首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mendoza  B.  Lara  A.  Maravilla  D.  Valdés-galicia  J.F. 《Solar physics》1999,185(2):405-416
We analyse data of magnetic flux emergence for solar cycles 21 and 22, Helios 1 interplanetary shocks for cycle 21, and sudden storm commencements (SSCs) for cycles 11–22. A dominant variation of 3-year periodicity was found for all three phenomena during cycles 21 and 22. This indicates a correlation and a possible influence of the rate of solar magnetic flux emergence to produce the interplanetary phenomena studied in this work; in particular, the suggested role of coronal mass ejections as a means by which magnetic flux and stresses are taken out of the corona seems to be plausible. When taking cycles 11–22 in SSCs, the main periodicity changes to around 4 years; this may be an indication of flux emergence rate variations over the cycles.  相似文献   

2.
We have constructed a time series of the number of coronal mass ejections (CMEs) observed by SOHO/LASCO during solar cycle 23. Using spectral analysis techniques (the maximum entropy method and wavelet analysis) we found short-period (< one year) semiperiodic activity. Among others, we found interesting periodicities at 193, 36, 28, and 25 days. We discuss the implications of such short-period activity in terms of the emergence and escape of magnetic flux from the convection zone, through the low solar atmosphere (where these periodicities have been found for numerous activity parameters), toward interplanetary space. This analysis shows that CMEs remove the magnetic flux in a quasiperiodic process in a way similar to that of magnetic flux emergence and other solar eruptive activity.  相似文献   

3.
A scenario is presented whereby CMEs and interplanetary shocks are consequences of a large scale rearrangement of the coronal magnetic field induced by the disconnection of field lines from the solar surface due to the emergence of flux with opposite polarity. In this scenario the CME is the mass released from the previously closed structure and the interplanetary shock is formed by the injection of faster solar wind from an extended or newly created coronal hole which results from the opening of the field lines. Here CMEs and interplanetary shocks are associated events, but not cause-effect related. Observational and computational evidence supporting this view is provided.  相似文献   

4.
We examine observations relating to the evolution of the polar magnetic field around sunspot maximum, when the net polar flux reverses polarity and coronal holes redevelop around the poles. Coronal hole observations during the last two solar maxima are examined in detail. Long-term averages of the latitudinal dependence of the photospheric magnetic field and the evolutionary pattern of the polar crown filaments are used to trace the poleward motion of the reversal of the large-scale surface field, and are compared to the redevelopment of the polar holes. The polar holes evolve from small, mid-latitude holes of new-cycle polarity which expand poleward until they join and cover the pole. We find that the appearance of these mid-latitude holes, the peak of flux emergence at low latitudes, and the polar polarity reversal all occur within a few solar rotations. Lagging 6 months to 1 1/2 yr after this time, the polar crown disappears and the polar holes redevelop.These results are examined in the context of phenomenological models of the solar cycle. We believe the following results in particular must be accounted for in successful models of the solar cycle: (1) The process of polarity reversal and redevelopment of the polar holes is discontinuous, occurring in 2 or 3 longitude bands, with surges of flux of old-cycle polarity interrupting the poleward migration of new-cycle flux. There is a persistent asymmetry in these processes between the two hemispheres; the polarity reversal in the two hemispheres is offset by 6 months to 1 1/2 yr. (2) Contrary to the Babcock hypothesis, the polar crown disappears months after the magnetic polar reversal. We suggest one possible scenario to explain this effect. (3) Our observations support suggestions of a poleward meridional flow around solar maximum that cannot be accounted for by Leighton-type diffusion.  相似文献   

5.
Using the maximum entropy method (MEM), the cosmic-ray power spectral density in the frequency range 3 × 10–9–2 × 10–7 Hz has been estimated for the period 1947–1990. Cosmic-ray intensity data were integrated from the ion chamber at Huancayo and the neutron monitor at Deep River, following the method of Nagashima and Morishita (1980). The estimated spectrum shows power-law dependence (f –1.62), with several peaks superimposed. Periodicities of the different peaks are identified and related to solar activity phenomena; most of them were reported in the past. Once the 11-yr variation is eliminated, the most prominent feature in the spectrum is a variation, not reported before, with a period of 1.68 yr (604.8 d). This peak is correlated with fluctuations of similar periodicities found in the southern coronal hole area and in large active regions. The importance that this variation may have to elucidate the solar magnetic flux emergence and the activity cycle is discussed.Deceased 10 April, 1995.  相似文献   

6.
Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of enhanced density turbulence in the interplanetary medium driven by the high-speed flows of low-density plasma trailing behind for several days. Here, an attempt has been made to investigate the solar cause of erupting stream disturbances, mapped by Hewish & Bravo (1986) from interplanetary scintillation (IPS) measurements made between August 1978 and August 1979 at 81.5 MHz. The position of the sources of 68 erupting stream disturbances on the solar disk has been compared with the locations of newborn coronal holes and/or the areas that have been coronal holes previously. It is found that the occurrence of erupting stream disturbances is linked to the emergence of new coronal holes at the eruption site on the solar disk. A coronal hole is indicative of a radial magnetic field of a predominant magnetic polarity. The newborn coronal hole emerges on the Sun, owing to the changes in magnetic field configuration leading to the opening of closed magnetic structure into the corona. The fundamental activity for the onset of an erupting stream seems to be a transient opening of pre-existing closed magnetic structures into a new coronal hole, which can support highspeed flow trailing behind the compression zone of the erupting stream for several days.  相似文献   

7.
We describe the interplanetary coronal mass ejections (ICMEs) that occurred as a result of a series of solar flares and eruptions from 4 to 8 November 2004. Two ICMEs/magnetic clouds occurring from these events had opposite magnetic orientations. This was despite the fact that the major flares related to these events occurred within the same active region that maintained the same magnetic configuration. The solar events include a wide array of activities: flares, trans-equatorial coronal loop disappearance and reformation, trans-equatorial filament eruption, and coronal hole interaction. The first major ICME/magnetic cloud was predominantly related to the active region 10696 eruption. The second major ICME/magnetic cloud was found to be consistent with the magnetic orientation of an erupting trans-equatorial filament or else a rotation of 160° of a flux rope in the active region. We discuss these possibilities and emphasize the importance of understanding the magnetic evolution of the solar source region before we can begin to predict geoeffective events with any accuracy.  相似文献   

8.
The response of galactic cosmic rays (GCRs) to an isolated enhancement of the non-axisymmetric component of the solar open magnetic field between June and November 1996 is investigated by using a combination of solar observations and numerical modelling of the interplanetary medium. The most obvious coronal hole visible from Earth at the time had little shielding effect on the flux of GCRs, as measured at Earth by neutron monitors. It is found that the evolution of the corotating interaction regions generated by a less obvious coronal hole was the principal controlling factor. Moreover, we demonstrate the imprint of the latitudinal and longitudinal evolution of that coronal hole on the variation of GCRs. The latitudinal extent of this solar minimum corotating interaction region had a determining, but local, shielding effect on GCRs, confirming previous modelling results.  相似文献   

9.
It has been realized for some time that the slow solar wind with its embedded heliospheric current sheet often exhibits complex features suggesting at least partially transient origin. In this paper we investigate the structure of the slow solar wind using the observations by the Wind and STEREO spacecraft during two Carrington rotations (2054 and 2055). These occur at the time of minimum solar activity when the interplanetary medium is dominated by recurrent high-speed streams and large-scale interplanetary coronal mass ejections (ICMEs) are rare. However, the signatures of transients with small scale-sizes and/or low magnetic field strength (comparable with the typical solar wind value, ~?5 nT) are frequently found in the slow solar wind at these times. These events do not exhibit significant speed gradients across the structure, but instead appear to move with the surrounding flow. Source mapping using models based on GONG magnetograms suggests that these transients come from the vicinity of coronal source surface sector boundaries. In situ they are correspondingly observed in the vicinity of high density structures where the dominant electron heat flux reverses its flow polarity. These weak transients might be indications of dynamical changes at the coronal hole boundaries or at the edges of the helmet streamer belt previously reported in coronagraph observations. Our analysis supports the idea that even at solar minimum, a considerable fraction of the slow solar wind is transient in nature.  相似文献   

10.
The diurnal anisotropy of cosmic-ray intensity observed over the period 1970–1977 has been analysed using neutron-monitor data of the Athens and Deep River stations. Our results indicate that the time of the maximum of diurnal variation shows a remarkable systematic shift towards earlier hours than normally beginning in 1971. This phase shift continued until 1976, the solar activity minimum, except for a sudden shift to a later hour for one year, in 1974, the secondary maximum of solar activity.This behavior of the diurnal time of maximum has been shown to be consistent with the convective- diffusive mechanism which relates the solar diurnal anisotropy of cosmic-rays to the dynamics of the solar wind and of the interplanetary magnetic field. Once again we have confirmed the field-aligned direction of the diffusive vector independently of the interplanetary magnetic field polarity. It is also noteworthy that the diurnal phase may follow in time the variations of the size of the polar coronal holes. All these are in agreement with the drift motions of cosmic-ray particles in the interplanetarty magnetic field during this time period.  相似文献   

11.
We study the influence of the large-scale interplanetary magnetic field configuration on the solar energetic particles (SEPs) as detected at different satellites near Earth and on the correlation of their peak intensities with the parent solar activity. We selected SEP events associated with X- and M-class flares at western longitudes, in order to ensure good magnetic connection to Earth. These events were classified into two categories according to the global interplanetary magnetic field (IMF) configuration present during the SEP propagation to 1 AU: standard solar wind or interplanetary coronal mass ejections (ICMEs). Our analysis shows that around 20 % of all particle events are detected when the spacecraft is immersed in an ICME. The correlation of the peak particle intensity with the projected speed of the SEP-associated coronal mass ejection is similar in the two IMF categories of proton and electron events, ≈?0.6. The SEP events within ICMEs show stronger correlation between the peak proton intensity and the soft X-ray flux of the associated solar flare, with correlation coefficient r=0.67±0.13, compared to the SEP events propagating in the standard solar wind, r=0.36±0.13. The difference is more pronounced for near-relativistic electrons. The main reason for the different correlation behavior seems to be the larger spread of the flare longitude in the SEP sample detected in the solar wind as compared to SEP events within ICMEs. We discuss to what extent observational bias, different physical processes (particle injection, transport, etc.), and the IMF configuration can influence the relationship between SEPs and coronal activity.  相似文献   

12.
Analysis of cosmic-ray intensity time evolution has led to the identification of intensity variations with several periodicities, most of them correlated with one or another phenomenon of the Sun. Recently Valdés-Galicia, Pérez-Enriquez, and Otaola (1996) reported on a newly-found 1.68-yr variation, which seems to be correlated with periodicities in X-ray long-duration events and low-latitude coronal hole area variations. As those phenomena are related with magnetic flux emergence and transport, in this paper we investigate the possible relationship of the referred cosmic-ray variation with characteristic times of different tracers of meridional circulation. Our results indicate that several of the calculated times might be related to the 1.68-yr cosmic-ray variation. A physical mechanism through which this connection may operate is discussed.  相似文献   

13.
We revisit the 1.3-year (yr) signals observed on the Sun, in the interplanetary space, and in the Earth’s magnetosphere to study the coupling among signals from the three regions for about 40 years (1970?–?2007) covering the three solar cycles 21, 22, and 23. For this, we make dynamic spectra of datasets including three different regions. From this, we estimate the peak frequency around 1.3 yr for each region and the corresponding band power. We found that coherent power only appears during 1987?–?1995 and the coherent behavior is found only in the interplanetary space and Earth, not in the Sun. Although the solar surface magnetic field shows significant power around 1.3 yr, their peak frequencies are statistically different from those of the outer regions, which make us dismiss the existence of coherence among the three regions. But it is notable that the peaks in band power corresponding to the 1.3-yr period are clearly simultaneous in the interplanetary space and Earth.  相似文献   

14.
15.
High-cadence, high-resolution magnetograms have shown that the quiet-Sun photosphere is very dynamic in nature. It is comprised of discrete magnetic fragments which are characterized by four key processes – emergence, coalescence, fragmentation and cancellation. All of this will have consequences for the magnetic field in the corona above. The aim of this study is to gauge the effect of the behavior of the photospheric flux fragments on the quiet-Sun corona. By considering a sequence of observed magnetograms, photospheric flux fragments are represented by a series of point sources and the resulting potential field arising from them is examined. It is found that the quiet-Sun coronal flux is generally recycled on time scales considerably shorter than the corresponding time scales for the recycling of photospheric flux. From the motions of photospheric fragments alone, a recycling time of coronal flux of around 3 h is found. However, it is found that the amount of reconnection driven by the motions of fragments is comparable to the amount driven by emergence and cancellation of flux, resulting in a net flux replacement time for the corona of only 1.4 h. The technique used in this study was briefly presented in a short research letter (R. M. Close et al., Astrophys. J., 612, L81, 2004); here the technique is discussed in far greater depth. Furthermore, an estimate is made of the currents required to flow along separator field lines in order to sustain the observed heating rates (assuming separator reconnection is the key mechanism by which the solar corona is heated).  相似文献   

16.
Z. Smith  M. Dryer 《Solar physics》1991,131(2):363-383
A parametric study of the evolution within, and signatures at, 1 AU of high-speed streams is performed with the use of a MHD, 21/2-D, time-dependent model. This study is an extension of an earlier one by Smith and Dryer (1990) who examined the ecliptic plane consequences of relatively short-duration, energetic solar disturbances. The present study examines both the erupting and corotating parts of long-duration, high-speed streams characteristic of coronal hole flows. By examining the variation of the simulated plasma velocity, density, temperature, and magnetic field at 1 AU, as well as the location of the solar coronal hole sources relative to the observer at 1 AU, we are able to provide some insight into the identification of the solar sources of interplanetary disturbances. We present and discuss two definitions for angle locating the solar source of interplanetary disturbances at 1 AU.We apply our results to the suggestion by Hewish (1988) that low-latitude coronal holes are suitably positioned to be the sources of major geomagnetic storms when the holes are in the eastern half of the solar hemisphere at the time of the commencement of the storm. Our results indicate that, for these cases, the streams emanating from within the hole must be very fast, greater than 1000 km s–1, or very wide, greater than 60°, at the inner boundary of 18 solar radii in our simulation.  相似文献   

17.
In order to investigate the relationship between magnetic-flux emergence, solar flares, and coronal mass ejections (CMEs), we study the periodicity in the time series of these quantities. It has been known that solar flares, sunspot area, and photospheric magnetic flux have a dominant periodicity of about 155 days, which is confined to a part of the phase of the solar cycle. These periodicities occur at different phases of the solar cycle during successive phases. We present a time-series analysis of sunspot area, flare and CME occurrence during Cycle 23 and the rising phase of Cycle 24 from 1996 to 2011. We find that the flux emergence, represented by sunspot area, has multiple periodicities. Flares and CMEs, however, do not occur with the same period as the flux emergence. Using the results of this study, we discuss the possible activity sources producing emerging flux.  相似文献   

18.
To investigate the long-term modulation of galactic cosmic rays at the ground-based detector energies, the monthly values of the neutron monitor (Climax, Mt. Washington, Deep River, and Huancayo) and ionization chamber (Cheltenham/Fredericksburg, Huancayo, and Yakutsk) intensities have been correlated with the sunspot numbers (used as a proxy index for transient solar activity) for each phase of sunspot cycles 18 to 22. Systematic differences are found for results concerning odd and even sunspot cycles. During odd cycles (19 and 21) the onset time of cosmic-ray modulation is delayed when compared with the onset time of the sunspot cycle, while they are more similar during even (18, 20, and 22) cycles. Checking the green corona data, on a half-year basis, we found typical heliolatitudinal differences during ascending phases of consecutive sunspot cycles. This finding suggests a significant role of the latitudinal coronal behaviour in the heliospherical dynamics during a Hale cycle. Such effectiveness concerns not only the transient interplanetary perturbations but also the recurrent ones. In fact, when lag between cosmic-ray data and sunspot numbers is considered, the anticorrelation between both parameters is very high (correlation coefficient |r| > 0.9) for all the phases considered, except for the declining ones of cycles 20 and 21, when high-speed solar wind streams coming from coronal holes affect the cosmic-ray propagation, and theRz parameter is no longer the right proxy index for solar-induced effects in the interplanetary medium.  相似文献   

19.
Coronal holes as sources of solar wind   总被引:3,自引:0,他引:3  
We investigate the association of high-speed solar wind with coronal holes during the Skylab mission by: (1) direct comparison of solar wind and coronal X-ray data; (2) comparison of near-equatorial coronal hole area with maximum solar wind velocity in the associated streams; and (3) examination of the correlation between solar and interplanetary magnetic polarities. We find that all large near-equatorial coronal holes seen during the Skylab period were associated with high-velocity solar wind streams observed at 1 AU.Harvard College Observatory-Smithsonian Astrophysical Observatory.A substantial portion of this work was done while a visiting scientist at American Science and Engineering.  相似文献   

20.
The structure of electric current and magnetic helicity in the solar corona is closely linked to solar activity over the 11-year cycle, yet is poorly understood. As an alternative to traditional current-free “potential-field” extrapolations, we investigate a model for the global coronal magnetic field which is non-potential and time-dependent, following the build-up and transport of magnetic helicity due to flux emergence and large-scale photospheric motions. This helicity concentrates into twisted magnetic flux ropes, which may lose equilibrium and be ejected. Here, we consider how the magnetic structure predicted by this model – in particular the flux ropes – varies over the solar activity cycle, based on photospheric input data from six periods of cycle 23. The number of flux ropes doubles from minimum to maximum, following the total length of photospheric polarity inversion lines. However, the number of flux rope ejections increases by a factor of eight, following the emergence rate of active regions. This is broadly consistent with the observed cycle modulation of coronal mass ejections, although the actual rate of ejections in the simulation is about a fifth of the rate of observed events. The model predicts that, even at minimum, differential rotation will produce sheared, non-potential, magnetic structure at all latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号