首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Any progress in our understanding of low-temperature mineral assemblages and of quantitative physico-chemical modeling of stability conditions of mineral phases, especially those containing toxic elements like selenium, strongly depends on the knowledge of structural and thermodynamic properties of coexisting mineral phases. Interrelation of crystal chemistry/structure and thermodynamic properties of selenium-containing minerals is not systematically studied so far and thus any essential generalization might be difficult, inaccurate or even impossible and erroneous. Disagreement even exists regarding the crystal chemistry of some natural and synthetic selenium-containing phases. Hence, a systematic study was performed by synthesizing ferric selenite hydrates and subsequent thermal analysis to examine the thermal stability of synthetic analogues of the natural hydrous ferric selenite mandarinoite and its dehydration and dissociation to unravel controversial issues regarding the crystal chemistry. Dehydration of synthesized analogues of mandarinoite starts at 56–87?°C and ends at 226–237?°C. The dehydration happens in two stages and two possible schemes of dehydration exist: (a) mandarinoite loses three molecules of water in the first stage of the dehydration (up to 180?°C) and the remaining two molecules of water will be lost in the second stage (>180?°C) or (b) four molecules of water will be lost in the first stage up to 180?°C and the last molecule of water will be lost at a temperature above 180?°C. Based on XRD measurements and thermal analyses we were able to deduce Fe2(SeO3)3·(6-x)H2O (x?=?0.0–1.0) as formula of the hydrous ferric selenite mandarinoite. The total amount of water apparently affects the crystallinity, and possibly the stability of crystals: the less the x value, the higher crystallinity could be expected.  相似文献   

2.
根据X射线衍射(XRD)分析发现: A Fe3(SO4)2(OH)6(A=K+、H3O+)系列铁钒的XRD数据十分相近,难以用XRD区别,需通过能谱(EDS)辅助分析,才能区分此类铁矾。另外,此类铁矾的003和107面网间距d随K+含量增大而增大,且呈一元三次方程的关系;而033和220面网间距d随K+含量增大而减小,呈一元二次方程的关系。对该现象从铁矾晶体结构方面进行解释:K+、H3O+离子位于较大空隙中,且沿着Z轴方向排列,当K+、H3O+离子之间相互替换时,会导致该铁矾晶体结构在Z轴方向有较明显的变化。  相似文献   

3.
Biachellaite, a new mineral species of the cancrinite group, has been found in a volcanic ejecta in the Biachella Valley, Sacrofano Caldera, Latium region, Italy, as colorless isometric hexagonal bipyramidal-pinacoidal crystals up to 1 cm in size overgrowing the walls of cavities in a rock sample composed of sanidine, diopside, andradite, leucite and hauyne. The mineral is brittle, with perfect cleavage parallel to {10$ \bar 1 $ \bar 1 0} and imperfect cleavage or parting (?) parallel to {0001}. The Mohs hardness is 5. Dmeas = 2.51(1) g/cm3 (by equilibration with heavy liquids). The densities calculated from single-crystal X-ray data and from X-ray powder data are 2.515 g/cm3 and 2.520 g/cm3, respectively. The IR spectrum demonstrates the presence of SO42−, H2O, and absence of CO32−. Biachellaite is uniaxial, positive, ω = 1.512(1), ɛ = 1.514(1). The weight loss on ignition (vacuum, 800°C, 1 h) is 1.6(1)%. The chemical composition determined by electron microprobe is as follows, wt %: 10.06 Na2O, 5.85 K2O, 12.13 CaO, 26.17 Al2O3, 31.46 SiO2, 12.71 SO3, 0.45 Cl, 1.6 H2O (by TG data), −0.10 −O=Cl2, total is 100.33. The empirical formula (Z = 15) is (Na3.76Ca2.50K1.44)Σ7.70(Si6.06Al5.94O24)(SO4)1.84Cl0.15(OH)0.43 · 0.81H2O. The simplified formula is as follows: (Na,Ca,K)8(Si6Al6O24)(SO4)2(OH)0.5 · H2O. Biachellaite is trigonal, space group P3, a =12.913(1), c = 79.605(5) ?; V = 11495(1) ?3. The crystal structure of biachellaite is characterized by the 30-layer stacking sequence (ABCABCACACBACBACBCACBACBACBABC). The tetrahedral framework contains three types of channels composed of cages of four varieties: cancrinite, sodalite, bystrite (losod) and liottite. The strongest lines of the X-ray powder diffraction pattern [d, ? (I, %) (hkl)] are as follows: 11.07 (19) (100, 101), 6.45 (18) (110, 111), 3.720 (100) (2.1.10, 300, 301, 2.0.16, 302), 3.576 (18) (1.0.21, 2.0.17, 306), 3.300 (47) (1.0.23, 2.1.15), 3.220 (16) (2.1.16, 222). The type material of biachellaite has been deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, registration number 3642/1.  相似文献   

4.
A new mineral eurekadumpite found at the Centennial Eureka Mine in the Tintic district of Juab County in Utah in the United States occurs in the oxidation zone along with quartz, macalpineite, malachite, Zn-bearing olivenite, goethite, and Mn oxides. Eurekadumpite forms spherulites or rosettes up to 1 mm in size and their clusters and crusts up to 1.5 cm2 in cavities. Its individuals are divergent and extremely thin (up to 0.5 mm across and less than 1 μm thick) hexagonal or roundish leaflets. The mineral is deep blue-green or turquoise-colored. Its streaks are light turquoise-colored. Its luster is satiny in aggregates and pearly on individual flakes. Its cleavage is (010) perfect and micalike. Its flakes are flexible but inelastic. Its Mohs hardness is 2.5–3.0, and D(meas) = 3.76(2) and D(calc) = 3.826 g/cm3. The mineral is optically biaxial negative, and α = 1.69(1), β ∼ γ = 1.775(5), and 2V meas = 10(5)°. Its pleochroism is strong: Y = Z = deep blue-green, and X = light turquoise-colored. Its orientation is X = b. The wavenumbers of the bands in the IR spectrum (cm−1; the strong lines are underlined, and w denotes the weak bands) are 3400, 2990, 1980w, 1628, 1373w, 1077, 1010, 860, 825, 803, 721w, 668, 622, 528, 461. The IR spectrum shows the occurrence of the tellurite (Te4+,O3)2− and arsenate (As5+,O4)3− anionic groups and H2O molecules; Cu and Zn cations are combined with OH groups. The chemical composition of eurekadumpite is as follows (wt %, average of 14 electron-microprobe analyses; H2O determined using the Alimarin method): 0.04 FeO, 36.07 CuO, 20.92 ZnO, 14.02 TeO2, 14.97 As2O5, 1.45 Cl, 13.1 H2O, O = Cl2 −0.33, total 100.24. The empirical formula based on 2 Te atoms is (Cu10.32Zn5.85Fe0.01)Σ16.18(TeO3)2(AsO4)2.97[Cl0.93(OH)0.07]Σ1(OH)18.45 · 7.29H2O. The idealized formula is (Cu,Zn)16(TeO3)2(AsO4)3Cl(OH)18 · 7H2O. Eurekadumpite is monoclinic (pseudohexagonal), and the most probable space groups are P2/m, P2, or Pm. The unit-cell parameters refined from the powder X-ray data are as follows: a = 8.28(3), b = 18.97(2), c = 7.38(2) ?, β = 121.3(6)°, V = 990(6) ?3, and Z = 1. The strongest reflections of the X-ray powder pattern (d, ? (I) [hkl]) are as follows: 18.92(100) [010], 9.45(19) [020], 4.111(13) [[`2]\bar 2 01], 3.777(24) [050, [`2]\bar 2 21, 041], 2.692(15) [[`3]\bar 3 11, 151, [`3]\bar 3 02], 2.524(41)[170, [`2]\bar 2 52, [`1]\bar 1 71], 1.558(22) [[`4]\bar 4 82, [`3]\bar 3 .10.1, 024]. The name of the mineral means, firstly, that it was found in specimens from dumps of the Centennial Eureka Mine. In addition, it could mean found in a dump (the Greek word eureka means I have found it). There is an allusion to the great role that dumps of abandoned mines have played in the discovery of new minerals. Type specimens are deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences in Moscow, at the Smithsonian National Museum of Natural History in Washington, and at the American Museum of Natural History in New York.  相似文献   

5.
通过密度泛函理论模拟了H_2O_2和SO_2气体在矿物氧化物(α-Fe_2O_3)表面上的非均相反应,研究了H_2O_2和SO_2在α-Fe_2O_3(001)表面的吸附机制和氧化机制。研究结果表明,SO_2、H_2O_2均在α-Fe_2O_3(001)表面通过Fe原子进行吸附,H_2O_2相比于SO_2优先吸附在α-Fe_2O_3(001)表面,且H_2O_2在表面的赋存形式趋向于两个·OH形式吸附。通过二者共吸附的局域态密度、差分电荷密度、Mulliken电荷布局分析结果发现,SO_2和H_2O_2的共吸附形式是通过H_2O_2产生的·OH吸附在α-Fe_2O_3(001)表面,同时SO_2被H_2O_2产生的·OH氧化[S(SO_2)-电荷布局:0. 79 e→1. 32 e; O(H_2O_2)-电荷布局:-0. 77 e→-1. 11 e]形成·OH+SO_2团簇。模拟结果表明大气微量气体H_2O_2能够在矿物氧化物表面介导SO_2吸附并促进SO_2的转化,为理解H_2O_2在大气中非均相氧化SO_2的反应过程提供了理论依据。  相似文献   

6.
The high temperature volume and axial parameters for six C2/c clinopyroxenes along the NaAlSi2O6–NaFe3+Si2O6 and NaAlSi2O6–CaFe2+Si2O6 joins were determined from room T up to 800°C, using integrated diffraction profiles from in situ high temperature single crystal data collections. The thermal expansion coefficient was determined by fitting the experimental data according to the relation: ln(V/V 0) = α(T T 0). The thermal expansion coefficient increases by about 15% along the jadeite–hedenbergite join, whereas it is almost constant between jadeite and aegirine. The increase is related to the Ca for Na substitution into the M2 site; the same behaviour was observed along the jadeite–diopside solid solution, which presents the same substitution at the M2 site. Strain tensor analysis shows that the major deformation with temperature occurs in all samples along the b axis; on the (010) plane the higher deformation occurs in jadeite and aegirine at a direction almost normal to the tetrahedral–octahedral planes, and in hedenbergite along the projection of the longer M2–O bonds. The orientation of the strain ellipsoid with temperature in hedenbergite is close to that observed with pressure in pyroxenes. Along the jadeite–aegirine join instead the high-temperature and high-pressure strain are differently oriented.  相似文献   

7.
1974年在一水晶矿石英脉晶洞中,发现了一种含Ba、Li的硅酸盐新矿物--纤钡锂石。我们对纤钡锂石进行了光性研究、比重测定、差热及热失重分析、红外光谱分析、X射线单晶结构分析等工作,现分述如下。  相似文献   

8.
Thermodynamic analysis of the system Na2O-K2O-CaO-Al2O3-SiO2-H2O-F2O–1 provides phase equilibria and solidus compatibilities of rock-forming silicates and fluorides in evolved granitic systems and associated hydrothermal processes. The interaction of fluorine with aluminosilicate melts and solids corresponds to progressive fluorination of their constituent oxides by the thermodynamic component F2O–1. The chemical potential (F2O–1) buffered by reaction of the type: MOn/2 (s)+n/2 [F2O–1]=MFn (s, g) where M=K, Na, Ca, Al, Si, explains the sequential formation of fluorides: carobbiite, villiaumite, fluorite, AlF3, SiF4 as well as the common coexistence of alkali- and alkali-earth fluorides with rock-forming aluminosilicates. Formation of fluorine-bearing minerals first starts in peralkaline silica-undersaturated, proceeds in peraluminous silica-oversaturated compositions and causes progressive destabilization of nepheline, albite and quartz, in favour of villiaumite, cryolite, topaz, chiolite. Additionally, it implies the increase of buffered fluorine solubilities in silicate melts or aqueous fluids from peralkaline silica-undersaturated to peraluminous silica-oversaturated environments. Subsolidus equilibria reveal several incompatibilities: (i) topaz is unstable with nepheline or villiaumite; (ii) chiolite is not compatible with albite because it only occurs only at very high F2O–1 levels. The stability of topaz, fluorite, cryolite and villiaumite in natural felsic systems is related to their peralkalinity (peraluminosity), calcia and silica activity, and linked by corresponding chemical potentials to rock-forming mineral buffers. Villiaumite is stable in strongly peralkaline and Ca-poor compositions (An<0.001). Similarly, cryolite stability requires coexistence with nearly-pure albite (An<2). Granitic rocks with Ca-bearing plagioclase (An>5) saturate with topaz or fluorite. Crystallization of topaz is restricted to peraluminous conditions, consistent with the presence of Li-micas or anhydrous aluminosilicates (cordierite, garnet, andalusite). Fluorite is predicted to be stable in peraluminous biotite granites, amphibole-, clinopyroxene- or titanite-bearing calc-alkaline suites as well as in peralkaline granitic and syenitic rocks. Fluorine concentrations in felsic melts buffered by the coexistence of F-bearing minerals and feldspars increase from peralkaline through metaluminous to mildly peraluminous compositions. At low-temperature conditions, the hydrothermal evolution of peraluminous granitic and greisen systems is controlled by white mica-feldspar-fluoride equilibria. With decreasing temperature, topaz gradually breaks down via: (i) (OH)F–1 substitution and fluorine transfer to fluorite by decalcification of plagioclase below 600 °C, (ii) formation of muscovite and additional fluorite at 475–315 °C, and (iii) formation of paragonite and cryolite, consuming F-rich topaz and albite below 315 °C. These equilibria explain the absence of magmatic fluorite in Ca-bearing topaz granitic rocks; its abundance in hydrothermal rocks is due to: (i) closed-system defluorination of topaz, (ii) open-system decalcification of plagioclase or (iii) hydrolytic alteration. These results provide a complete framework for the investigation of fluorine-bearing mineral stabilities in felsic igneous suites.Electronic Supplementary Material Supplementary material is available in the online version of this article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial responsibility: T.L. Grove  相似文献   

9.
10.
Florencite-(Sm), a new mineral species of the florencite subgroup, was found in association with xenotime-(Y) in quartz veins of the Maldynyrd Range of the Subpolar Urals as thin zones within rhombohedral crystals of florencite-(Ce) with faceting by { 01[`1]1}\{ 01\bar 11\} and { 10[`1]2}\{ 10\bar 12\} . The thickness of particular florencite-(Sm) zones is 0.01–0.1 mm, and the total thickness of a series of such zones is 1–3 mm. Florencite-(Sm) is colorless and pale pink or pale yellow with white streaks; its Mohs hardness is 5.5–6.0. Its measured and calculated densities are 3.70 and 3.743 g/cm3, respectively. The mineral is transparent, nonpleochroic, and uniaxial (positive), and ω = 1.704(2) and ɛ = 1.713(2). The electron beam’s fluorescence spectrum was 592 nm (intense green luminescence of Sm3+) and 558 nm (yellow luminescence of Nd3+). The chemical composition was as follows (microprobe, average of 2 WDS, wt %): 0.62 La2O3, 3.29 Ce2O3, 1.05 Pr2O3, 10.31 Nd2O3, 12.62 Sm2O3, 0.41 Eu2O3, 2.30 Gd2O3, 0.13 Dy2O3, 0.71 SrO, 0.35 CaO, 29.89 Al2O3, 26.14 P2O5, 0.85 SO3, 0.09 SiO2, 88.76 in total; 10.74 H2O (meas.). The empirical formula based on 14 oxygen atoms is (Sm0.38Nd0.32Gd0.07Ce0.10Pr0.03La0.02Eu0.01Sr0.04Ca0.03)1.0Al3.04(P1.91S0.05Si0.01)1.97O14H5.92. The idealized formula is (Sm,Nd)Al3(PO4)2(OH)6. Mineral is trigonal, space group R3m, a = 6.972(4), c = 16.182(7) ?, V = 681.2 ?3, Z = 3. The XRD pattern is as follows: dln (I) (hkl): 2.925 (10) (113), 1.881 (6) (303), 2.161 (5) (107), 5.65 (4) (101), and 3.479 (4) (110). The IR spectrum: 466, 510, 621, 1036, 1105, 1223, 2957, and 3374 cm−1.  相似文献   

11.
A new heterophyllosilicate mineral schüllerite was found in the L?hley basalt quarry in the Eifel volcanic region, Germany, as a member of the late mineral assemblage comprising nepheline, leucite, augite, phlogopite, magnetite, titanite, fresnoite, barytolamprophyllite, fluorapatite, perovskite, and pyrochlore. Flattened brown crystals of schüllerite up to 0.5 × 1 × 2 mm in size and their aggregates occur in miarolic cavities of alkali basalt. The mineral is brittle, with a Mohs hardness 3–4 and perfect cleavage parallel to (001). D calc = 3.974 g/cm3. Its IR spectrum is individual and does not contain bands of OH, CO32− or H2O. Schüllerite is biaxial (−), α = 1.756(3), β = 1.773(4), γ = 1.780(4), 2V meas = 40(20)°. Dispersion is weak, r < ν. Pleochroism is medium X > Y > Z, brown to dark brown. Chemical composition (electron microprobe, mean of five-point analyses, Fe2+/Fe3+ ratio determined by the X-ray emission spectroscopic data, wt %): 3.55 Na2O, 0.55 K2O, 3.89 MgO, 2.62 CaO, 1.99 ArO, 28.09 BaO, 3.43 FeO, 8.89 Fe2O3, 1.33 Al2O3, 11.17 TiO2, 2.45 Nb2O5, 26.12 SiO2, 2.12 F, −0.89 -O=F2, 98.98 in total. The empirical formula is (Ba1.68Sr0.18K0.11Na1.05Ca0.43Mn0.47Mg0.88Fe0.442+Fe1.023+Ti1.28Nb0.17Al0.24)Σ7.95Si3.98O16.98F1.02. The crystal structure was refined on a single crystal. Schüllerite is triclinic, space group P1, unit cell parameters: a = 5.4027(1), b = 7.066(4), c = 10.2178(1)?, α = 99.816(1), β = 99.624(1), γ = 90.084(1)°, V = 378.75(2) ?3, Z = 1. The strongest lines of the X-ray powder diffraction pattern [d, ?, (I, %)]: 9.96(29), 3.308(45), 3.203(29), 2.867(29), 2.791(100), 2.664(46), 2.609(36), 2.144(52). The mineral was named in honor of Willi Schüller (born 1953), an enthusiastic, prominent amateur mineral collector, and a specialist in the mineralogy of Eifel. Type specimens have been deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, registration no. 3995/1,2.  相似文献   

12.
This work reports the synthesis of ferri-clinoholmquistite, nominally Li2(Mg3Fe3+2)Si8O22(OH)2, at varying fO2 conditions. Amphibole compositions were characterized by X-ray (powder and single-crystal) diffraction, microchemical (EMPA) and spectroscopic (FTIR, Mössbauer and Raman) techniques. Under reducing conditions ( NNO+1, where NNO = Nickel–Nickel oxide buffer), the amphibole yield is very high (>90%), but its composition, and in particular the FeO/Fe2O3 ratio, departs significantly from the nominal one. Under oxidizing conditions ( NNO+1.5), the amphibole yield is much lower (<60%, with Li-pyroxene abundant), but its composition is close to the ideal stoichiometry. The exchange vector of relevance for the studied system is M2(Mg,Fe2+) M4(Mg,Fe2+) M2Fe3+–1 M4Li–1, which is still rather unexplored in natural systems. Amphibole crystals of suitable size for structure refinement were obtained only at 800 °C, 0.4 GPa and NNO conditions (sample 152), and have C2/m symmetry. The X-ray powder patterns for all other samples were indexed in the same symmetry; the amphibole closest to ideal composition has a = 9.428(1) Å, b = 17.878(3) Å, c = 5.282(1) Å, = 102.06(2)°, V = 870.8(3) Å3. Mössbauer spectra show that Fe3+ is strongly ordered at M2 in all samples, whereas Fe2+ is disordered over the B and C sites. FTIR analysis shows that the amount of CFe2+ increases for increasingly reducing conditions. FTIR data also provide strong evidence for slight but significant amounts of Li at the A sites.  相似文献   

13.
Enthalpies of formation of ferrihydrite and schwertmannite were measured by acid solution calorimetry in 5 N HCl at 298 K. The published thermodynamic data for these two phases and ε-Fe2O3 were evaluated, and the best thermodynamic data for the studied compounds were selected.Ferrihydrite is metastable in enthalpy with respect to α-Fe2O3 and liquid water by 11.5 to 14.7 kJ•mol−1 at 298.15 K. The less positive enthalpy corresponds to 6-line ferrihydrite, and the higher one, indicating lesser stability, to 2-line ferrihydrite. In other words, ferrihydrite samples become more stable with increasing crystallinity. The best thermodynamic data set for ferrihydrite of composition Fe(OH)3 was selected by using the measured enthalpies and (1) requiring ferrihydrite to be metastable with respect to fine-grained lepidocrocite; (2) requiring ferrihydrite to have entropy higher than the entropy of hypothetical, well-crystalline Fe(OH)3; and (3) considering published estimates of solubility products of ferrihydrite. The ΔG°f for 2-line ferrihydrite is best described by a range of −708.5±2.0 to −705.2±2.0 kJ•mol−1, and ΔG°f for 6-line ferrihydrite by −711.0±2.0 to −708.5±2.0 kJ•mol−1.A published enthalpy measurement by acid calorimetry of ε-Fe2O3 was re-evaluated, arriving at ΔH°f (ε-Fe2O3) = −798.0±6.6 kJ•mol−1. The standard entropy (S°) of ε-Fe2O3 was considered to be equal to S° (γ-Fe2O3) (93.0±0.2 J•K−1•mol−1), giving ΔG°f (ε-Fe2O3) = −717.8±6.6 kJ•mol−1. ε-Fe2O3 thus appears to have no stability field, and it is metastable with respect to most phases in the Fe2O3-H2O system which is probably the reason why this phase is rare in nature.Enthalpies of formation of two schwertmannite samples are: ΔH°f (FeO(OH)0.686(SO4)0.157•0.972H2O) = −884.0±1.3 kJ•mol−1, ΔH°f (FeO(OH)0.664(SO4)0.168•1.226H2O) = −960.7±1.2 kJ•mol−1. When combined with an entropy estimate, these data give Gibbs free energies of formation of −761.3 ± 1.3 and −823.3 ± 1.2 kJ•mol−1 for the two samples, respectively. These ΔGf° values imply that schwertmannite is thermodynamically favored over ferrihydrite over a wide range of pH (2-8) when the system contains even small concentration of sulfate. The stability relations of the two investigated samples can be replicated by schwertmannite of the “ideal” composition FeO(OH)3/4(SO4)1/8 with ΔG°f = −518.0±2.0 kJ•mol−1.  相似文献   

14.
 An olivine grain from a peridotite nodule 9206 (Udachnaya kimberlite, Siberia) was investigated by TEM methods including AEM, HRTEM, SAED and EELS techniques. A previous study of the 9206 olivine sample revealed OH absorption bands in the IR spectrum and abundant nanometer-sized OH-bearing inclusions, of hexagonal-like or lamellar shape. Inclusions, which are several hundred nm in size, consist of 10 ? phase, talc and serpentine (chrysotile and lizardite). The lamellar (LI) and hexagon-like small inclusions of several ten nm in size (SI) are the topic of the present paper. AEM investigations of the inclusions reveal Mg, Fe and Si as cations only. The Mg/Si and Fe/Si atomic ratios are lower in the inclusions than in the host olivine. The Si concentration in the olivine host and both lamellar inclusions and small inclusions is the same. A pre-peak at 528eV was observed in EEL spectra of LI and SI, which is attributed to OH or Fe3+. From these data it is concluded that there is a OH- or Fe3+-bearing cation-deficient olivine-like phase present. HRTEM lattice fringe images of LI and SI exhibit modulated band-like contrasts, which are superimposed onto the olivine lattice. Diffraction patterns (Fourier-transforms) of the HREM images as well as SAED patterns show that the band-like contrasts in HRTEM images of the inclusions are caused by periodic modulations of the olivine lattice. Three kinds of superperiodicity in the olivine structure such as 2a, 3a and 3c, were observed in SAED patterns. The corresponding olivine supercells labelled here as Hy-2a, Hy-3a and Hy-3c were derived. The M1-vacancies located in the (100) and (001) octahedral layers of the olivine lattice are suggested to form ordered arrays of planar defects (PD), which cause the band-like contrasts in HRTEM patterns as well as the superperiodicity in the SAED patterns. The vacancy concentrations as well as the chemical composition of Hy-2a, Hy-3a and Hy-3c olivine supercells were calculated using crystal chemical approaches, assuming either {(OH)< O−V" Me−(OH)< O}, or {F e < Fe H Me } or {2F e < Fe V Me "} point defect associates. The calculated theoretical compositions Mg1.615Fe+2 0.135v0.25SiO4H0.5 (Hy-2a) and Mg1.54Fe2+ 0.12v0.33SiO4H0.66 (Hy-3a and Hy-3c) are in a good agreement with the AEM data on inclusions. Hy-2a, Hy-3a and Hy-3c are considered to be a hydrous olivine with the extended chemical formula (Mg1-yFe2+ y)2−xvxSiO4H2x. The crystal structure of hydrous olivine is proposed to be a modular olivine structure with Mg-vacant modules. The crystal chemical formula of hydrous olivines in terms of a modular structure can be written as [MgSiO4H2] · 3[Mg1.82Fe0.18SiO4] for Hy-2a, [MgSiO4H2] · 2[Mg1.82Fe0.18SiO4] for Hy-3a and Hy-3c. Hydrous olivine is suggested to be exsolved from the olivine 9206, which has been initially saturated by OH-bearing point defects. The olivine 9206 hydration as well as the following exsolution of hydrous olivine inclusions is suggested to occur at high pressure-high temperature conditions of the upper mantle. Received: 15 January 2001 / Accepted: 2 July 2001  相似文献   

15.
To understand the aqueous species important for transport of rhenium under supercritical conditions, we conducted a series of solubility experiments on the Re–ReO2 buffer assemblage and ReS2. In these experiments, pH was buffered by the K–feldspar–muscovite–quartz assemblage; in sulfur-free systems was buffered by the Re–ReO2 assemblage; and and in sulfur-containing systems were buffered by the magnetite–pyrite–pyrrhotite assemblage. Our experimental studies indicate that the species ReCl4 0 is dominant at 400°C in slightly acidic to near-neutral, and chloride-rich (total chloride concentrations ranging from 0.5 to 1.0 M) environments, and ReCl3 + may predominate at 500°C in a solution with total chloride concentrations ranging from 0.5 to 1.5 M. The results also demonstrate that the solubility of ReS2 is about two orders of magnitude less than that of ReO2. This finding not only suggests that ReS2 (or a ReS2 component in molybdenite) is the solubility-controlling phase in sulfur-containing, reducing environments but also implies that a mixing process involving an oxidized, rhenium-containing solution and a solution with reduced sulfur is one of the most effective mechanisms for deposition of rhenium. In analogy with Re, TcS2 may be the stable Tc-bearing phase in deep geological repositories of radioactive wastes.  相似文献   

16.
A thermodynamic model for gas-rock interactions in the system [basalt-SO2-O2±S2] is suggested. Calculations are performed for a wide range of temperatures (100–850°C) and pressures (1–1000 bars). The high-temperature part of this model was verified by experimental research, which was carried out at 850, 650 and 450°C. The modeling prediction of interactions in the system [(alumino)silicates SO2-O2±S2] at relatively low temperatures (100–300°C) gives steady mineral associations that are typical for natural secondary quartzites: quartz-pyrite-hematite-Al-silicates-metal sulfates (Ca, Mg, Na, K, Al, and Fe). The formation of sulfates stabilizes the level of SO2 concentration in the gas phase; this level falls with a temperature decrease.  相似文献   

17.
纤钡锂石产于湖南临武香花岭地区一水晶矿锂云母石英脉晶洞中,与锂云母、石英等矿物共生。矿物为浅黄白色,丝绢光泽,呈针状、纤维状、放射状或平行束状集合体,纤维长达1厘米。经X射线单晶及粉晶衍射测定:该矿物属斜方晶系,空间群Ccca,晶胞参数:a=13.60(?),b=20.24(?),e=5.16(?)。最强衍射线为:10.12(?)(100) 4.05(?)(78) 3.39(?)(91) 2.605(?)(31)2.390(?)(28)。  相似文献   

18.
采用CO碳化SiO2和Al3O4负载的Co(NO3)2的方法制备了SiO2和Al3O4负载的Co2C催化剂,采用N2物理吸附、X射线衍射和H2-程序升温还原技术对催化剂进行了表征,并用于催化费托合成反应中.结果显示,需要较长碳化时间才可合成负载的Co2C催化剂;所制催化剂表现出CO加氢生成高碳醇的催化性能,其原因可能在于催化剂表面存在的金属Co物种使CO解离,表面Co物种有利于CO插入,从而导致醇的生成,但体相Co2C则不具有催化活性.  相似文献   

19.
Alloriite, a new mineral species, has been found in volcanic ejecta at Mt. Cavalluccio (Campagnano municipality, Roma province, Latium region, Italy) together with sanidine, biotite, andradite, and apatite. The mineral is named in honor of Roberto Allori (b. 1933), an amateur mineralogist and prominent mineral collector who carried out extensive and detailed field mineralogical investigations of volcanoes in the Latium region. Alloriite occurs as short prismatic and tabular crystals up to 1.5 × 2 mm in size. The mineral is colorless, transparent, with a white streak and vitreous luster. Alloriite is not fluorescent and brittle; the Mohs’ hardness is 5. The cleavage is imperfect parallel to {10 0}. The density measured with equilibration in heavy liquids is 2.35g/cm3 and calculated density (D calc) is 2.358 g/cm3 (on the basis of X-ray single-crystal data) and 2.333 g/cm3 (from X-ray powder data). Alloriite is optically uniaxial, positive, ω = 1.497(2), and ɛ = 1.499(2). The infrared spectrum is given. The chemical composition (electron microprobe, H2O determined using the Penfield method, CO2, with selective sorption, wt %) is: 13.55 Na2O, 6.67 K2O, 6.23 CaO, 26.45 Al2O3, 34.64 SiO2, 8.92 SO3, 0.37 Cl, 2.1 H2O, 0.7 CO2, 0.08-O = Cl2, where the total is 99.55. The empirical formula (Z = 1) is Na19.16K6.21Ca4.87(Si25.26Al22.74O96)(SO4)4.88(CO3)0.70Cl0.46(OH)0.76 · 4.73H2O. The simplified formula (taking into account the structural data, Z = 4) is: [Na(H2O)][Na4K1.5(SO4)] · [Ca(OH,Cl)0.5](Si6Al6O24). The crystal structure has been studied (R = 0.052). Alloriite is trigonal, the space group is P31c; the unit-cell dimensions are a = 12.892(3), c = 21.340(5) ?, and V = 3071.6(15) ?3. The crystal structure of alloriite is based on the same tetrahedral framework as that of afghanite. In contrast to afghanite containing clusters [Ca-Cl]+ and chains ...Ca-Cl-Ca-Cl..., the new mineral contains clusters [Na-H2O]+ and chains ...Na-H2O-Na-H2O.... The strongest reflections in the X-ray powder diffraction pattern [d, ? (I, %)(hkl)] are: 11.3(70)(100), 4.85(90)(104), 3.76(80)(300), 3.68(70)(301), 3.33(100)(214), and 2.694(70)(314, 008). The type material of alloriite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow. The registration number is 3459/1. Original Russian Text ? N.V. Chukanov, R.K. Rastsvetaeva, I.V. Pekov, A.E. Zadov, 2007, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2007, No. 1, pp. 82–89. A new mineral alloriite and its name were accepted by the Commission on New Minerals and Mineral Names, Russian Mineralogical Society, May 8, 2006. Approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association, August 2, 2006.  相似文献   

20.
A new mineral fivegite has been identified in a high-potassium hyperalkaline pegmatite at Mt. Rasvumchorr in the Khibiny alkaline complex of the Kola Peninsula in Russia. This mineral is a product of the hydrothermal alteration of delhayelite (homoaxial pseudomorphs after its crystals up to 2 × 3 × 10 cm in size). Hydrodelhayelite, pectolite, and kalborsite are products of fivegite alteration. The associated minerals are aegirine, potassic feldspar, nepheline, sodalite, magnesiumastrophyllite, lamprophyllite, lomonosovite, shcherbakovite, natisite, lovozerite, tisinalite, ershovite, megacyclite, shlykovite, cryptophyllite, etc. Areas of pure unaltered fivegite are up to 2 mm in width. The mineral is transparent and colorless; its luster is vitreous to pearly. Its Cleavage is perfect (100) and distinct (010). Its Mohs hardness is 4, D(meas) = 2.42(2), and D(calc) = 2.449 g/cm3. Fivegite is optically biaxial positive: α 1.540(1), β 1.542(2), γ 1.544(2), and 2V(meas) 60(10)°. Its orientation is X = a, y = c, and Z = b. Its IR spectrum is given. Its chemical composition (wt %; electron microprobe, H2O determined by selective sorption) is as follows: 1.44 Na2O, 19.56 K2O, 14.01 CaO, 0.13 SrO, 0.03 MnO, 0.14 Fe2O3, 6.12 Al2O3, 50.68 SiO2, 0.15 SO3, 0.14 F, 3.52 Cl, 4.59 H2O; −O = −0.85(Cl,F)2; total 99.66. The empirical formula based on (Si + Al + Fe) = 8 is H4.22K3.44Na0.39Ca2.07Sr0.01Fe0.01Al1.00Si6.99O21.15F0.06Cl0.82(SO4)0.02. The simplified formula is K4Ca2[AlSi7O17(O2 − x OH x ][(H2O)2 − x OH x ]Cl (X = 0−2). Fivegite is orthorhombic: Pm21 n, a = 24.335(2), b = 7.0375(5), c = 6.5400(6) ?, V = 1120.0(2) ?3, and Z = 2. The strongest reflections of the X-ray powder pattern are as follows (d, ?, (I, %), [hkl]): 3.517(38) [020], 3.239(28) [102], 3.072(100) [121, 701], 3.040(46) [420, 800, 302], 2.943 (47) [112], 2.983(53) [121], 2.880 (24) [212, 402], 1.759(30) [040, 12.2.0]. The crystal structure was studied using a single crystal: R hkl = 0.0585. The base of fivegite structure is delhayelite-like two-layer terahedral blocks [(Al,Si)4Si12O34(O4 − x OH x )] linked by Ca octahedral chains. K+ and Cl are localized in zeolite-like channels within the terahedral blocks, whereas H2O and OH occur between the blocks. The mineral is named in memory of the Russian geological and mining engineer Mikhail Pavlovich Fiveg (1899–1986), the pioneering explorer of the Khibiny apatite deposits. The type specimen is deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences in Moscow. The series of transformations is discussed: delhayelite K4Na2Ca2[AlSi7O19]F2Cl—fivegite K4Ca2[AlSi7O17(O2 − x OH x ]Cl—hydrodelhayelite KCa2[AlSi7O17(OH)2](H2O)6 − x .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号