首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
To assess the potential impact of climate changes on pasture production in the North Island, New Zealand, eight climate scenarios of increased temperature and increased (or decreased) rainfall were investigated by integrating a polynomial regression model for pasture production with a Geographic Information System (GIS). The results indicated that the climate change scenarios assuming an increase in temperature by 1–2°C and a rainfall change by −20 to +20% would have a very significant impact on pasture production with a predicted pasture production variation from −46.2 to +51.9% compared with the normal climate from 1961–1990. Increased temperature would generally have a positive effect on pasture production in the south and southeast of the North Island, and increased rainfall would have a positive effect in the central, south and southeast of the North Island and a negative effect in the north of the North Island. The interaction of decreased rainfall and increased temperature would have a negative impact for the whole North Island except some central areas with high rainfall. Relevant management practices for coping with potential climate change are discussed.  相似文献   

2.
近25 a气候变化对江苏省粮食产量的影响   总被引:5,自引:1,他引:4       下载免费PDF全文
利用1986-2010年江苏省63个气象站的常规气象数据和粮食单产统计资料,分析了苏北、苏中、苏南地区和江苏全省三种时间尺度的气候变化特征;基于自助抽样(bootstrap)和一元线性回归的方法,研究了各区和全省粮食产量对作物年(11月一次年10月)、夏粮—秋粮生长季(11月-次年5月和6-10月)和月尺度气候要素的响应;并定量评价了过去25 a气候变化对各区和全省粮食产量的影响以及各气候要素的贡献.结果表明:1)在作物年、夏粮—秋粮生长季以及月尺度上,三区和全省各气候要素均发生了不同程度的变化,且存在一定的时空差异.在不断发展的农业管理措施和技术以及气候的共同作用下,三区和全省粮食单产显著(p>0.01)增加,其中,全省增加趋势为66.89 kg·hm-2·a-1.2)除苏南地区对作物年尺度上的气候变化响应不显著外,粮食产量对降水的不随时间变化的负响应关系(即随降水的增加而减小,减小而增加)均在不同时间尺度和地区得到了体现,说明降水对这些地区粮食生产的影响十分重要;其中,苏北、苏中和全省粮食产量随作物年降水的增加(减少)而减小(增加),平均速率分别为0.19%·(10 mm)-1、0.09%·(10 mm)-1和0.11%·(10 mm)-1.3)三类模型结果均显示气候变化使得苏北、苏南和江苏粮食产量减小,但结果略有差异,其中,利用月气候要素建立的模型C的结果显示气候变化对粮食单产(总产)的影响最大,其均值分别为-6.51%·(10 a)-1(-11.28×108kg· (10 a)-1)、-3.27%·(10 a)-1(-2.36×108 kg·(10 a)-1)和-1.34%·(10 a)-1(-4.45×108kg·(10 a)-1).另外,为了系统而全面地评估气候变化对粮食产量的影响,考虑月尺度的气候变化的影响是十分必要的.  相似文献   

3.
Impact of ENSO-Related Climate Anomalies on Crop Yields in the U.S.   总被引:1,自引:1,他引:0  
Historical daily thermal and precipitation data from selected stations across the United States are composited into climate scenarios for the three phases of ENSO: Warm Events (El Niño), Cold Events (El Viejo or La Niña), and Neutral. Using these scenarios, yields of 7 field crops were simulated using the EPIC biophysical model during the one-year period coincident with maximum SST anomalies in the equatorial Pacific. The response of simulated agricultural productivity to the ENSO-related climate-variability parameters, is presented. A sensitivity calculation confirms the relevance of precipitation totals/medians and suggests ENSO-related yields are sensitive to changes in statistical properties characterizing precipitation distribution and occurrence. Results are spatially dependent, with the southwest and northern plains regions indicating the highest sensitivity to the inclusion of additional precipitation characteristics. The southeast yields are not as sensitive. The yield deviations (expressed as normalized differences to neutral yields) associated with the two extreme ENSO phases (Warm Events and Cold Events) are spatially and crop dependent with ranges up to ±120%. The largest yield deviations are in the south, southwest, and northern plains. Overall, Cold Events demonstrate larger impacts in the southern regions and Warm Events have a larger impact in the north. Additionally, the notion that climate anomalies associated with Cold and Warm Events and subsequent impacts on yields should be of opposite sign (i.e., linear) is not valid in many regions. For the eastern half of the U.S., modeled yield deviations under Warm Event conditions are nearly all less than neutral. Conversely, in the western half, results are more mixed. Under Cold Event conditions, yields in the east are enhanced in the south, but worsened in the north; while in the western half, yields have decreased in general. The results highlight the critical role of climate and production-related data on station or county levels in quantifying the impact of ENSO climate anomalies on yields. Both the diverse nature of the ENSO-related yield deviations as well as their sensitivity to monthly frequency distribution and occurrence characteristics imply that ENSO-related seasonal precipitation forecasts might be beneficial for agricultural application only if details were provided regarding not only totals, but also predicted changes in temporal and spatial variability of a more comprehensive suite of characteristics.  相似文献   

4.
The economic impacts of climate-change-induced adjustments on the performance of the Tanzanian economy are analysed, using a countrywide computable general equilibrium (CGE) model. The effect of overall climate change on agricultural productivity (modelled as reduced land productivity) is projected to be relatively limited until about 2030, thereafter becoming worse. The simulation results indicate that despite the projected reduction in agricultural productivity, the negative impacts can potentially be quite limited. This is because the timescales involved, as well as the low starting point of the economy, leave ample room for factor substitutability and increased overall productivity. This indicates that policies that give farmers the opportunity to invest in autonomous climate adaptation, as well as those that improve the overall performance of the economy, can be as important in reducing the impacts of climate change in the economy as direct government policies for adaptation.  相似文献   

5.
The climate of the 1930s was used as an analog of the climate that might occur in Missouri, Iowa, Nebraska and Kansas (the MINK region) as a consequence of global warming. The analog climate was imposed on the agriculture of the region under technological and economic conditions prevailing in 1984/87 and again under a scenario of conditions that might prevail in 2030. The EPIC model of Williamset al. (1984), modified to allow consideration of the yield enhancing effects of CO2 enrichment, was used to evaluate the impacts of the analog climate on the productivity and water use of some 50 representative farm enterprises. Before farm level adjustments and adaptations to the changed climate, and absent CO2 enrichment (from 350 to 450 ppm), production of corn, sorghum and soybeans was depressed by the analog climate in about the same percent under both current and 2030 conditions. Production of dryland wheat was unaffected. Irrigated wheat production actually increased. Farm level adjustments using low-cost currently available technologies, combined with CO2 enrichment, eliminated about 80% of the negative impact of the analog climate on 1984/87 baseline crop production. The same farm level adjustments, plus new technologies developed in response to the analog climate, when combined with CO2 enrichment, converted the negative impact on 2030 crop production to a small increase. The analog climate would have little direct effect on animal production in MINK. The effect, if any, would be by way of the impact on production of feed-grains and soybeans. Since this impact would be small after on-farm adjustments and CO2 enrichment, animal production in MINK would be little affected by the analog climate.  相似文献   

6.
Maconellicoccus hirsutus (Green) (Hemiptera:Pseudoccidae) is an important pest in many countries being responsible for considerable economic loses. Although it is not currently present in Chile, the chance that it could be accidentally introduced rises with the list of infested countries increasing over the last years. In addition, climate change projections indicate that a larger region would fit as potential habitat for this pest, allowing it to persist over time and colonize a larger proportion of the Chilean territory. In this study the geographic distribution and the number of generations this mealybug would develop in Chile were determined, under current temperatures and under two projected climatic scenarios. Cumulative degree days were calculated for current and future scenarios using a lower temperature threshold of 14.5 °C, with 624.5 degree-days as the thermal requirement for the species to complete one generation. The results show that under current climate conditions M. hirsutus could develop up to three generations in the north of the country (i.e. 18° South) and one generation in the region near 37° South. Under future scenarios’ conditions the pest could develop up to five generations in the north, and one generation around the 42° South. Present climate conditions in Chile would allow the establishment of the pink hibiscus mealybug, if the pest enters the country. Climate change conditions would allow the potentially invaded area to expand south, and would promote the development of more generations per year of the mealybug in the studied territory.  相似文献   

7.
南涝北旱的年代气候特点和形成条件   总被引:10,自引:3,他引:10       下载免费PDF全文
通过研究最近50年我国夏季降水分布的年代际及年际气候变化特征,以及对20世纪90年代至今夏季旱涝趋势的对比分析,讨论了夏季主要雨带位置南移的气候趋势,以及亚洲大陆高压、ENSO事件对夏季降水的影响关系。结果表明,20世纪90年代后期开始我国夏季旱涝分布气候态发生较大的变化,这可能预示夏季进入南涝北旱的年代气候时期。这些结果对于降水的年代气候预测和短期气候预测都具有重要意义。  相似文献   

8.
近46a黑龙江水稻障碍型冷害及其与气候生产力的关系   总被引:1,自引:0,他引:1  
利用黑龙江省稻作区46 a(1961—2006年)每年7—8月逐日平均气温、5—9月逐旬平均气温、降水量资料,采用气候统计方法分析了自然低温下障碍型冷害发生的规律和时空变化特征,基于logistic曲线方程模拟粳稻气候生产力,建立起5个区域粳稻气候生产力与障碍型冷害期间平均温度和冷害持续时间的关系模型。结果表明,近46 a间,20世纪70年代是障碍型冷害高发期,20世纪80年代是障碍型冷害发生频率由多至少的转折期,21世纪初为低发期。黑龙江省北部稻作区、东部稻作区和中部稻作区为障碍型冷害重发区,南部稻作区为中等发生区,西部稻作区为轻发区。5个区域障碍型冷害发生期间的平均温度与粳稻气候生产力相关性均不显著,而冷害持续时间对粳稻气候生产力影响显著,并具有明显的地域差异,北部、东部和南部极显著(通过0.01信度的显著性检验),冷害持续时间每延长1 d,北部、东部和南部粳稻气候生产力分别下降119.89 kg/hm^2、213.60 kg/hm^2、133.84 kg/hm^2,西部和中部影响不显著。  相似文献   

9.
黄淮海地区植被活动对气候变化的响应特征   总被引:6,自引:2,他引:4       下载免费PDF全文
基于1982 -2003年GIMMSNDVI遥感数据和气象资料, 综合运用趋势分析、相关分析、奇异值分解等方法, 分析我国黄淮海地区植被活动对气候变化响应的时空特征。结果表明:黄淮海地区整体气候变暖趋势比较明显, 干旱化尚不显著, 年平均植被NDVI表现为略微增加的趋势。在年尺度上, 温度是敏感性最强的气候因子, 全年温度、降水、相对湿度对植被NDVI动态变化具有正效应, 而蒸发量具有负效应; 在季尺度上, 温度、降水的敏感性最强。自然植被对降水的敏感性最强, 其次是温度; 农业植被对温度的敏感性最强, 其次是降水。植被对气候变化响应的空间特征表现为, 植被主要生长季平均NDVI与温度距平场空间结构一致, 与蒸发量距平场反位相对应, 与降水量距平场呈北、南部正负相反分布, 与相对湿度距平场呈南、北向正负相反的空间分布。  相似文献   

10.
The response of a two-dimensional thermohaline ocean circulation model to a random freshwater flux superimposed on the usual mixed boundary conditions for temperature and salinity is considered. It is shown that for a wide range of vertical and horizontal diffusivities and a box geometry that approximates the Atlantic Ocean, 200–300 yr period oscillations exist in the basic-state, interhemispheric meridional overturning circulation with deep convection in the north. These fluctuations can also be described in terms of propagating salinity anomalies which travel in the direction of the thermohaline flow. For large horizontal (K h = 15 × 103 m2/s) and small vertical (K v = 0.5 × 10–4 m2/s) diffusivities, the random forcing also excites deca-millennial oscillations in the basic structure of the thermohaline circulation. In this case, the meridional circulation pattern slowly oscillates between three different stages: a large positive cell, with deep convection in the North Atlantic and upwelling in the south; a symmetric two-cell circulation, with deep convection in both polar regions and upwelling near the equator; and a large negative cell, with deep convection in the South Atlantic and upwelling in the north. Each state can persist for 0 (10 kyr).  相似文献   

11.
Extreme climate index is one of the useful tools to monitor and detect climate change. The primary objective of this study is to provide a more comprehensively the changes in extreme precipitation between the periods of 1954–1983 and 1984–2013 in Shaanxi province under climate change, which will hopefully provide a scientific understanding of the precipitation-related natural hazards such as flood and drought. Daily precipitation from 34 surface meteorological stations were used to calculated 13 extreme precipitation indices (EPIs) generated by the joint World Meteorological Organization Commission for Climatology (CCI)/World Climate Research Programme (WCRP) project on Climate Variability and Predictability (CLIVAR) expect Team on climate change Detection, Monitoring and Indices (ETCCDMI). Two periods including 1954–1983 and 1984–2013 were selected and five types of precipitation days (R10mm-R100mm) were defined, to provide more evidences of climate change impacts on the extreme precipitation events, and specially, to investigate the changes in different types of precipitation days. The EPIs were generated using RClimRex software, and the trends were analyzed using Mann-Kendall nonparametric test and Sen’s slope estimator. The relationships between the EPIs and the impacts of climate anomalies on typical EPIs were investigated using correlation and composite analysis. The mainly results include: 1) Thirteen EPIs, except consecutive dry day (CDD), were positive trends dominated for the period of 1984–2013, but the trends were not obvious for the period of 1954–1983. Most of the trends were not statistically significant at 5 % significance level. 2) The spatial distributions of stations that exhibited positive and negative trends were scattered. However, the stations that had negative trends mainly distributed in the north of Shaanxi province, and the stations that had positive trends mainly located in the south. 3) The percentage of stations that had positive trends had increased from the period of 1954–1983 to 1984–2013 for all the 13 EPIs except CDD, indicating the possible climate change impacts on extreme precipitation events. 4) The correlations between annual total wet-day precipitation (PRCPTOT) and other 12 EPIs varied for different indices and stations. The composite analysis found that El Niño Southern Oscillation (ENSO) exerted greater impacts on PRCPTOT than other EPIs and greater in the Guanzhong Plain (GZP) than Qinling-Dabashan Mountains (QDM) and Shanbei Plateau (SBP) of Shaanxi province.  相似文献   

12.
Distinct climate changes since the end of the 1980s have led to clear responses in crop phenology in many parts of the world. This study investigated the trends in the dates of spring wheat phenology in relation to mean temperature for different growth stages. It also analyzed the impacts of climate change, cultivar shift, and sowing date adjustments on phenological events/phases of spring wheat in northern China (NC). The results showed that significant changes have occurred in spring wheat phenology in NC due to climate warming in the past 30 years. Specifically, the dates of anthesis and maturity of spring wheat advanced on average by 1.8 and 1.7 day (10 yr)?1. Moreover, while the vegetative growth period (VGP) shortened at most stations, the reproductive growth period (RGP) prolonged slightly at half of the investigated stations. As a result, the whole growth period (WGP) of spring wheat shortened at most stations. The findings from the Agricultural Production Systems Simulator (APSIM)-Wheat model simulated results for six representative stations further suggested that temperature rise generally shortened the spring wheat growth period in NC. Although the warming trend shortened the lengths of VGP, RGP, and WGP, the shift of new cultivars with high accumulated temperature requirements, to some extent, mitigated and adapted to the ongoing climate change. Furthermore, shifts in sowing date exerted significant impacts on the phenology of spring wheat. Generally, an advanced sowing date was able to lower the rise in mean temperature during the different growth stages (i.e., VGP, RGP, and WGP) of spring wheat. As a result, the lengths of the growth stages should be prolonged. Both measures (cultivar shift and sowing date adjustments) could be vital adaptation strategies of spring wheat to a warming climate, with potentially beneficial effects in terms of productivity.  相似文献   

13.
WP和NAO对中国东南部冬季温度的协同影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用NCEP/NCAR和ERA-Interim再分析资料,通过多元线性回归等分析方法,研究了西太平洋遥相关型(Western Pacific teleconnection,WP)和北大西洋涛动(North Atlantic Oscillation,NAO)的不同配置对中国东南部冬季气温的影响.结果 表明:WP正位相年,...  相似文献   

14.
Agricultural systems models are essential tools to assess potential climate change (CC) impacts on crop production and help guide policy decisions. In this study, impacts of projected CC on dryland crop rotations of wheat-fallow (WF), wheat-corn-fallow (WCF), and wheat-corn-millet (WCM) in the U.S. Central Great Plains (Akron, Colorado) were simulated using the CERES V4.0 crop modules in RZWQM2. The CC scenarios for CO2, temperature and precipitation were based on a synthesis of Intergovernmental Panel on Climate Change (IPCC 2007) projections for Colorado. The CC for years 2025, 2050, 2075, and 2100 (CC projection years) were super-imposed on measured baseline climate data for 15–17 years collected during the long-term WF and WCF (1992–2008), and WCM (1994–2008) experiments at the location to provide inter-annual variability. For all the CC projection years, a decline in simulated wheat yield and an increase in actual transpiration were observed, but compared to the baseline these changes were not significant (p > 0.05) in all cases but one. However, corn and proso millet yields in all rotations and projection years declined significantly (p < 0.05), which resulted in decreased transpiration. Overall, the projected negative effects of rising temperatures on crop production dominated over any positive impacts of atmospheric CO2 increases in these dryland cropping systems. Simulated adaptation via changes in planting dates did not mitigate the yield losses of the crops significantly. However, the no-tillage maintained higher wheat yields than the conventional tillage in the WF rotation to year 2075. Possible effects of historical CO2 increases during the past century (from 300 to 380 ppm) on crop yields were also simulated using 96 years of measured climate data (1912–2008) at the location. On average the CO2 increase enhanced wheat yields by about 30%, and millet yields by about 17%, with no significant changes in corn yields.  相似文献   

15.
RegCM4对中国东部区域气候模拟的辐射收支分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用卫星和再分析数据,评估了区域气候模式Reg CM4对中国东部地区辐射收支的基本模拟能力,重点关注地表净短波(SNS)、地表净长波(SNL)、大气顶净短波(TNS)、大气顶净长波(TNL)4个辐射分量。结果表明:1)短波辐射的误差值在夏季较大,而长波辐射的误差值在冬季较大。但各辐射分量模拟误差的空间分布在冬、夏季都有较好的一致性。2)对于地表辐射通量,SNS表现为正偏差(向下净短波偏多),在各分量中误差最大,区域平均误差值近50 W/m2;SNL表现为负偏差(向上净长波偏多);对于大气顶辐射通量,TNS和TNL分别表现为"北负南正"的误差分布和整体正偏差。3)利用空间相关和散点线性回归方法对4个辐射分量的模拟误差进行归因分析,发现在云量、地表反照率、地表温度三个直接影响因子中,云量模拟误差的贡献最大,中国东部地区云量模拟显著偏少。  相似文献   

16.
2007年,Ashok等揭示了赤道太平洋区域存在一种三极型分布海表温度异常并称之为厄尔尼诺-Modoki,同时定义了相应的海表温度异常指数EMI(记为IEM)。在此基础上,利用英国哈得来中心逐月海表温度资料、美国NCEP/NCAR月平均再分析数据集、美国国家海洋和大气管理局(NOAA)逐月降水资料(CMAP),通过在太平洋海表温度异常中扣除厄尔尼诺-Modoki信号后,在Nino1+2区域上定义了东太平洋型海表温度异常指数EPNI(IEPN)。据此,由IEPN和IEM可构成描述热带太平洋海表温度异常变化的一对指数。分析了两个指数相应的海气状态及对海洋性大陆区域气候异常的影响。结果表明,厄尔尼诺-Modoki和东太平洋型海表温度异常及其影响存在显著差异。在北半球夏季,当IEM处于正位相时,热带太平洋海表温度异常呈现“负-正-负”的结构,海洋性大陆大部分区域海表温度异常为负,此时对流层低层太平洋地区辐合,海洋性大陆地区辐散,对流层高层太平洋地区辐散,海洋性大陆地区辐合。对应于辐合辐散中心,存在着自赤道中太平洋分别向赤道东太平洋和海洋性大陆中东部地区的异常垂直环流圈,同时也存在自海洋性大陆西部向印度洋西部的垂直环流。大气在海洋性大陆区域北部加热,南部冷却;在太平洋地区西部加热而东部冷却;在海洋性大陆区域10°N以南降水偏少,而10°N以北降水偏多。当IEPN处于正位相时,热带太平洋海表温度异常呈现“西负东正”分布型,海洋性大陆区域海表温度异常呈现“西正东负”分布,对流层低层海洋性大陆地区辐散中心范围偏大、位置偏东、强度偏强,太平洋地区辐合中心范围偏小、位置偏东,热带环流异常在垂直方向上呈斜压结构,海洋性大陆区域北部大气加热而南部冷却,太平洋地区大气均呈加热正异常,海洋性大陆大部分区域降水均偏少,赤道太平洋降水偏多。以上这些结果有利于深刻理解热带太平洋海表温度异常的特征及其对海洋性大陆区域气候的影响。   相似文献   

17.
Crop yields are affected by climate change and technological advancement. Objectively and quantitatively evaluating the attribution of crop yield change to climate change and technological advancement will ensure sustainable development of agriculture under climate change. In this study, daily climate variables obtained from 553 meteorological stations in China for the period 1961-2010, detailed observations of maize from 653 agricultural meteorological stations for the period 1981-2010, and results using an Agro-Ecological Zones (AEZ) model, are used to explore the attribution of maize (Zea mays L.) yield change to climate change and technological advancement. In the AEZ model, the climatic potential productivity is examined through three step-by-step levels: photosynthetic potential productivity, photosynthetic thermal potential productivity, and climatic potential productivity. The relative impacts of different climate variables on climatic potential productivity of maize from 1961 to 2010 in China are then evaluated. Combined with the observations of maize, the contributions of climate change and technological advancement to maize yield from 1981 to 2010 in China are separated. The results show that, from 1961 to 2010, climate change had a significant adverse impact on the climatic potential productivity of maize in China. Decreased radiation and increased temperature were the main factors leading to the decrease of climatic potential productivity. However, changes in precipitation had only a small effect. The maize yields of the 14 main planting provinces in China increased obviously over the past 30 years, which was opposite to the decreasing trends of climatic potential productivity. This suggests that technological advancement has offset the negative effects of climate change on maize yield. Technological advancement contributed to maize yield increases by 99.6%-141.6%, while climate change contribution was from-41.4% to 0.4%. In particular, the actual maize yields in Shandong, Henan, Jilin, and Inner Mongolia increased by 98.4, 90.4, 98.7, and 121.5 kg hm-2 yr-1 over the past 30 years, respectively. Correspondingly, the maize yields affected by technological advancement increased by 113.7, 97.9, 111.5, and 124.8 kg hm-2 yr-1, respectively. On the contrary, maize yields reduced markedly under climate change, with an average reduction of-9.0 kg hm-2 yr-1. Our findings highlight that agronomic technological advancement has contributed dominantly to maize yield increases in China in the past three decades.  相似文献   

18.
未来气候变化对东北玉米品种布局的影响   总被引:4,自引:1,他引:3       下载免费PDF全文
为探求未来气候变化对我国东北玉米品种布局的影响,基于玉米生产潜力和气候资源利用率,结合区域气候模式输出的2011—2099年RCP_4.5,RCP_8.5两种气候背景气象资料和1961—2010年我国东北地区91个气象站的观测数据,分析了未来气候变化情况下,东北玉米品种布局、生产潜力、气候资源利用率的时空变化。结果表明:未来东北地区玉米可种植边界北移东扩,南部为晚熟品种,新扩展区域以早熟品种为主,不能种植区域减少。未来玉米生产潜力为南高北低,增加速率均高于历史情景,水分适宜度最低,而历史情景下温度是胁迫玉米生产的关键因子。未来东北玉米对气候资源利用率整体下降,其中RCP8.5情景利用率最低。  相似文献   

19.
近60年中国日降水量分区及气候特征   总被引:2,自引:1,他引:1  
熊敏诠 《大气科学》2017,41(5):933-948
根据中国国家级地面气象站均一化降水数据集,使用1956~2015年512个台站的日降水量资料,通过旋转经验正交函数(REOF)得到七个分区。比较了各分区平均日降水量的年内变化和多年倾向率差异:我国偏南分区的小雨日数减少,大雨、暴雨日数、日降水量的区域年均值增加;偏北分区的小雨、大雨、暴雨日数、降水量年均值为递减;长江中下游区(东北区)日降水量、小雨日数、暴雨日数的年均值的近60年倾向率分别是0.0071 mm a-1(-0.0010 mm a-1)、-0.0729 d a-1(-0.0615 d a-1)、0.0132 d a-1(-0.0007 d a-1)。100°E以西地区:小雨、中雨日数在增加,无雨日数显著减少,日降水量的年均值呈递增特点。通过自相关函数和小波功率谱估计,揭示了七个分区的日降水量年均值普遍存在2~4 a周期震荡。使用NCEP/NCAR月均再分析资料,以区域日降水量年均值为指数得到500 hPa、700 hPa、850 hPa回归风系数场、旱涝年整场水汽通量和水汽通量散度差异场相结合分析,结果表明:"东高西低,南高北低"环流型和区域降水有密切关系,水汽差异场是上述环流特点的反映。  相似文献   

20.
使用雪日直接界定法,建立了中国大陆长江以北地区(30°N以北)降水相态分离单临界气温统计模型,分东部季风区、西北干燥区和青藏高原区3个不同气候区独立样本建模,检验模型外推使用的可能性,并对单临界气温分离的雨夹雪偏差进行分析。结果表明:所有地区独立样本建立模型估算的单临界气温与根据天气现象记录确定的单临界气温相关性均达到0.05显著性水平,3个气候区独立建模能够估算出降水相态单临界气温的范围及区域特性;以东部季风区和青藏高原区为样本独立建模的估算结果好于西北干燥区;3个独立模型估算的单临界气温偏差绝对值不大于1℃的气象站都多于74%,估算的标准差偏差在-0.5~0.5℃之间的气象站数量占比77%,在-1.0~1.0℃之间的气象站数量占比90%;日平均气温低于单临界气温的雨夹雪日数和降水量与实际降雪日和降雪量的比率北部略小、南部较大,东部季风区的南部雨夹雪界定的雪日和雪量比率均超过100%;使用统计模型确定不同区域雨夹雪中界定的雪日和雪量比率分布也具有可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号