首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
McClung  D. M. 《Natural Hazards》2002,26(2):131-146
This paper (Part II) constitutes the second of a two part series todefine the seven elements of avalanche forecasting. Part I contains the first four elements which are neededto present the human issues. This paper contains the last three elements which deal mostly with thephysical issues and their use in the decision-making process. Some basic rules of applied avalancheforecasting are included here, for the first time, to illustrate physically based principleswhich are used in applied avalanche forecasting and their link to data analysis and decisions.Since the seven elements of applied avalanche forecasting are strongly connected, the reader should consultPart I (this journal issue) as a prelude to the present paper. Part II contains sections about dataand information, scale issues in time and space, decision making and errors and physical rules ofapplied forecasting. Since all seven elements of applied avalanche forecasting are connected, Part II does not stand alone.  相似文献   

2.
D. M. McClung 《Natural Hazards》2011,59(3):1635-1645
In North America and Europe, most fatalities due to snow avalanches occur in the backcountry during recreational pursuits. Of these, more than 90% of the fatal avalanches are triggered by the victims themselves. This pattern suggests that the primary cause of avalanche fatalities for human-triggered avalanches is a failure in human perception. For the latter, people thought that the state of stability or instability of the snow cover was different than it actually was. In this paper, the strength and weight of evidence used to make decisions in backcountry travel are discussed from: (a) the perspective of the favored hypothesis to proceed for good recreational enjoyment based on stability evaluation and (b) the null hypothesis based on an assessment of instability. Based on the facts about snow slab avalanche release, it is argued that instability analysis is the best framework for avalanche forecasting, whereas human action is most closely related to the favored hypothesis (stability evaluation). Using scaling laws derived from: (a) fracture mechanics about the size of imperfections causing avalanches and (b) avalanche dimensions, it is suggested that a snow slab could show stability over more than 99% of the total area. From the concepts of Bayesian probability, it is shown that overconfidence about stability can arise when the weight of the likelihood is high and the weight of prior is low. Similarly, underconfidence (excessive conservatism) often results when the weight of the prior is high with little regard for the likelihood, which may be low. Overconfidence about stability is considered to be a prime source of accidents.  相似文献   

3.
Snow avalanches are a major natural hazard for road users and infrastructure in northern Gaspésie. Over the past 11 years, the occurrence of nearly 500 snow avalanches on the two major roads servicing the area was reported. No management program is currently operational. In this study, we analyze the weather patterns promoting snow avalanche initiation and use logistic regression (LR) to calculate the probability of avalanche occurrence on a daily basis. We then test the best LR models over the 2012–2013 season in an operational forecasting perspective: Each day, the probability of occurrence (0–100%) determined by the model was classified into five classes avalanche danger scale. Our results show that avalanche occurrence along the coast is best predicted by 2 days of accrued snowfall [in water equivalent (WE)], daily rainfall, and wind speed. In the valley, the most significant predictive variables are 3 days of accrued snowfall (WE), daily rainfall, and the preceding 2 days of thermal amplitude. The large scree slopes located along the coast and exposed to strong winds tend to be more reactive to direct snow accumulation than the inner-valley slopes. Therefore, the probability of avalanche occurrence increases rapidly during a snowfall. The slopes located in the valley are less responsive to snow loading. The LR models developed prove to be an efficient tool to forecast days with high levels of snow avalanche activity. Finally, we discuss how road maintenance managers can use this forecasting tool to improve decision making and risk rendering on a daily basis.  相似文献   

4.
Due to its geographical location, geology and topography, Turkey mainly undergoes three different types of natural disasters related to gravity flows. They are floods, landslides and snow avalanches.The heavy snow falls during winter pose the hazard of snow avalanches. According to statistics, 800 people were killed in snow avalanches during the period of 1960–1997. Within the program of the International Decade of Natural Disaster Reduction (1990–2000), an international cooperation has been initiated among SFISAR (Swiss Federal Institute for Snow and Avalanche Research), CEMAGREF (Centre National du Machinisme Agricole du Génie Rural des Eaux at des Forets) and AFET (Turkish Ministry of Public Works and Settlement, General Directorate of Disaster Affairs). This three-year project started in 1994 as a development project on avalanche forecasting, mapping, zoning and paravalanche construction technologies. For the pilot project area, the Soanli Mountains located in north-eastern Turkey were chosen, covering an area of approximately 40 by 30 km. After training the Turkish engineers, the basic technologies in avalanche forecasting and avalanche mapping were transferred from Switzerland and France to Turkey with the necessary infrastructure. The difficulties faced in meteorological data collection with the help of local observers and the limited data available caused some delay in avalanche forecasting. If automatic weather stations could take the place of manual work, the realization of a prognosis would be quicker. At present, avalanche-hit houses are rebuilt in new disaster-free zones by AFET. With this project, the idea of using paravalanche structures for protection is promoted. The physico-sociological impacts of avalanche disasters, avalanche mapping and zoning of disaster areas on local people are also studied.  相似文献   

5.
Temperature and fresh snow are essential inputs in an avalanche forecasting model. Without these parameters, prediction of avalanche occurrence for a region would be very difficult. In the complex terrain of Himalaya, nonavailability of snow and meteorological data of the remote locations during snow storms in the winter is a common occurrence. In view of this persistent problem present study estimates maximum temperature, minimum temperature, ambient temperature and precipitation intensity on different regions of Indian western Himalaya by using similar parameters of the neighbouring regions. The location at which parameters are required and its neighbouring locations should all fall in the same snow climatic zone. Initial step to estimate the parameters at a location, is to shift the parameters of neighbouring regions at a reference height corresponding to the altitude of the location at which parameters are to be estimated. The parameters at this reference height are then spatially interpolated by using Barnes objective analysis. The parameters estimated on different locations are compared with the observed one and the Root Mean Square Errors (RMSE) of the observed and estimated values of the parameters are discussed for the winters of 2007–2008.  相似文献   

6.
地形对天山积雪冻融变化的影响分析   总被引:1,自引:0,他引:1  
胡伟杰  刘海隆  王辉  赵文宇 《冰川冻土》2016,38(5):1227-1232
天山积雪是新疆水资源的重要来源,地形对积雪的空间分布和消融有重要影响,分析地形对天山积雪冻融过程的影响具有重要的理论意义.基于2005-2014年的MODIS/Terra积雪8 d合成数据(MOD10A2)与数字高程模型(DEM)数据,分析了天山积雪覆盖随高程、坡度和坡向的季节变化规律.分析结果表明:(1)在不同季节里,不同高程中的融雪和积雪过程同步发生,其中在春季和冬季,雪盖变化较大的区域主要分布在低海拔和高海拔地区;而在夏、秋两季,雪盖变化较大的区域主要分布在中海拔地区.(2)在不同季节,不同坡度的积雪冻融过程也同步进行,但春季和冬季积雪呈线性变化,在缓坡和陡坡地区变化明显;夏季和秋季积雪变化缓慢,在中坡变化显著.(3)天山积雪变化随坡向具有对称性和周期性.积雪变化呈现北坡大、南坡小,春、冬季大,夏、秋季小的特点.在波动周期内,夏秋季积雪变化波动较大,变化趋势与春、冬季相反.研究结果可为融雪型洪水预报提供科学依据.  相似文献   

7.
An avalanche occurrence is a result of the structural collapse of the snow cover in the upper reaches of mountain slopes in the snowbound belt. They take a heavy toll, year after year and property worth millions is destroyed. Besides loss of lives, the avalanches also destroy forest and disrupt road communication, thereby hindering the hill area development and affecting the Defense of the nation.The paper brings out the cause of avalanche formation, magnitude of their destruction power and the techniques being followed in India by Snow and Avalanche Study Establishment (SASE), a DRDO Laboratory, for mitigating the avalanche disasters in Western Himalayan Region for the Defense forces. The authors suggest that for mitigating the avalanche disasters, an integrated plan at national level involving Defense forces and state governments should be drawn.  相似文献   

8.
Maximum and minimum temperatures are used in avalanche forecasting models for snow avalanche hazard mitigation over Himalaya. The present work is a part of development of Hidden Markov Model (HMM) based avalanche forecasting system for Pir-Panjal and Great Himalayan mountain ranges of the Himalaya. In this work, HMMs have been developed for forecasting of maximum and minimum temperatures for Kanzalwan in Pir-Panjal range and Drass in Great Himalayan range with a lead time of two days. The HMMs have been developed using meteorological variables collected from these stations during the past 20 winters from 1992 to 2012. The meteorological variables have been used to define observations and states of the models and to compute model parameters (initial state, state transition and observation probabilities). The model parameters have been used in the Forward and the Viterbi algorithms to generate temperature forecasts. To improve the model forecasts, the model parameters have been optimised using Baum–Welch algorithm. The models have been compared with persistence forecast by root mean square errors (RMSE) analysis using independent data of two winters (2012–13, 2013–14). The HMM for maximum temperature has shown a 4–12% and 17–19% improvement in the forecast over persistence forecast, for day-1 and day-2, respectively. For minimum temperature, it has shown 6–38% and 5–12% improvement for day-1 and day-2, respectively.  相似文献   

9.
The paper describes some processes and phenomena relating to snow, such as sedimentation and resedimentation, diagenesis and gravity-induced mass transports (avalanches). It is shown that the type of avalanche is largely governed by the bedding sequence within the snow cover. From this it is concluded that snow could act as a valuable correlation model to gain a better understanding of some gravity-induced sediment transport modes, e.g. slumping—sliding and turbidity flow.  相似文献   

10.
Snow-supporting avalanche defence structures are increasingly being built at high altitudes in potential permafrost areas. Special construction methods and guidelines have been developed to ensure a minimal stability of the structures, which have a vital role in the protection of underlying settlements and transport infrastructure against snow avalanches. If the avalanche slopes are located on ice-rich permafrost terrain, as is the case in a steep avalanche gully above Pontresina (Eastern Swiss Alps), other means of protection must be used – such as deflection or retention dams – as construction on ice-rich sediments can be very problematic. Experimental snow-supporting structures were built in 1997 in order to test different types of structures and their foundations, to develop specially adapted construction methods and to monitor the long-term behaviour of the structures in moderately creeping frozen ground with volumetric ice contents under 20%. Snow-nets were found to be the most suitable type of protection against avalanches in this type of permafrost terrain due to their deformability and because they are well adapted to rock fall. The structures do not improve slope stability but contribute towards maintaining permafrost as they delay snow melt by modifying the spatial and temporal distribution of the snow cover. The results of the project described have led to a better understanding of permafrost-related avalanche defence problems.  相似文献   

11.
This conceptual model of avalanche hazard identifies the key components of avalanche hazard and structures them into a systematic, consistent workflow for hazard and risk assessments. The method is applicable to all types of avalanche forecasting operations, and the underlying principles can be applied at any scale in space or time. The concept of an avalanche problem is introduced, describing how different types of avalanche problems directly influence the assessment and management of the risk. Four sequential questions are shown to structure the assessment of avalanche hazard, namely: (1) What type of avalanche problem(s) exists? (2) Where are these problems located in the terrain? (3) How likely is it that an avalanche will occur? and (4) How big will the avalanche be? Our objective was to develop an underpinning for qualitative hazard and risk assessments and address this knowledge gap in the avalanche forecasting literature. We used judgmental decomposition to elicit the avalanche forecasting process from forecasters and then described it within a risk-based framework that is consistent with other natural hazards disciplines.  相似文献   

12.
通过2007-2011年纳木错站人工积雪观测资料,对西藏纳木错流域MODIS两种积雪产品(MOD10A1和MOD10A2)进行了精度验证,分析了纳木错流域积雪累积和消融的空间差异,以及流域积雪覆盖率的时空变化;利用纳木错站人工积雪观测资料及自动气象站资料,分析了纳木错流域积雪要素(积雪深度、雪水当量、积雪密度)的时间变化及其与气候参数(气温、降水量、风速等)的关系.结果表明:纳木错流域MOD10A2数据的积雪识别精度(67.1%)高于MOD10A1(42.2%),总识别精度(73.0%)略低于MOD10A1数据(78.4%).纳木错流域积雪累积和消融存在空间差异,积雪在流域南部的念青唐古拉山脉最先累积,之后为流域东部,最后为流域西部;积雪消融的空间变化则相反.由此导致流域积雪日数南部最大、东部次之、西部及西北部最小.纳木错流域各积雪要素的年内变化存在双峰值特征,峰值分别出现在10-11月和1月,积雪在10-11月受降水和气温共同作用,12月至次年3月主要受气温影响.纳木错流域的平均积雪覆盖率为21.9%,受湖泊效应影响区域(主要为东部地区)达到50.6%,而其他区域仅为18.3%.同时,受湖泊效应影响,纳木错平均积雪深度、积雪水当量均显著大于周边地区.  相似文献   

13.
次网格积雪参数化在祁连山区斑状积雪带模拟中的应用   总被引:2,自引:0,他引:2  
运用中尺度大气模式MM5,积雪参数化分别采用简单的积雪参数化方案以及考虑次网格积雪分布和雪密度变化的复杂积雪参数化方案,对黑河流域上游祁连站附近气温和降水进行模拟,与祁连站的观测值对比,检验积雪参数化方案中次网格积雪分布和雪密度变化在该地区气温和降水模拟中的作用.结果表明:简单积雪方案对网格积雪的非0即1描述在斑状积雪带是不合理的,尤其在黑河流域海拔3 300 m以下积雪多为斑状或片状,网格内积雪非均匀性的处理是非常必要的;通过耦合简单和复杂积雪方案的大气模式对气温模拟和观测值比较发现,新方案模拟的气温比旧方案模拟值更接近观测值,在气温低于0℃时改进尤其明显,说明使用复杂积雪/融雪方案可改进斑状积雪带气温的模拟.耦合复杂积雪方案的大气模式模拟的降水与观测值绝对误差低于耦合简单积雪方案模拟结果,复杂积雪方案的模拟结果降水错报率为使用简单积雪方案结果的一半,证明了耦合复杂积雪方案可以提高大气模式对该地区春季降水模拟的准确性.与积雪面积变化相对应,耦合复杂积雪方案模拟出了融雪产流量,而使用简单积雪方案则没有模拟出来.综上所述,耦合考虑次网格积雪分布和雪密度变化的复杂积雪参数化方案比耦合“非0即1”积雪方案可以更准确地模拟祁连山区冬、春季气温和降水.  相似文献   

14.
Snow avalanches affect recreation, transportation, resource industries and property. During the 1990s an average of 12.5 persons per year were killed in avalanches in Canada. The snow avalanche hazard has affected people and facilities in B.C, Alberta, Yukon, NWT, Nunavut, Ontario, Quebec and Newfoundland. Avalanche risk may be voluntary, for example skiing and snowmobiling, or involuntary, for example public transportation corridors. A worst-case avalanche scenario is most likely to occur in the Western Cordillera, resulting from a single large-scale weather pattern, where a cold period resulting in the development of a weak layer in the snowpack is followed by a series of major mid-winter storms. Emergency preparedness for avalanches is most advanced in western Canada. New education and information initiatives in Quebec and Newfoundland are aimed at improving preparedness there. Current research is focused on avalanche forecasting, weather forecasting for avalanche prediction, avalanche failure characteristics, forestry and avalanches and geomorphology and avalanches. An important area of future research is the impact of climate change on avalanches, particularly in northern Canada.  相似文献   

15.
王鑫  王宁练  王俊杰  申保收 《冰川冻土》2021,43(5):1354-1364
积雪中记录的痕量元素含量,能很好地评估当地大气污染状况。利用电感耦合等离子体质谱仪(ICP-MS),对2018年1月和3月采自新疆北部的天山北坡、伊犁河谷、塔城地区和阿勒泰地区的积雪样品进行了16种痕量元素测试。结果表明:北疆地区积雪中痕量元素含量的平均值在0.06 ng·g-1(Cd)~1 481.1 ng·g-1(Al)之间。时间分布上,消融期多数痕量元素浓度低于积累期、稳定期;Pb、Cr等元素消融期含量高于其他时期,可能与外源输入有关。空间分布上,塔城地区和天山北坡的多数痕量元素含量高出伊犁河谷和阿勒泰地区1~3倍。与其他地区雪冰中痕量元素含量对比,发现新疆北部高出青藏高原北部1~3倍,与受人类活动影响较大的天山乌鲁木齐河源1号冰川相应痕量元素浓度接近,揭示了新疆北部积雪中痕量元素较高的浓度特征。元素富集系数表明,Fe、Be等元素主要来自地壳粉尘,Pb、Cd、Zn、As等元素呈显著富集(EFc>10),受人类排放活动主导。结合后向气团轨迹分析,塔城地区的痕量元素可能受到哈萨克斯坦的影响,阿勒泰地区的痕量元素可能受到中亚、阿尔泰山南缘等地的影响,天山北坡与伊犁河谷主要受新疆本地气团的影响。  相似文献   

16.
Automated detection of snow avalanches is an important tool for avalanche forecasting and for assessing the effectiveness of avalanche control measures at bad visibility. Avalanche detection systems are usually based on infrasound, seismic, or radar signals. Within this study, we compared three different types of avalanche detection systems: one avalanche radar, one infrasound array system consisting of four infrasound sensors, and a newly developed single sensor infrasound system. A special focus is given to the new single sensor system, which is a low cost, easy to install system, originally designed for the detection of debris flows and debris floods. Within this work, we analysed how this single sensor system could be adapted to detect also snow avalanches. All three systems were installed close to a road near Ischgl (Tyrol, Austria) at the avalanche-exposed Paznaun Valley. The valley is endangered by two avalanche paths which are controlled by several avalanche towers. The radar system detected avalanches accurately and reliably but was limited to the particular avalanche path towards which the radar beam was directed. The infrasound array could detect avalanches from all surrounding avalanche paths, however, with a higher effort for installation. The newly tested single infrasound sensor system was significantly cheaper and easier to install than the other two systems. It could also detect avalanches form all directions, although without information about the direction. In summary, each of the three different systems was able to successfully detect avalanches and had its particular strengths and weaknesses, which should be considered according to the specific requirements of a particular practical application.  相似文献   

17.
Mass wasting and avalanche events substantially impact the landscape morphology and consequently human habitation throughout the Himalaya. There is, however, a paucity of snow avalanche documentation for the region. The application of dendrochronologic research methods introduces a sensitive approach to document the recurrence of snow avalanche events in a region where historical records are either non-existent or difficult to access. An exploratory dendrochronologic study was undertaken in the Lahul Himalaya of Northern India during the summer of 2006. Included within the fieldwork was an assessment of avalanche track morphology to enable identification of the slope characteristics that might be associated with an increase in avalanche activity. Thirty-six trees growing on the Ratoli avalanche track were sampled. The oldest tree was a Cedrus deodara with a pith date of 1950. A tree-ring-derived avalanche response curve highlights four avalanche events that occurred from 1972 to 2006. The successful scientific results based on the application of the method used provide the basis for local planners to quantify slope failure hazards in forested areas throughout the western Himalaya.  相似文献   

18.
The snow cover days were extracted out of the snow data on depth distribution from 1979 to 2016 in China, combined with temperature, precipitation, humidity, sunlight and wind speed and other meteorological data, by taking advantage of traditional statistical methods and GIS spatial analysis methods, to study the temporal and spatial variation characteristics of snow cover days in northeast China region in the past 40 years, and to analyze their relationship with climatic factors. It turned out that the average annual snow cover days were 93 d in northeast China region, having an increasing trend, the rate was 0.6 d/10a, and the maximum average annual snow cover days appeared in 2013. Snow cover days in spring dominate the changes of the average snow days all year around. The snow cover days in northeast China region were affected by latitude, geography and land-sea thermal difference, which gradually decreased from north to south, and the maximum value appeared in the Da Hinggan area. Precipitation, humidity and snow cover days are positive correlation, and temperature, wind speed and sunlight are negative correlation. The correlation between climatic elements and snow cover days is as follows: temperature>humidity>wind speed>sunlight>precipitation. The influence of climatic elements on the seasonally frozen ground region is more significant than that in the permafrost region. The results show that temperature is the main factor that affects the average annual snow cover days in northeast China region.  相似文献   

19.
The occurrence of wet-snow avalanches is, in general, poorly understood. For 20 years (winters of 1975–1976 to 1994–1995), the avalanche activity has been observed in the Dischma valley near Davos (Eastern Swiss Alps). The study area comprises a large starting zone of north-easterly aspect (2,300 m a.s.l.) with several avalanche paths. We have analyzed the occurrence data in combination with meteorological and snowpack data collected at an elevation of 2,090 m a.s.l. During the 20-year observation period, almost 800 wet-snow avalanches were observed, about 4.5 times more loose snow avalanches than slab avalanches. Considering both types of avalanches jointly, snow depth, precipitation and air temperature showed the highest correlation with avalanche activity. Most loose snow avalanches occurred when air temperature was high and/or after a precipitation period. Slab avalanches occurrence was primarily related to warm air temperatures and snowpack properties such as the isothermal state and the existence of capillary barriers. Radiation did not show up as a significant variable. The results suggest that in a transitional snow climate wet-snow avalanches are, as dry snow avalanches, often related to precipitation events, and that wet slab instability strongly depends on snowpack properties in relation to warming of the snowpack and melt water production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号