首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review recent observational and theoretical results concerning the presence of actinide nuclei on the surfaces of old halo stars and their use as an age determinant. We present model calculations which show that the observed universality of abundances for 56<Z<75 elements in these stars does not necessarily imply a unique astrophysical site for the r-process. Neither does it imply a universality of abundances of nuclei outside of this range. In particular, we show that a variety of astrophysical r-process models can be constructed which reproduce the same observed universal r-process curve for 56<Z<75 nuclei, yet have vastly different abundances for Z≥75 and possibly Z<56 as well. This introduces an uncertainty into the use of the Th/Eu chronometer as a means to estimate the ages of the metal deficient stars. We do find, however, that the U/Th ratio is a robust chronometer. This is because the initial production ratio of U to Th is almost independent of the astrophysical nucleosynthesis environment. The largest remaining uncertainties in the U/Th initial production ratio are due to the input nuclear physics models.  相似文献   

2.
The abundance patterns of the most metal‐poor stars in the Galactic halo and small dwarf galaxies provide us with a wealth of information about the early Universe. In particular, these old survivors allow us to study the nature of the first stars and supernovae, the relevant nucleosynthesis processes responsible for the formation and evolution of the elements, early star‐ and galaxy formation processes, as well as the assembly process of the stellar halo from dwarf galaxies a long time ago. This review presents the current state of the field of “stellar archaeology” – the diverse use of metal‐poor stars to explore the high‐redshift Universe and its constituents. In particular, the conditions for early star formation are discussed, how these ultimately led to a chemical evolution, and what the role of the most iron‐poor stars is for learning about Population III supernovae yields. Rapid neutron‐capture signatures found in metal‐poor stars can be used to obtain stellar ages, but also to constrain this complex nucleosynthesis process with observational measurements. Moreover, chemical abundances of extremely metal‐poor stars in different types of dwarf galaxies can be used to infer details on the formation scenario of the halo and the role of dwarf galaxies as Galactic building blocks. I conclude with an outlook as to where this field may be heading within the next decade. A table of ~ 1000 metal‐poor stars and their abundances as collected from the literature is provided in electronic format (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Evolutionary model sequences for (X, Z)=(0.7,4×10–3) are constructed by using the same input physics and programming code as those of Saioet al. (1977). From these results the ages of globular clusters are estimated under the assumption of constant helium abundance (Y=0.3). The results suggest that there is a correlation between age and metal abundance for the globular clusters and that metal enrichment in the Galaxy slowly proceeded in several billion years from the value of the extreme Population II stars to that of the Population I stars. Comparison with some models of chemical evolution of galaxies is briefly made.  相似文献   

4.
The abundance patterns of neutron-capture elements in very metal-poor halo stars play a crucial role in guiding and constraining theoretical models of nucleosynthesis. Many studies have suggested that the abundance patterns of the heavier (Z≥ 56) stable neutron-capture elements in very metal-poor halo stars are consistent with the solar system r-process abundance distribution, but this concordance breaks down for the lighter neutron-capture elements in the range of 40<Z<56. Some studies argue that there are two separate r-processes respectively responsible for the productions of the heavier and lighter neutron-capture elements. The new observed data of the lighter n-capture elements in the 40<Z<56 domain (Nb, Ru, Rh, Pd, Ag and Cd) in CS 22892-052 makes it available to examine whether or not there are two different r-processes. Based upon these observed abundances of n-capture elements in ultra metal-poor star CS22892-052, we present a phenomenological model to identify the characters of the different nucleosynthesis processes in very metal-poor stars. The results show that the model predictions can well match the observations in CS 22892-052, which truly means that there are different r-processes for the lighter and heavier neutron-capture elements, and the stellarr-process patterns are similar to the solar system r-process abundance distribution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
This series of high quality elemental abundance analyses of mostly main‐sequence band normal and peculiar B, A, and F stars defines their properties and provides data for the comparison with the analyses of somewhat similar stars and with theoretical predictions. Most use high dispersion and high S/N (≥ 200) spectrograms obtained with CCD detectors at the long camera of the Coudé spectrograph of the 1.22‐m Dominion Astrophysical Observatory telescope. Here we reanalyze 21 Aql with better quality spectra and increase the number of stars consistently analyzed in the spectral range B5 to A2 by analyzing three new stars for this series. In the early A stars the normal and non‐mCP stars have abundances with overlapping ranges. But more stars are needed especially in the B5 to B9 range. ξ2 Cet on average has a solar composition with a few abundances outside the solar range while both 21 Aql and ι Aql have abundances marginally less than solar. The abundances of ι Del are greater than solar with a few elements such as Ca being less than solar. It is an Am star (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We have measured the chemical composition of cosmic rays withZ2 over an energy range from 100 MeV/nuc to >2 GeV/nuc using 2 new large area counter telescopes. One of these instruments was a 4 element dE/dx×E× Range telescope, the other a 4 element dE/dx×Cerenkov× ×Range telescope. Two balloon flights with these telescopes at Ft. Churchill in the summer of 1970 provided a total of nearly 1000 Fe nuclei with a charge resolution ranging from 0.10 charge unit at Carbon to 0.25 charge unit at Fe. A detailed charge spectrum is obtained at both high and low energies. Some important differences exist between the present results and those obtained earlier, due in part to the improved statistical accuracy and in part to the improved background rejection of the present data. In particular, the abundance of Cr and Mn are each found to be 0.10×Fe in contrast to the earlier ratio of 0.30 found by some workers for each of these nuclei. The abundance of these two nuclei, as well as others in the 15–25 range, shows no strong dependence on energy. We have extrapolated our composition data to the cosmic ray sources using a variety of interstellar path length distributions. The abundances ofall secondary nuclei withZ between 3–25 are consistent only with propagation models which have vacuum path length distributions which do not differ greatly from exponential. The source abundances of nuclei withZ=15, 17, 18, 19, 21, 22, 23, 24, and 25 are found to be <0.02×Fe. For the remaining nuclei, Na, Al, S, and Ca are found to have source abundances of 0.07, 0.11, 0.18 and 0.13 of Fe respectively. The source abundance of C and O relative to Fe is also much different than some earlier compilations. A comparison of solar and cosmic ray abundances reveals certain selective differences, rather than a systematic overabundance of heavy nuclei in cosmic rays, as has been suggested in the past. These differences are discussed in terms of a common nucleosynthesis origin of the two species of particles.Research sponsored by the National Aeronautics and Space Administration under Grant No. NGR-30-002-052.  相似文献   

7.
Models of strange quark stars with a crust consisting of atomic nuclei and degenerate electrons, maintained by an electrostatic barrier at the surface of the strange quark matter, are investigated for a realistic range of parameters of the MIT bag model. The density at which neutrons escape from nuclei, ρ = ρdrip, is taken as the maximum possible boundary density of the crust. Series of strange stars are calculated as a function of central density. Configurations with masses of 1.44 and 1.77 M{ie330-1} and a gravitational redshift Zs = 0.23, corresponding to the best-known observational data, are investigated. The presence of a crust results in the existence of a minimum mass for strange stars, and also helps to explain the glitch phenomenon of pulsars within the framework of the existence of strange quark matter. Translated from Astrofizika, Vol. 42, No. 3, pp. 439–448, July–September, 1999.  相似文献   

8.
Abstract— Carbon stars are an important source of presolar TiC, SiC, and graphite grains found in meteorites. The elemental abundances in the stellar sources of the SiC grains are inferred by using condensation calculations. These elemental abundances, together with C isotopic compositions, are used to identify possible groups of carbon stars that may have contributed SiC grains to the presolar dust cloud. The most likely parent stars of meteoritic SiC mainstream grains are N-type carbon stars and evolved subgiant CH stars. Both have s-process element abundances higher than solar and 10 < 12C/13C < 100 ratios. The J stars and giant CH stars, with solar and greater than solar abundances of s-process elements, respectively, are good candidate parents for the ‘A’ and ‘B’ SiC grains with low 12C/13C ratios. A special subgroup of CH giant stars with very large 12C/13C ratios could have parented the ‘Y’ SiC grains with 12C/13C ratios > 100. The carbon star population (e.g., N, R, J, CH groups) needed to provide the observed SiC grains is compared to the current population of carbon stars. This comparison suggests that low-metallicity CH stars may have been more abundant in the past (>4.5 Ga ago) than at present. This suggestion is also supported by condensation-chemistry modeling of the trace element patterns in the SiC grains that shows that subsolar Fe abundances may be required in the stellar sources for many SiC grains. The results of this study suggest that presolar SiC grains in meteorites can provide information about carbon stars during galactic evolution.  相似文献   

9.
Hot cluster horizontal branch (HB) stars and field subdwarf B (sdB) stars are core helium burning stars that exhibit abundance anomalies that are believed to be due to atomic diffusion. Diffusion can be effective in these stars because they are slowly rotating. In particular, the slow rotation of the hot HB stars (Teff > 11000 K), which show abundance anomalies, contrasts with the fast rotation of the cool HB stars, where the observed abundances are consistent with those of red giants belonging to the same cluster. The reason why sdB stars and hot HB stars are rotating slowly is unknown. In order to assess the possible role of magnetic fields on abundances and rotation, we investigated the occurrence of such fields in sdB stars with Teff < 30 000 K, whose temperatures overlap with those of the hot HB stars. We conclude that large‐scale organised magnetic fields of kG order are not generally present in these stars but at the achieved accuracy, the possibility that they have fields of a few hundred Gauss remains open. We report the marginal detection of such a field in SB 290; further observations are needed to confirm it (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The space velocities and Galactic orbital elements of stars calculated from the currently available high-accuracy observations in our compiled catalog of spectroscopic magnesium abundances in dwarfs and subgiants in the solar neighborhood are used to identify thick-disk objects. We analyze the relations between chemical, spatial, and kinematic parameters of F–G stars in the identified subsystem. The relative magnesium abundances in thick-disk stars are shown to lie within the range 0.0 < [Mg/Fe] < 0.5 and to decrease with increasingmetallicity starting from [Fe/H] ≈ ?1.0. This is interpreted as evidence for a longer duration of the star formation process in the thick disk. We have found vertical gradients in metallicity (gradZ[Fe/H] = ?0.13 ± 0.04 kpc?1) and relative magnesium abundance (gradZ[Mg/Fe] = 0.06 ± 0.02 kpc?1), which can be present in the subsystem only in the case of its formation in a slowly collapsing protogalaxy. However, the gradients in the thick disk disappear if the stars whose orbits lie in the Galactic plane, but have high eccentricities and low azimuthal space velocities atypical of the thin-disk stars are excluded from the sample. The large spread in relative magnesium abundance (?0.3 < [Mg/Fe] < 0.5) in the stars of the metal-poor “tail” of the thick disk, which constitute ≈8% of the subsystem, can be explained in terms of their formation inside isolated interstellar clouds that interacted weakly with the matter of a single protogalactic cloud. We have found a statistically significant negative radial gradient in relative magnesium abundance in the thick disk (gradR[Mg/Fe] = ?0.03 ± 0.01 kpc? 1) instead of the expected positive gradient. The smaller perigalactic orbital radii and the higher eccentricities for magnesium-richer stars, which, among other stars, are currently located in a small volume of the Galactic space near the Sun, are assumed to be responsible for the gradient inversion. A similar, but statistically less significant inversion is also observed in the subsystem for the radial metallicity gradient.  相似文献   

11.
From stellar spectra, a variety of physical properties of stars can be derived. In particular, the chemical composition of stellar atmospheres can be inferred from absorption line analyses. These provide key information on large scales, such as the formation of our Galaxy, down to the small‐scale nucleosynthesis processes that take place in stars and supernovae. By extending the observed wavelength range toward bluer wavelengths, we optimize such studies to also include critical absorption lines in metal‐poor stars, and allow for studies of heavy elements (Z ≥ 38) whose formation processes remain poorly constrained. In this context, spectrographs optimized for observing blue wavelength ranges are essential, since many absorption lines at redder wavelengths are too weak to be detected in metal‐poor stars. This means that some elements cannot be studied in the visual‐redder regions, and important scientific tracers and science cases are lost. The present era of large public surveys will target millions of stars. It is therefore important that the next generation of spectrographs are designed such that they cover a wide wavelength range and can observe a large number of stars simultaneously. Only then, we can gain the full information from stellar spectra, from both metal‐poor to metal‐rich ones, that will allow us to understand the aforementioned formation scenarios in greater detail. Here we describe the requirements driving the design of the forthcoming survey instrument 4MOST, a multi‐object spectrograph commissioned for the ESO VISTA 4 m‐telescope. While 4MOST is also intended for studies of active galactic nuclei, baryonic acoustic oscillations, weak lensing, cosmological constants, supernovae and other transients, we focus here on high‐density, wide‐area survey of stars and the science that can be achieved with high‐resolution stellar spectroscopy. Scientific and technical requirements that governed the design are described along with a thorough line blending analysis. For the high‐resolution spectrograph, we find that a sampling of ≥2.5 (pixels per resolving element), spectral resolution of 18000 or higher, and a wavelength range covering 393–436 nm, is the most well‐balanced solution for the instrument. A spectrograph with these characteristics will enable accurate abundance analysis (±0.1 dex) in the blue and allow us to confront the outlined scientific questions. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Sulphur is a volatile α ‐element which is not locked into dust grains in the interstellar medium (ISM). Hence, its abundance does not need to be corrected for dust depletion when comparing the ISM to the stellar atmospheres. The abundance of sulphur in the photosphere of metal‐poor stars is a matter of debate: according to some authors, [S/Fe] versus [Fe/H] forms a plateau at low metallicity, while, according to other studies, there is a large scatter or perhaps a bimodal distribution. In metal‐poor stars sulphur is detectable by its lines of multiplet 1 at 920 nm, but this range is heavily contaminated by telluric absorptions, and one line of the multiplet is blended by the hydrogen Paschen ζ line. We study the possibility of using multiplet 3 (at 1045 nm) for deriving the sulphur abundance because this range, now observable at the VLT with the infra‐red spectrograph CRIRES, is little contaminated by telluric absorption and not affected by blends at least in metal‐poor stars. We compare the abundances derived from multiplets 1 and 3, taking into account NLTE corrections and 3D effects. Here we present the results for a sample of four stars, although the scatter is less pronounced than in previous analysis, we cannot find a plateau in [S/Fe], and confirm the scatter of the sulphur abundance at low metallicity (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
根据贫金属星个别重元素丰度的观测值和太阳系重核素的r过程和s过程分量的丰度分布,计算了贫金属星HD203608和HD211998的重元素丰度并与观测进行了比较。结果表明,太阳系纯r过程和s过程元素丰度均不能拟合出这二颗样品星的丰度观测值,而应同时考虑r过程和s过程的贡献  相似文献   

14.
We examine the sharp‐lined stars HR 6455 (A3 III, v sin i = 8.7 km s–1) and η Lep (F2 V, v sin i = 13.5 km s–1) as well as δ Aqr (A3 V, v sin i = 81 km s–1) and 1 Boo (A1 V, v sin i = 59 km s–1) to increase the number consistently analyzed A and F stars using high dispersion and high S/N (≥200) spectrograms obtained with CCD detectors at the long Coudé camera of the 1.22‐m telescope of the Dominion Astrophysical Observatory. Such studies contribute to understanding systematic abundance differences between normal and non‐magnetic main‐sequence band chemically peculiar A and early F stars. LTE fine analyses of HR 6455, δ Aqr, and 1 Boo using Kurucz's ATLAS suite programs show the same general elemental abundance trends with differences in the metal richness. Light and iron‐peak element abundances are generally solar or overabundant while heavy element and rare earth element abundances are overabundant. HR 6455 is an evolved Am star while δ Aqr and 1 Boo show the phenomenon to different extents. Most derived abundances of η Lep are solar (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
On the theory that peculiar A stars were once secondaries in binary systems in which the primaries exploded as type II supernovae, the nucleosynthesis during the final stages of evolution of massive stars is investigated. For heavy elements (Z>30) the observed abundances in peculiar. A stars reflect the composition of material ejected by the exploding primaries. Peculiar A stars are divided into two groups, the main group and the Mn group, and abundances in each group are summarised. During the explosions of the primaries, rapid (n, ) or (, n) reactions operate on the abundance peaks previously formed by the s-process during the giant phase. In the main group primaries (n, ) reactions predominate, and rare-earths are formed from the Ba peak. In the Mn group primaries (, n) reactions operate on the Sr, Ba and Pb peaks to form Kr, Xe and Hg.  相似文献   

16.
Data from our compiled catalog of spectroscopically determined magnesium abundances in stars with accurate parallaxes are used to select thin-disk dwarfs and subgiants according to kinematic criteria. We analyze the relations between the relative magnesium abundances in stars, [Mg/Fe], and their metallicities, Galactic orbital elements, and ages. The [Mg/Fe] ratios in the thin disk at any metallicity in the range ?1.0 dex <[Fe/H] < ?0.4 dex are shown to be smaller than those in the thick disk, implying that the thin-disk stars are, on average, younger than the thick-disk stars. The relative magnesium abundances in such metal-poor thin-disk stars have been found to systematically decrease with increasing stellar orbital radii in such a way that magnesium overabundances ([Mg/Fe] > 0.2 dex) are essentially observed only in the stars whose orbits lie almost entirely within the solar circle. At the same time, the range of metallicities in magnesium-poor stars is displaced from ?0.5 dex < [Fe/H] < +0.3 dex to ?0.7 dex < [Fe/H] < +0.2 dex as their orbital radii increase. This behavior suggests that, first, the star formation rate decreases with increasing Galactocentric distance and, second, there was no star formation for some time outside the solar circle, while this process was continuous within the solar circle. The decrease in the star formation rate with increasing Galactocentric distance is responsible for the existence of a negative radial metallicity gradient (grad R[Fe/H] = ?0.05 ± 0.01 kpc?1) in the disk, which shows a tendency to increase with decreasing age. At the same time, the relative magnesium abundance exhibits no radial gradient. We have confirmed the existence of a steep negative vertical metallicity gradient (grad Z[Fe/H] = ?0.29 ± 0.06 kpc?1) and detected a significant positive vertical gradient in relative magnesium abundance (grad Z[Mg/Fe] = 0.13 ± 0.02 kpc?1); both gradients increase appreciably in absolute value with decreasing age. We have found that there is not only an age-metallicity relation, but also an age-magnesium abundance relation, in the thin disk. We surmise that the thin disk has a multicomponent structure, but the existence of a negative trend in the star formation rate along the Galactocentric radius does not allow the stars of its various components to be identified in the immediate solar neighborhood.  相似文献   

17.
Relative abundances in the region 74Z83 (W to Bi) are determined for 73 Dra, HR 4072, and some other Ap stars. Abundance peaks occur at atomic massesA=191±2 on 73 Dra, atA=201±3 on HR 4072, atA=199±5 on other main group Ap stars, and atA=201±2 on Mn stars. Pb has a relatively low abundance on Ap stars and also in cosmic rays which have an abundance peak atA=193±3. The abundance peaks on main group Ap stars are due to the cyclicr-process which occurred in explosions of former companion stars. Fission products of transuranic elements are recycled by further rapid neutron captures. At the end of ther-process, the high neutron flux decreases gradually so that the final -decays take place in a neutron-rich environment; superheavy elements (Z110) formed in ther-process may be partly destroyed by neutron-induced fission. The pulsar remnants of the explosions accelerater-process elements to cosmic-ray energies. The peak atA 201 on Mn stars is discussed briefly.  相似文献   

18.
Starting from a general solution for the birth functionB(m, t) of stars described in detail in Casusoet al. (1989), we have obtained a first-order analytical approximation to this function as a function of metallicityZ. Using this, we obtained a fit to the observational curve compiled by Tinsley (1980) for the cumulative function of stars with metallicity lower than a given value in the solar neighbourhood. In addition, using the same expression, with its numerical fit to previous data, we obtain a good fit to the differential distributions of stars at low metallicity given in the review by Pagel (1987), given a bifurcation in the birth function at low values ofZ, which would correspond to two distinct epochs of onset of star formation. The analysis gives an infall of gas towards the solar neighbourhood up to the epoch of metallicityZ=6.7×10–3 with a correspondingly increased star formation rate, which subsequently stabilized, and another similar inflow up toZ=1.2×10–3, followed again by a steady star formation rate for largerZ. Although the assumptions made are still relatively crude, and the numbers should be considered tentative, the flexibility of the model in handling the problem is that we wish to show here.  相似文献   

19.
This series of high quality elemental abundance analyses of mostly Main Sequence normal and peculiar B, A, and F stars defines their properties and provides data for the comparison with analyses of somewhat similar stars and with theoretical predictions. Most use high dispersion and high S/N (≥ 200) spectrograms obtained with CCD detectors at the long camera of the 1.22‐m Dominion Astrophysical Observatory telescope's coudé spectrograph. Here we expand the range of stars examined to include two relatively quiescent F supergiants. ν Her (F2 II) and 41 Cyg (F5 Ib‐II) are analyzed as consistently as possible with previous studies. These LTE fine analyses use the ATLAS9 and the WIDTH9 programs of R. L. Kurucz. High signal‐to‐noise spectrograms and high quality atomic data were employed. The derived values of these photometrically constant stars are somewhat different with the abundances of ν Her being somewhat metal‐poor and those of 41 Cyg being crudely solar‐like. Our analyses indicate that the basic results of Luck & Wepfer (1995) who also studied ν Her and 41 Cyg are not likely to be significantly changed by new studies of all their stars. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Excitation of radial pulsations in red supergiants of Magellanic Clouds is investigated using the stellar evolution calculations and the self-consistent solution of the equations of radiation hydrodynamics and turbulent convection. The stars with initial masses 6M M ZAMS ≤ 28M and the initial chemical composition X = 0.7, 0.004 ≤ Z ≤ 0.008 are shown to be unstable against fundamental mode oscillations with periods from 17 to 1200 days as they become helium burning red supergiants. The period-luminosity relation slightly depends on the mass loss rate varying with a factor of three, whereas its dependence on the metal abundance is given by δM bol = 0.89δ log Z. In comparison with galactic red supergiants the low metal abundances in red supergiants of Magellanic Clouds are responsible for their higher effective temperatures and substantially narrower ranges of evolutionary radius change during helium burning. Therefore on the period-mass diagram the red supergiants of Magellanic Clouds are located within the strip with width of δ logM ≈ 0.09, so that the uncertainty of mass evaluation of the red supergiant with the known pulsation period is nearly 25%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号