首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 62 毫秒
1.
Studies dealing with impact of the Arctic warming and related sea ice decline on the Northern Hemisphere atmospheric circulation are considered. The causes of occurrence of extremely cold winters over the mid-latitude continents observed in the recent decades against the warming background are discussed. Several conceptions are outlined which explain potential reasons for occurrence of this phenomenon. The paper discusses impacts of the Arctic sea ice loss on the large-scale atmospheric circulation, oscillations of planetary waves. It also discusses issues related to sea ice changes in the Barents and Kara seas and their link to the frequency of extremely cold winters observed in Eurasia and North America, the contribution of internal atmospheric variability to the increasing frequency of cold weather, and the role of the Atlantic Multidecadal Oscillation in the Arctic sea ice reduction.  相似文献   

2.
The circulation patterns of persistent cold weather spells with durations longer than 10 days in central–eastern North America(United States and Canada; 32°–52°N, 95°–65°W) are investigated by using NCEP reanalysis data from 1948 to 2014. The criteria for the persistent cold spells are:(1) three-day averaged temperature anomalies for the regional average over the central–eastern United States and Canada must be below the 10th percentile, and(2)such extreme cold spells must last at least 10 days. The circulation patterns associated with these cold spells are examined to find the common signals of these events. The circulation anomaly patterns of these cold spells are categorized based on the El Ni?o–Southern Oscillation, Arctic Oscillation(AO), and other climate indices. The atmospheric circulation patterns that favor the cold spells are identified through composites of geopotential height maps for the cold spells. Negative AO phases favor persistent cold spells. Phases of sea surface temperature(SST) modes that are associated with warm SSTs in the eastern extratropical Pacific also favor persistent cold events in the study region.Stratospheric polar vortex breakdown alone is not a good predictor for the regional extreme cold spells in central–eastern North America. The meridional dispersions of quasi-stationary Rossby waves in the Pacific–North America sector in terms of cut-off zonal wavenumber modulated by background flow are analyzed to provide insight into the difference in evolution of the cold spells under different mean AO phases. The waveguide for AO 1 is in a narrow latitudinal band centered on 40°N, whereas the waveguide for AO –1 is in a broader latitudinal band from 40° to 65°N. The circulation patterns and lower boundary conditions favorable for persistent cold spells identified by this study can be a stepping-stone for improving winter subseasonal forecasting in North America.  相似文献   

3.
In this study, the characteristics of moist potential vorticity (MPV) in the vicinity of a surface cyclone center and their physical processes axe investigated. A prognostic equation of surface absolute vorticity is then used to examine the relationship between the cyclone tracks and negative MPV (NMPV) using numerical simulations of the life cycle of an extratropical cyclone. It is shown that the MPV approach developed herein, i.e., by tracing the peak NMPV, can be used to help trace surface cyclones during their development and mature stages. Sensitivity experiments are conducted to investigate the impact of different initial moisture fields on the effectiveness of the MPV approach. It is found that the lifetime of NMPV depends mainly on the initial moisture field, the magnitude of condensational heating, and the advection of NMPV. When NMPV moves into a saturated environment at or near a cyclone center, it can trace better the evolution of the surface cyclone due to the conservative property of MPV. It is also shown that the NMPV generation is closely associated with the coupling of large potential temperature and moisture gradients as a result of frontogenesis processes. Analyses indicate that condensation, confluence and tilting play important but different roles in determining the NMPV generation. NMPV is generated mainly through the changes in the strength of baroclinicity and in the direction of the moisture gradient due to moist and/or dry air mass intrusion into the baroclinic zone.  相似文献   

4.
This study presents a 44-year climatology of potential vorticity (PV) streamers in the Northern Hemisphere based upon analyses of the ERA-40 reanalysis data set. A comparison to an existing 15-year climatology yields very good agreement in the locations of PV streamer frequency maxima, but some differences are found in the amplitude of frequencies. The climatology is assessed with the focus on links between PV streamer frequencies and the synoptic- and planetary-scale variability of the dynamical tropopause.
A comprehensive overview is provided on where (zonally) and when (seasonally) short-term variability throughout the extra-tropical and sub-tropical tropopause is enhanced or reduced. Several key processes that influence this variability are discussed. Baroclinic processes, for example, determine the variability in the storm-track areas in winter, whereas the Asian summer monsoon significantly influences the variability over Asia.
The paper also describes links between the frequency of PV streamers in the extra-tropical and subtropical tropopause and three major northern hemisphere teleconnection patterns. The observed changes in the PV streamer frequencies are closely related to concomitant variations of PV and its gradient within the tropopause region. During opposite phases of the North Atlantic Oscillation the location of the streamer frequency maxima shifts significantly in the Atlantic and European region in both the extra-tropics and subtropics. The influence of ENSO on the streamer frequencies is most pronounced in the subtropical Pacific.  相似文献   

5.
The Northern Hemisphere(NH) often experiences frequent cold air outbreaks and heavy snowfalls during La Ni?a winters. In 2022, a third-year La Ni?a event has exceeded both the oceanic and atmospheric thresholds since spring and is predicted to reach its mature phase in December 2022. Under such a significant global climate signal, whether the Eurasian Continent will experience a tough cold winter should not be assumed, despite the direct influence of mid-to high-latitude,large-scale atmospheric ...  相似文献   

6.
An enhanced Warm Arctic–Cold Eurasia(WACE) pattern has been a notable feature in recent winters of the Northern Hemisphere. However, divergent results between model and observational studies of the WACE still remain. This study evaluates the performance of 39 climate models participating in the Coupled Model Intercomparison Project Phase 6(CMIP6) in simulating the WACE pattern in winter of 1980–2014 and explores the key factors causing the differences in the simulation capability among the model...  相似文献   

7.
The surface air convergence on the eastern flank of the Tibetan Plateau (TP) can increase the in situ surface potential vorticity density (PVD). Since the elevated TP intersects with the isentropic surfaces in the lower troposphere, the increased PVD on the eastern flank of TP thus forms a PVD forcing to the intersected isentropic surface in the boundary layer. The influence of surface PVD forcing over the TP on the extreme freezing rain/snow over South China in January 2008 is investigated by using numerical experiments based on the Finite-volume Atmospheric Model of the IAP/LASG (FAMIL). Compared with observations, the simulation results show that, by using a nudging method for assimilating observation data in the initial flow, this model can reasonably reproduce the distribution of precipitation, atmospheric circulation, and PVD propagation over and downstream of the TP during the extreme winter precipitation period. In order to investigate the impact of the increased surface PVD over the TP on the extreme precipitation in South China, a sensitivity experiment with surface PVD reduced over the TP region was performed. Compared with the control experiment, it is found that the precipitation in the TP downstream area, especially in Southeast China, is reduced. The rainband from Guangxi Region to Shandong Province has almost disappeared. In the lower troposphere, the increase of surface PVD over the TP region has generated an anomalous cyclonic circulation over southern China, which plays an important role in increasing southerly wind and the water vapor transport in this area;it also increases the northward negative absolute vorticity advection. In the upper troposphere, the surface PVD generated in eastern TP propagates on isentropic surface along westerly wind and results in positive absolute vorticity advection in the downstream areas. Consequently, due to the development of both ascending motion and water vapor transport in the downstream place of the TP, extremely heavy precipitation occurs over southern China. Thereby, a new mechanism concerning the influence of the increased surface PVD over the eastern TP slopes on the extreme weather event occurring over southern China is revealed.  相似文献   

8.
The external source/sink of potential vorticity (PV) is the original driving force for the atmospheric circulation. The relationship between surface PV generation and surface PV density forcing is discussed in detail in this paper. Moreover, a case study of the extreme winter freezing rain/snow storm over South China in January 2008 is performed, and the surface PV density forcing over the eastern flank of the Tibetan Plateau (TP) has been found to significantly affect the precipitation over South China in this case. The TP generated PV propagated eastward in the middle troposphere. The associated zonal advection of positive absolute vorticity resulted in the increasing of cyclo-nic relative vorticity in the downstream region of the TP. Ascending air and convergence in the lower troposphere developed, which gave rise to the development of the southerly wind. This favored the increasing of negative meridio-nal absolute vorticity advection in the lower troposphere, which provided a large-scale circulation background conducive to ascending motion such that the absolute vorticity advection increased with height. Consequently, the ascending air further strengthened the southerly wind and the vertical gradient of absolute vorticity advection between the lower and middle troposphere in turn. Under such a situation, the enhanced ascending, together with the moist air transported by the southerly wind, formed the extreme winter precipitation in January 2008 over South China.  相似文献   

9.
Several consecutive extreme cold events impacted China during the first half of winter 2020/21,breaking the low-temperature records in many cities.How to make accurate climate predictions of extreme cold events is still an urgent issue.The synergistic effect of the warm Arctic and cold tropical Pacific has been demonstrated to intensify the intrusions of cold air from polar regions into middle-high latitudes,further influencing the cold conditions in China.However,climate models failed to predict these two ocean environments at expected lead times.Most seasonal climate forecasts only predicted the 2020/21 La Ni?a after the signal had already become apparent and significantly underestimated the observed Arctic sea ice loss in autumn 2020 with a 1-2 month advancement.In this work,the corresponding physical factors that may help improve the accuracy of seasonal climate predictions are further explored.For the 2020/21 La Ni?a prediction,through sensitivity experiments involving different atmospheric-oceanic initial conditions,the predominant southeasterly wind anomalies over the equatorial Pacific in spring of 2020 are diagnosed to play an irreplaceable role in triggering this cold event.A reasonable inclusion of atmospheric surface winds into the initialization will help the model predict La Ni?a development from the early spring of 2020.For predicting the Arctic sea ice loss in autumn 2020,an anomalously cyclonic circulation from the central Arctic Ocean predicted by the model,which swept abnormally hot air over Siberia into the Arctic Ocean,is recognized as an important contributor to successfully predicting the minimum Arctic sea ice extent.  相似文献   

10.
From joint wavelet analysis of long-wavelength baroclinic Rossby waves and SST anomalies in the 5–10?yr band in the North and tropical Atlantic, and Reduced Rainfall Height (RRH) in Western Europe and Eastern North America, some key mechanisms involved in the interannual rainfall variability are highlighted. Systematic work has been undertaken to highlight the resonance of long planetary waves in the tropical oceans. Quasi-stationary Waves (QSWs) are produced resulting from the combination of gravitational forces and trade wind stress or ENSO events to compensate for energy lost in the resonator and, above all, to produce a strong modulated output current at the open end, contributing to the western boundary currents. Gravitational forces are resulting from the topography of the surface of the ocean at the antinodes, the dimension of the basin and the wavelength of planetary waves involved in the resonance being of the same order of magnitude. Remote resonances occur at critical latitudes, nearly 40°N and 40°S, forming QSWs the role of which is crucial in the functioning of sub-tropical gyres. In the North Atlantic subtropical gyre, an 8-yr period QSW appears to have a decisive role in the interannual rainfall variability. The pattern of SST anomalies depends on buoyancy of the advected layer associated with this QSW, which is controlled by the amplitude and the phase of long-period sub-harmonics. Rainfall oscillation in Western Europe has occurred for some decades and extended as the dipole formed by SST anomalies on both antinodes became unbalanced, due to the emergence of the advected layer further north. Since then cyclonic or anticyclonic conditions are prevailing at midlatitudes, depending on the polarity. Strengthening of RRH anomalies in Eastern North America is attributed to the buoyancy of the advected layer that re-circulates along the sub-tropical gyre, which evidences the excitation of long-period sub-harmonics, too. Frequency of exceptional events increased in areas heavily exposed to RRH anomalies, subject to oceanic influences even during extreme events, as this occurs in the north of France. Changes in rainfall patterns is attributed to global warming, i.e. the resonance of long-period sub-harmonics associated with solar magnetic cycles whose amplitude has increased drastically at the end of the second millennium, not including the possible contribution of greenhouse gas emissions whose impact on climate is non-resonant.  相似文献   

11.
Three extreme cold events invaded China during the early winter period between December 2020 to mid-January 2021 and caused drastic temperature drops,setting new low-temperature records at many stations during 6?8 January 2021.These cold events occurred under background conditions of low Arctic sea ice extent and a La Ni?a event.This is somewhat expected since the coupled effect of large Arctic sea ice loss in autumn and sea surface temperature cooling in the tropical Pacific usually favors cold event occurrences in Eurasia.Further diagnosis reveals that the first cold event is related to the southward movement of the polar vortex and the second one is related to a continent-wide ridge,while both the southward polar vortex and the Asian blocking are crucial for the third event.Here,we evaluate the forecast skill for these three events utilizing the operational forecasts from the ECMWF model.We find that the third event had the highest predictability since it achieves the best skill in forecasting the East Asian cooling among the three events.Therefore,the predictability of these cold events,as well as their relationships with the atmospheric initial conditions,Arctic sea ice,and La Ni?a deserve further investigation.  相似文献   

12.
Three extreme cold events successively occurred across East Asia and North America in the 2020/21 winter.This study investigates the underlying mechanisms of these record-breaking persistent cold events from the isentropic mass circulation(IMC)perspective.Results show that the midlatitude cold surface temperature anomalies always co-occurred with the high-latitude warm anomalies,and this was closely related to the strengthening of the low-level equatorward cold air branch of the IMC,particularly along the climatological cold air routes over East Asia and North America.Specifically,the two cold surges over East Asia in early winter were results of intensification of cold air transport there,influenced by the Arctic sea ice loss in autumn.The weakened cold air transport over North America associated with warmer northeastern Pacific sea surface temperatures(SSTs)explained the concurrent anomalous warmth there.This enhanced a wavenumber-1 pattern and upward wave propagation,inducing a simultaneous and long-lasting stronger poleward warm air branch(WB)of the IMC in the stratosphere and hence a displacement-type Stratospheric Sudden Warming(SSW)event on 4 January.The WB-induced increase in the air mass transported into the polar stratosphere was followed by intensification of the equatorward cold branch,hence promoting the occurrence of two extreme cold events respectively over East Asia in the beginning of January and over North America in February.Results do not yield a robust direct linkage from La Ni?a to the SSW event,IMC changes,and cold events,though the extratropical warm SSTs are found to contribute to the February cold surge in North America.  相似文献   

13.
Three striking and impactful extreme cold weather events successively occurred across East Asia and North America during the mid-winter of 2020/21.These events open a new window to detect possible underlying physical processes.The analysis here indicates that the occurrences of the three events resulted from integrated effects of a concurrence of anomalous thermal conditions in three oceans and interactive Arctic-lower latitude atmospheric circulation processes,which were linked and influenced by one major sudden stratospheric warming(SSW).The North Atlantic warm blob initiated an increased poleward transient eddy heat flux,reducing the Barents-Kara seas sea ice over a warmed ocean and disrupting the stratospheric polar vortex(SPV)to induce the major SSW.The Rossby wave trains excited by the North Atlantic warm blob and the tropical Pacific La Nina interacted with the Arctic tropospheric circulation anomalies or the tropospheric polar vortex to provide dynamic settings,steering cold polar air outbreaks.The long memory of the retreated sea ice with the underlying warm ocean and the amplified tropospheric blocking highs from the midlatitudes to the Arctic intermittently fueled the increased transient eddy heat flux to sustain the SSW over a long time period.The displaced or split SPV centers associated with the SSW played crucial roles in substantially intensifying the tropospheric circulation anomalies and moving the jet stream to the far south to cause cold air outbreaks to a rarely observed extreme state.The results have significant implications for increasing prediction skill and improving policy decision making to enhance resilience in“One Health,One Future”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号