首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface erythemal UV radiation is mainly affected by total column ozone, aerosols, clouds, and solar zenith angle. The effect of ozone on the surface UV radiation has been explored many times in the previous studies due to the decrease of ozone layer. In this study, we calculated the effect of aerosols on the surface UV radiation as well as that of ozone using data acquired from Ozone Monitoring Instrument (OMI). First, ozone, aerosol optical depth (AOD), and surface erythemal UVB radiation measured from satellite are compared with those from ground measurements. The results showed that the comparison for ozone was good with r 2 of 0.92. For aerosol, there was difference between satellite measurements and surface measurements due to the insufficient information on aerosol in the retrieval algorithm. The r 2 for surface erythemal UV radiation was high (~0.94) but satellite measurements showed about 30% larger values than surface measurements on average by not considering the effect of absorbing aerosols in the retrieval process from satellite measurements. Radiative amplification factor (RAF) is used to access the effect of ozone and aerosol quantitatively. RAF for ozone was 0.97~1.49 with solar zenith angle. To evaluate the effect of aerosol on the surface UV radiation, only clear-sky pixel data were used and solar zenith angle and total column amount of ozone were fixed. Also, RAF for aerosol was assessed according to the single scattering albedo (SSA) of aerosols. The results showed that RAF for aerosol with smaller SSA (< 0.90) was larger than that for with larger SSA (> 0.90). The RAF for aerosol was 0.09~0.22 for the given conditions which was relatively small compared to that for ozone. However, considering the fact that aerosol optical depth can change largely in time and space while the total column amount of ozone does not change very much, it needs to include the effect of aerosol to predict the variations of surface UV radiation more correctly.  相似文献   

2.
利用2004~2009年秋季臭氧监测仪的3级观测资料,分析了华北及周边地区的气溶胶光学性质。结果表明:大部分区域气溶胶光学厚度(Aerosol Optical Depth,AOD)和气溶胶紫外吸收指数(Ultra Violet Aerosol Index,UVAI)平均值分别高于0.8和0.75;高气溶胶事件发生频次统计表明,AOD高值(>0.4)频发于北京及其周边地区,UVAI高值(>1.0)频发于河北中部及南部地区;华北及其周边地区绝大多数城市平均AOD和UVAI分别高于0.7和0.60,而张家口、承德和阳泉3个城市的平均AOD和UVAI值分别低于0.6和0.65。作者进一步研究了2006年10月30日的一次霾事件中气溶胶的光学性质以及其时空分布特征。结果表明,霾由华北地区输送至渤海海域,并向东北方向输送;香河地基EZlidar激光雷达的垂直观测结果进一步表明,工业和城市型气溶胶主要集中在1500m以下,其中高浓度部分集中于650m以下,平均峰值位于285m,平均消光系数达2.15km-1;CALIOP卫星观测资料结合后向轨迹分析表明,大气低层气溶胶类型以工业和城市型气溶胶为主,而高层则由于上游大气输送沙尘粒子的混入使气溶胶类型转变为污染—沙尘型。霾事件期间,香河站CE-318太阳光度计观测的AOD平均值(标准差)从背景值0.08(0.04)升高至1.17(0.14);ngstrm指数平均值(标准差)从背景值0.90(0.10)升至1.12(0.09);核模态、积聚模态和粗模态的气溶胶粒子数柱总量均增加,其中细粒子所占比例明显升高。  相似文献   

3.
The spatial–temporal properties of aerosol types over China are studied using the radiance measurements and inversions data at four Aerosol Robotic Network (AERONET) stations in China. Based on a cluster analysis, five aerosol classes were identified including a coarse-sized dominated aerosol type (presumably dust) and four fine-sized dominated aerosol types ranging from non-absorbing to highly absorbing fine aerosols. The optical properties and seasonal variations of these aerosol types are investigated. The results of analysis show that: (1) the highly absorbing aerosols usually occur in winter, (2) non-absorbing aerosols are frequently observed in summer; (3) coarse-sized dominated aerosols are frequently occurred in spring.  相似文献   

4.
Measurements of total ozone column and solar UV radiation under different atmospheric conditions are needed to define variations of both UV and ozone and to study the impact of ozone depletion at the Earth’s surface. In this study, spectral and broadband measurements of UV-B irradiance were obtained along with total ozone observations and aerosol optical depth measurements in the tropical urban region of Hyderabad, south India. We specifically used an Ultra-Violet Multifilter Rotating Shadow band Radiometer (UVMFR-SR), to measure UV irradiance in time and space. To assess the aerosol and O3 effects on ground-reaching UV irradiance, we used measurements from a Microtops II sun photometer in addition to the Tropospheric Ultraviolet Visible radiation (TUV) model. We also assessed the Defense Meteorological Satellite Program – Operational Line Scanner (DMSP-OLS) night time satellite data for inferring biomass burning fires during the study period. Results clearly suggested a negative correlation between the DMSP-OLS satellite derived fire count data and UVMFR-SR data suggesting that aerosols from biomass burning are directly attenuating UV irradiance in the study region. Also, correlation analysis between UV index and ozone measurements from sun photometer and TOMS-Ozone Mapping Instrument (OMI) indicated a clear decrease in ground reaching UV-B irradiance during higher ozone conditions. The higher levels are attributed to photochemical production of O3 during the oxidation of trace gases emitted from biomass burning. Results also suggested a relatively high attenuation in UV irradiance (~6% higher) from smoke particles than dust. We also found a relatively good agreement between the modeled (TUV) and measured UV irradiance spectra for different atmospheric conditions. Our results highlight the factors affecting UV irradiance in a tropical urban environment, south India.  相似文献   

5.
The characteristics of atmospheric aerosols in the Golmud desert over the Tibetan (Qinghai-Xizang) Plateau are investigated using the measurements made during the QXPMEX-79.Using spectroscopic observations at the surface and satellite data,the aerosol optical depth is calculated,from which the aerosol size distribution is worked out by means of an inversion method.The effects of vertical distribution of aerosols on irradiance and heating rate profiles are investigated using radiation models in conjunction with the assumption of three idealized aerosol profiles.The effect of aerosols on solar irradiance at the surface is also investigated and the results are compared with the observations.It is shown that the solar irradiance can be reduced by up to 100 W m-2 in the presence of aerosols,and the heating rate can be increased by 1 Kd-1.  相似文献   

6.
塔克拉玛干沙漠地区气溶胶光学厚度卫星遥感产品验证   总被引:2,自引:0,他引:2  
基于塔克拉玛干沙漠地区地基太阳光度计数据,系统验证2007~2008年星载多角度成像光谱仪(MISR)、中分辨率成像光谱仪(MODIS)和臭氧监测仪(OMI)气溶胶反演产品,旨在定量评估这些产品在我国沙漠地区的气溶胶光学厚度(AOD)反演精度。结果表明:MODIS/AOD的相关系数在4种产品中最高(0.91),OMI/AOD次之(0.87),其次为MISR/AOD(0.84),OMI/UVAI相关系数偏低(0.51)。MISR/AOD均方根误差(0.14)和平均偏差(-0.06)在4种反演产品中最低。与地基观测相比,MISR/AOD、MODIS/AOD系统偏低,OMI/AOD、OMI/UVAI系统偏高。在相同比较条件下(地基观测气溶胶光学厚度值限定在2.0以内),MISR的均方根误差和平均偏差在4种反演产品中最低,且相关系数也较高(0.84)。尽管存在诸多不同,但3种探测器气溶胶反演产品均能较好地展示该地区的气溶胶季节变化。塔克拉玛干沙漠春、夏季AOD较大,秋、冬季AOD相对较小。ngstrm波长指数的结果表明,春季(3~5月)最小(均值为0.11),夏季(6~8月)次之,秋季(9~11月)和冬季(12月至次年2月)较大(均值达到0.61),这表明在春、夏季气溶胶粒子偏大,秋、冬季气溶胶粒子偏小。此外,通过研究2000~2010年AOD年际变化表明,由于塔克拉玛干沙漠地区属于沙尘源区,气溶胶类型较为单一,所以总体来说,变化趋势不是较为明显。从反演结果来看,2003年的气溶胶含量为此10年中最高,年均值达到0.32;2005年的气溶胶含量在这10年中最低,年均值为0.28。  相似文献   

7.
China’s first carbon dioxide(CO2) measurement satellite mission, TanSat, was launched in December 2016. This paper introduces the first attempt to detect anthropogenic CO2 emission signatures using CO2 observations from TanSat and NO2 measurements from the TROPOspheric Monitoring Instrument(TROPOMI) onboard the Copernicus Sentinel-5 Precursor(S5P) satellite. We focus our analysis on two selected cases in Tangshan, China and Tokyo, Japan.We found that t...  相似文献   

8.
Data on aerosol optical thickness(AOT) and single scattering albedo(SSA) derived from Moderate Resolution Imaging Spectrometer(MODIS) and Ozone Monitoring Instrument(OMI) measurements,respectively,are used jointly to examine the seasonal variations of aerosols over East Asia.The seasonal signals of the total AOT are well defined and nearly similar over the land and over the ocean.These findings indicate a natural cycle of aerosols that originate primarily from natural emissions. In contrast,the small-sized aerosols represented by the fine-mode AOT,which are primarily generated over the land by human activities,do not have evident seasonalscale fluctuations.A persistent maximum of aerosol loadings centered over the Sichuan basin is associated with considerable amounts of fine-mode aerosols throughout the year.Most regions exhibit a general spring maximum. During the summer,however,the aerosol loadings are the most marked over north central China.This occurrence may result from anthropogenic fine particles,such as sulfate and nitrate.Four typical regions were selected to perform a covariation analysis of the monthly gridded AOT and SSA.Over southwestern and southeastern China,if the aerosol loadings are small to moderate they are composed primarily of the highly absorptive aerosols. However,more substantial aerosol loadings probably represent less-absorptive aerosols.The opposite covariation pattern occurring over the coastal-adjacent oceans suggests that the polluted oceanic atmosphere is closely correlated with the windward terrestrial aerosols.North central China is strongly affected by dust aerosols that show moderate absorption.This finding may explain the lower variability in the SSA that accompanies increasing aerosol loadings in this region.  相似文献   

9.
Over the Asian continent,high aerosol loading is critical to ensure the high accuracy of CO2 retrieval in the near infrared absorption band.Simulations were performed to explore the effect of light path modification by aerosol son the atmospheric CO2 near infrared band(6140-6270 cm-1).The Vector LInearized Discrete Ordinate Radiative Transfer(VLIDORT) model and the Line-By-Line Radiative Transfer Model(LBLRTM) were used for forward calculations.The U.S.standard atmosphere was used for atmospheric profiles.The results indicate that the aerosols caused similar effects to increases in CO2 in the planetary boundary layer and became more significant with aerosol layer rising while aerosol optical depth was 0.1.This effect will cause an over estimation of the CO2 mixing ratio in the retrieval process and an under estimation in the aerosol layer.The results also indicate that the effect of urban and industrial aerosols is smaller than that of non-absorbing and dust aerosols because of the nearly constant absorption properties in the near infrared band.  相似文献   

10.
The instrument cross-calibration is an effective way to assess the quality of satellite data. In this study, a new method is proposed to cross-calibrate the sensors among satellite instruments by using a RObotic Lunar Observatory(ROLO) model and Apollo sample reflectance in reflective solar bands(RSBs). The ROLO model acts as a transfer radiometer to bridge between the instruments. The reflective spectrum of the Apollo sample is used to compensate for the difference in the instrument's relative spectral responses(RSRs). In addition, the double ratio between the observed lunar irradiance and the simulated lunar irradiance is used to reduce the difference in instrument lunar viewing and illumining geometry. This approach is applied to the Moderate Resolution Imaging Spectroradiometer(MODIS), the Sea-Viewing Wide Field-of-View Sensor(Sea Wi FS), and the Advanced Land Imager(ALI) on board three satellites, respectively. The mean difference between MODIS and Sea Wi FS is less than 3.14%, and the difference between MODIS and ALI is less than 4.75%. These results indicate that the proposed cross-calibration method not only compensates for the RSR mismatches but also reduces the differences in lunar observation geometry. Thus,radiance calibration of any satellite instrument can be validated with a reference instrument bridged by the moon.  相似文献   

11.
Taking winter and summer in eastern China as an example application, a grid-cell method of aerosol direct radiative forcing(ADRF) calculation is examined using the Santa Barbara DISORT Atmospheric Radiative Transfer(SBDART) model with inputs from MODIS and AERONET observations and reanalysis data. Results show that there are significant seasonal and regional differences in climatological mean aerosol optical parameters and ADRF. Higher aerosol optical depth(AOD)occurs in summer and two prominent high aerosol loading centers are observed. Higher single scattering albedo(SSA) in summer is likely associated with the weak absorbing secondary aerosols. SSA is higher in North China during summer but higher in South China during winter. Aerosols induce negative forcing at the top of the atmosphere(TOA) and surface during both winter and summer, which may be responsible for the decrease in temperature and the increase in relative humidity.Values of ADRF at the surface are four times stronger than those at the TOA. Both AOD and ADRF present strong interannual variations; however, their amplitudes are larger in summer. Moreover, patterns and trends of ADRF do not always correspond well to those of AOD. Differences in the spatial distributions of ADRF between strong and weak monsoon years are captured effectively. Generally, the present results justify that to calculate grid-cell ADRF at a large scale using the SBDART model with observational aerosol optical properties and reanalysis data is an effective approach.  相似文献   

12.
13.
The sub-monthly evolution of the interannual variations of absorbing aerosols and related hydrometeorology over South Asia in the pre-monsoon period is investigated from the analysis of pentad-resolution observational datasets.It is shown that pre-monsoon (late April–early May) variations are characterized by increased aerosols, reduced cloudiness and precipitation, and increased downward shortwave radiation. Lead-lag regressions indicate the significant influence of synoptic scale advection (and related vertical motion) in simultaneously shaping the aerosol distribution and associated significant hydroclimate (precipitation, cloudiness, surface shortwave radiation, and 2-m air temperature) over the Indo-Gangetic Plain.The above findings can be interpreted as a manifestation of the aerosol “semi-direct” effect if one is not mindful of the prevailing circulation anomalies and their concurrent impact on aerosol and hydroclimate. The complex interplay among aerosols, dynamics and precipitation also shows the challenge of extracting the aerosol impact from an observational analysis. Finally, the analysis points to the pitfalls of a columnar, circulation-blind framework in investigating aerosol–monsoon interactions, a concern of relevance in analyses of the impact of long-term aerosol trends, as well.  相似文献   

14.
大气气溶胶的卫星遥感及其在气候和环境研究中的应用   总被引:2,自引:1,他引:1  
卫星遥感可以获得全球范围的大气气溶胶光学特性,目前国内外已有多颗卫星观测能够提供气溶胶特性的资料。本文综述性介绍国内外卫星遥感气溶胶特性方面的研究进展和成果,并讨论了卫星遥感资料在气候和环境研究领域中的应用。主要内容包括:极轨/静止卫星平台搭载的被动遥感传感器及其反演气溶胶特性的方法;星载激光雷达获取气溶胶光学特性的方法;国内外正在研发的新一代卫星主、被动气溶胶遥感探测器;卫星气溶胶产品在气溶胶辐射强迫、气候效应、大尺度污染输送、区域空气质量监测等研究中的应用。  相似文献   

15.
Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height(PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System(SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2for downward shortwave radiation(DSR) and a mean increase of 19.2 W m-2for downward longwave radiation(DLR), as well as a mean decrease of 9.6W m-2for the surface sensible heat flux(SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter(PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5column mass concentrations, the SHF under clean atmospheric conditions(same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5reaches 200 mg m-2, the decrease in the PBLH at 1600 LST(local standard time) is about 450 m.  相似文献   

16.
Numerous factors can influence the radiative transfer simulation of hyper-spectral ultraviolet satellite observation,including the radiative transfer scheme, gaseous absorption coefficients, Rayleigh scattering scheme, surface reflectance, aerosol scattering, band center wavelength shifts of sensor, and accuracy of input profiles. In this study, a Unified Linearized Vector Radiative Transfer Model(UNL-VRTM) is used to understand the influences of various factors on the top of atmosphere(TOA) normalized radiance in the ultraviolet(UV) region. A benchmark test for Rayleigh scattering is first performed to verify the UNL-VRTM accuracy, showing that the model performances agree well with earlier peer-reviewed results. Sensitivity experiments show that a scalar radiative transfer approximation considering only ozone and a constant surface reflectance within the UV region may cause significant errors to the TOA normalized radiance. A comparison of the Ozone Mapping and Profiler Suite(OMPS) radiances between simulations and observations shows that the surface reflectance strongly influences the accuracy for the wavelengths larger than 340 nm. Thus, using the surface reflectivity at 331 nm as a proxy for simulating the whole OMPS hyperspectral ultraviolet radiances is problematic. The impact of rotational Raman scattering on TOA radiance can be simulated through using SCIATRAN, which can also reduce the difference between measurements and simulations to some extent. Overall, the differences between OMPS simulations and observations can be less than 3% for the entire wavelengths. The bias is nearly constant across the cross-track direction.  相似文献   

17.
The single-scattering albedo (SSA), which quantifies radiative absorption capability, is an important optical property of aerosols. Ground-based methods have been extensively exploited to determine aerosol SSA but there were no satellite-based SSA measurements available until the advent of advanced remote sensing techniques, such as the Ozone Monitoring Instrument (OMI). Although the overall accuracy of OMI SSA is estimated to approach 0.1, its regional availability is unclear. Four-year SSA daily measurements from three Aerosol Robotic Network (AERONET) sites in China (Xianghe, Taihu, and Hong Kong) are chosen to determine the accuracy of OMI SSA in specific locations. The results show that on a global scale, the OMI SSA is systematically higher (with a mean relative bias of 3.5% and a RMS difference of ~0.06) and has poor correlation with the AERONET observations. In the Xianghe, Taihu, and Hong Kong sites, the correlation coefficients are 0.16, 0.47, and 0.44, respectively, suggesting that the distinct qualities of OMI SSA depend on geographic locations and/or dominant aerosol environments. The two types of SSA data yield the best agreement in Taihu and the worst in Hong Kong; the differing behavior is likely caused by varying levels of cloud contamination. The good consistency of the aerosol variation between the two SSA datasets on a seasonal scale is promising. These findings suggest that the current-version OMI SSA product can be applied to qualitatively characterize climatological variations of aerosol properties despite its limited accuracy as an instantaneous measurement.  相似文献   

18.
均一模式和两层模式是两个忽略气溶胶垂直非均一、并广泛用于卫星遥感的辐射模式。通过两个模式的数值模拟,分析了气溶胶的垂直非均一对向上天空亮度和卫星遥感地面反射率的效应。数值模拟选用了24个有代表性的气溶胶模式。对于具有强分子散射的卫星短波通道,由于分子和气溶胶散射性的明显不同,应用均一和两层模式计算的向上亮度往往存在较大误差。对长波通道,如果气溶胶的光学特性随高度变化不大,该亮度误差较小,但如果存在不同散射相函数和一次散射反照率的气溶胶层,该误差仍可能较大。对于干净的大气,由均一和两层模式计算的亮度误差可分别高达31.4%和31.5%,而对于混浊的大气,该误差可分别高达67.8%和59.2%。该亮度误差可以引起地表反射率解存在大的不确定性,特别是对于短波通道和强吸收的气溶胶。对于包含强吸收气溶胶的混浊大气,均一和两层模式不适合于大气订正应用。  相似文献   

19.
Every year during winter months (December?CJanuary) fog formation over Indo-Gangetic plains (IGP) of Indian region is believed to create numerous hazards. The present study addresses variations in aerosol optical properties, aerosol mass concentration and their impact on solar irradiance for pre-during-post fog conditions of December 2004 over IGP, India. Continuous measurements on aerosol optical depth (AOD), total aerosol mass concentration, black carbon (BC) aerosols, UVery and UVA were carried out for pre, during and post fog periods over study site of Allahabad, India, during December 2004 as a part of Aerosol Land Campaign-II conducted by Indian Space Research Organization (ISRO). High aerosol mass concentrations were observed during fog and post-fog periods. Accumulation mode particle loading was found to be high during pre-fog period and coarse mode particle loading was observed to be high during fog and post-fog periods. Considerable reduction in UVery and UVA irradiance was observed during fog period compared with pre and post-fog periods. Analysis of NOAA-HYSPLIT model runs suggested that enhanced biomass burning episodes down-wind to the study area increased the concentration of AOD and BC.  相似文献   

20.
Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well-researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, an aerosol retrieval algorithm using the MODIS 500-m resolution bands is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta region. The rationale of our technique is to first estimate the aerosol reflectances by decomposing the top-of-atmosphere reflectances from surface reflectances and Rayleigh path reflectances. For the determination of surface reflectances, a Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. For conversion of aerosol reflectance to aerosol optical thickness (AOT), comprehensive Look Up Tables specific to the local region are constructed, which consider aerosol properties and sun-viewing geometry in the radiative transfer calculations. Four local aerosol types, namely coastal urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on 3 years of AERONET measurements in Hong Kong. The resulting 500 m AOT images were found to be highly correlated with ground measurements from the AERONET (r2 = 0.767) and Microtops II sunphotometers (r2 = 0.760) in Hong Kong. This study further demonstrates the application of the fine resolution AOT images for monitoring inter-urban and intra-urban aerosol distributions and the influence of trans-boundary flows. These applications include characterization of spatial patterns of AOT within the city, and detection of regional biomass burning sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号