, with velocities of 7.6–7.95 km s−1 being recorded at several stations at a depth that gives a thickness of crust of only 4 km. If these velocities are from mantle, then the thin crust may be due to the presence of fracture zones. Alternatively, the velocities may be coming from a lower crust that has been heavily altered by the intrusion of mantle rocks. The sector east of 58° E has formed in a normal rifted margin setting, with complexities in the east from the underlying structure of the N–S trending Palaeozoic Lambert Graben. The Napier Complex is downfaulted to depths of 8–10 km beneath the upper continental slope, and the margin rift basin is more than 300 km wide. As in the western sector, the rift-stage rocks are probably relatively thin. This part of the margin is blanketed by post-rift sediments that are up to about 8 km thick. The interpreted COB in the eastern sector is the most prominent boundary in deep water, and typically coincides with a prominent oceanwards step-up in the basement level of up to 1 km. As in the west, the interpretation of this boundary is supported by potential field modelling. The oceanic crust adjacent to the COB in this sector has a highly distinctive character, commonly with (1) a smooth upper surface underlain by short, seaward-dipping flows; (2) a transparent upper crustal layer; (3) a lower crust dominated by dipping high-amplitude reflections that probably reflect intruded or altered shears; (4) a strong reflection Moho, confirmed by seismic refraction modelling; and (5) prominent landward-dipping upper mantle reflections on several adjacent lines. A similar style of oceanic crust is also found in contemporaneous ocean basins that developed between Greater India and Australia–Antarctica west of Bruce Rise on the Antarctic margin, and along the Cuvier margin of northwest Australia.  相似文献   

13.
Polymetalic sulfide is the main product of sea-floor hydrothermal venting, and has become an important sea-floor mineral resources for its rich in many kinds of precious metal elements. Since 2007, a number of investigations have been carried out by the China Ocean Mineral Resources Research and Development Association(COMRA)cruises(CCCs) along the Southwest Indian Ridge(SWIR). In 2011, the COMRA signed an exploration contract of sea-floor polymetallic sulfides of 10 000 km2 on the SWIR with the International Seabed Authority. Based on the multibeam data and shipborne gravity data obtained in 2010 by the R/V Dayang Yihao during the leg 6 of CCCs21, together with the global satellite surveys, the characteristics of gravity anomalies are analyzed in the Duanqiao hydrothermal field(37°39′S, 50°24′E). The "subarea calibration" terrain-correcting method is employed to calculate the Bouguer gravity anomaly, and the ocean bottom seismometer(OBS) profile is used to constrain the two-dimensional gravity anomaly simulation. The absent Moho in a previous seismic model is also calculated.The results show that the crustal thickness varies between 3 and 10 km along the profile, and the maximum crustal thickness reaches up to 10 km in the Duanqiao hydrothermal field with an average of 7.5 km. It is by far the most thicker crust discovered along the SWIR. The calculated crust thickness at the Longqi hydrothermal field is approximately 3 km, 1 km less than that indicated by seismic models, possibly due to the outcome of an oceanic core complex(OCC).  相似文献   

14.
As an interoceanic arc, the Kyushu-Palau Ridge(KPR) is an exceptional place to study the subduction process and related magmatism through its interior velocity structure. However, the crustal structure and its nature of the KPR,especially the southern part with limited seismic data, are still in mystery. In order to unveil the crustal structure of the southern part of the KPR, this study uses deep reflection/refraction seismic data recorded by 24 ocean bottom seismometers to reconstruct a detail...  相似文献   

15.
南海西北部与红河地区地球物理场及其地壳深部结构特征   总被引:10,自引:0,他引:10  
分析了南海西北部与红河地区地球物理场特征,计算了研究区重、磁资料的一阶小波细节变换、四阶小波逼近变换。根据重力场资料以及南海北部盆地钻井取样的测试结果,同时参考在研究区进行的地震勘探结果,对研究区的地壳结构进行了反演计算。结果表明,研究区域地壳结构较为复杂,地壳厚度在17—38km之间,总的趋势由陆向洋地壳厚度逐渐减薄,反映出该区域地壳具有陆壳、过渡壳的性质,同时存在上地幔隆起区及凹陷区。用地震层折成像结果与重力资料计算出的地壳分布趋势进行了对比验证。根据地幔对流结果探讨了研究区深部地球动力学特征及其与深部地壳结构的关系。  相似文献   

16.
This paper describes results from a geophysical study in the Vestbakken Volcanic Province, located on the central parts of the western Barents Sea continental margin, and adjacent oceanic crust in the Norwegian-Greenland Sea. The results are derived mainly from interpretation and modeling of multichannel seismic, ocean bottom seismometer and land station data along a regional seismic profile. The resulting model shows oceanic crust in the western parts of the profile. This crust is buried by a thick Cenozoic sedimentary package. Low velocities in the bottom of this package indicate overpressure. The igneous oceanic crust shows an average thickness of 7.2 km with the thinnest crust (5–6 km) in the southwest and the thickest crust (8–9 km) close to the continent-ocean boundary (COB). The thick oceanic crust is probably related to high mantle temperatures formed by brittle weakening and shear heating along a shear system prior to continental breakup. The COB is interpreted in the central parts of the profile where the velocity structure and Bouguer anomalies change significantly. East of the COB Moho depths increase while the vertical velocity gradient decreases. Below the assumed center for Early Eocene volcanic activity the model shows increased velocities in the crust. These increased crustal velocities are interpreted to represent Early Eocene mafic feeder dykes. East of the zone of volcanoes velocities in the crust decrease and sedimentary velocities are observed at depths of more than 10 km. The amount of crustal intrusions is much lower in this area than farther west. East of the Kn?legga Fault crystalline basement velocities are brought close to the seabed. This fault marks the eastern limit of thick Cenozoic and Mesozoic packages on central parts of the western Barents Sea continental margin.  相似文献   

17.
During TAiwan Integrated GEodynamics Research of 2009, we investigated data from thirty-seven ocean-bottom seismometers (OBS) and three multi-channel seismic (MCS) profiles across the deformation front in the northernmost South China Sea (SCS) off SW Taiwan. Initial velocity-interface models were built from horizon velocity analysis and pre-stack depth migration of MCS data. Subsequently, we used refracted, head-wave and reflected arrivals from OBS data to forward model and then invert the velocity-interface structures layer-by-layer. Based on OBS velocity models west of the deformation front, possible Mesozoic sedimentary rocks, revealed by large variation of the lateral velocity (3.1–4.8 km/s) and the thickness (5.0–10.0 km), below the rift-onset unconformity and above the continental crust extended southward to the NW limit of the continent–ocean boundary (COB). The interpreted Mesozoic sedimentary rocks NW of the COB and the oceanic layer 2 SE of the COB imaged from OBS and gravity data were incorporated into the overriding wedge below the deformation front because the transitional crust subducted beneath the overriding wedge of the southern Taiwan. East of the deformation front, the thickness of the overriding wedge (1.7–5.0 km/s) from the sea floor to the décollement decreases toward the WSW direction from 20.0 km off SW Taiwan to 8.0 km at the deformation front. In particular, near a turn in the orientation of the deformation front, the crustal thickness (7.0–12.0 km) is abruptly thinner and the free-air (?20 to 10 mGal) and Bouguer (30–50 mGal) gravity anomalies are relatively low due to plate warping from an ongoing transition from subduction to collision. West of the deformation front, intra-crustal interfaces dipping landward were observed owing to subduction of the extended continent toward the deformation front. However, the intra-crustal interface near the turn in the orientation of the deformation front dipping seaward caused by the transition from subduction to collision. SE of the COB, the oceanic crust, with a crustal thickness of about 10.0–17.0 km, was thickened due to late magmatic underplating or partially serpentinized mantle after SCS seafloor spreading. The thick oceanic crust may have subducted beneath the overriding wedge observed from the low anomalies of the free-air (?50 to ?20 mGal) and Bouguer (40–80 mGal) gravities across the deformation front.  相似文献   

18.
Positive gravity anomalies indicate two dense conduits or eruptive centers beneath the northern summit of Sio Guyot, western Mid-Pacific Mountains. The low amplitude of the positive anomalies and the gravity lows flanking the guyot can be explained by crust 2.5 times the normal Pacific Ocean crustal thickness extending to a depth of 22 ± 2 km. The excess mass of the seamount is 100% locally isostatically compensated by the mass deficit below; this compensation may result from flexural loading and voluminous sill injection near a former ridge-crest transform fault system trending roughly ENE and NNW.  相似文献   

19.
Two dimensional crustal models derived from four different ocean bottom seismographic (OBS) surveys have been compiled into a 1,580 km long transect across the North Atlantic, from the Norwegian Møre coast, across the extinct Aegir Ridge, the continental Jan Mayen Ridge, the presently active Kolbeinsey Ridge north of Iceland, into Scoresby Sund in East Greenland. Backstripping of the transect suggests that the continental break-up at ca. 55 Ma occurred along a west-dipping detachment localized near the western end of a ca. 300 km wide basin thinned to less than 20 km crustal thickness. It is likely that an east-dipping detachment near the present day Liverpool Land Escarpment was active during the late stages of continental rifting. A lower crustal high-velocity layer (7.2–7.4 km/s) interpreted as mafic intrusions/underplating, was present beneath the entire basin. The observations are consistent with the plume hypothesis, involving the Early Tertiary arrival of a mantle plume beneath central Greenland and focused decompression melting beneath the thinnest portions of the lithosphere. The mid-Eocene to Oligocene continental extension in East Greenland is interpreted as fairly symmetric and strongly concentrated in the lower crustal layer. Continental break-up which rifted off the Jan Mayen Ridge, occurred at ca. 25 Ma, when the Aegir Ridge became extinct. The first ca. 2 m.y. of oceanic accretion along the Kolbeinsey Ridge was characterized by thin magmatic crust (ca. 5.5 km), whereas the oceanic crustal formation since ca. 23 Ma documents ca. 8 km thick crust and high magma budget.  相似文献   

20.
The Gakkel Ridge in the Arctic Ocean with its adjacent Nansen and Amundsen Basins is a key region for the study of mantle melting and crustal generation at ultraslow spreading rates. We use free-air gravity anomalies in combination with seismic reflection and wide-angle data to compute 2-D crustal models for the Nansen and Amundsen Basins in the Arctic Ocean. Despite the permanent pack-ice cover two geophysical transects cross both entire basins. This means that the complete basin geometry of the world’s slowest spreading system can be analysed in detail for the first time. Applying standard densities for the sediments and oceanic crystalline crust, the gravity models reveal an unexpected heterogeneous mantle with densities of 3.30 × 103, 3.20 × 103 and 3.10 × 103 kg/m3 near the Gakkel Ridge. We interpret that the upper mantle heterogeneity mainly results from serpentinisation and thermal effects. The thickness of the oceanic crust is highly variable throughout both transects. Crustal thickness of less than 1 km dominates in the oldest parts of both basins, increasing to a maximum value of 6 km near the Gakkel Ridge. Along-axis heat flow is highly variable and heat flow amplitudes resemble those observed at fast or intermediate spreading ridges. Unexpectedly, high heat flow along the Amundsen transect exceeds predicted values from global cooling curves by more than 100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号