首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Long-period pulses in near-field earthquakes lead to large displacements in the base of isolated structures.To dissipate energy in isolated structures using semi-active control,piezoelectric friction dampers(PFD) can be employed.The performance of a PFD is highly dependent on the strategy applied to adjust its contact force.In this paper,the seismic control of a benchmark isolated building equipped with PFD using PD/PID controllers is developed.Using genetic algorithms,these controllers are optimized to create a balance between the performance and robustness of the closed-loop structural system.One advantage of this technique is that the controller forces can easily be estimated.In addition,the structure is equipped with only a single sensor at the base floor to measure the base displacement.Considering seven pairs of earthquakes and nine performance indices,the performance of the closed-loop system is evaluated.Then,the results are compared with those given by two well-known methods:the maximum possive operation of piezoelectric friction dampers and LQG controllers.The simulation results show that the proposed controllers perform better than the others in terms of simultaneous reduction of floor acceleration and maximum displacement of the isolator.Moreover,they are able to reduce the displacement of the isolator systems for different earthquakes without losing the advantages of isolation.  相似文献   

2.
压电材料是一种新型智能材料。本文将压电材料和被动摩擦阻尼器相结合设计出一种新型智能摩擦阻尼器,并采用基于经典最优控制理论的半主动控制策略对高耸钢塔结构风振反应的控制进行了研究,对国内即将兴建的第一高钢电视塔──合肥翡翠电视塔进行了算例分析。为满足摩擦阻尼器对高耸钢塔结构风振控制的特殊需要、文中还建立了房耸钢塔结构的空间桁架有限元模型和串联多自由度体系模型,并在形成广义控制力作用位置矩阵和计算摩擦阻尼器两端的相对位移的过程中综合地运用了这两种力学模型。本文研究表明,压电材料智能摩擦阻尼器可以有效地抑制高耸钢塔结构的风振反应。  相似文献   

3.
A new semiactive independently variable damper, SAIVD, is developed and shown to be effective in achieving response reductions in smart base isolated buildings in near fault earthquakes. The semiactive device consists of four linear visco‐elastic elements, commonly known as Kelvin–Voigt elements, arranged in a rhombus configuration. The magnitude of force in the semiactive device can be adjusted smoothly in real‐time by varying the angle of the visco‐elastic elements of the device or the aspect ratio of the rhombus configuration. Such a device is essentially linear, simple to construct, and does not present the difficulties commonly associated with modelling and analysing nonlinear devices (e.g. friction devices). The smooth semiactive force variation eliminates the disadvantages associated with rapid switching devices. Experimental results are presented to verify the proposed analytical model of the device. A H control algorithm is implemented in order to reduce the response of base isolated buildings with variable damping semiactive control systems in near fault earthquakes. The central idea of the control algorithm is to design a H controller for the structural system that serves as an aid in the determination of the optimum control force in the semiactive device. The relative performance of the SAIVD device is compared to a variable friction device, recently developed by the authors in a separate study, and several key aspects of performance are discussed regarding the use of the two devices for reducing the responses of smart base isolated buildings in near fault earthquakes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
5.
In this paper a predictive control method especially suitable for the control of semi‐active friction dampers is proposed. By keeping the adjustable slip force of a semi‐active friction damper slightly lower than the critical friction force, the method allows the damper to remain in its slip state throughout an earthquake of arbitrary intensity, so the energy dissipation capacity of the damper can be improved. The proposed method is formulated in a discrete‐time domain and cast in the form of direct output feedback for easy control implementation. The control algorithm is able to produce a continuous and smooth slip force for a friction damper and thus avoid exerting the high‐frequency structural response that usually exists in structures with conventional friction dampers. Using a numerical study, the control performance of a multiple degrees of freedom (DOF) structural system equipped with passive friction dampers and semi‐active dampers controlled by the proposed method are compared. The numerical case shows that by merely using a single semi‐active friction damper and a few sensors, the proposed method is able to achieve better acceleration reduction than the case using multiple passive dampers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
A comparative analytical study of several control strategies for semi-active(SA) devices installed in baseisolated buildings aiming to reduce earthquake induced vibrations is presented.Three force tracking schemes comprising a linear controller plus a "clipped" algorithm and a nonlinear output feedback controller(NOFC) are considered to tackle this problem.Linear controllers include the integral controller(I),the linear quadratic regulator(LQR) and the model predictive controller(MPC).A single degree-of-freedom system subjected to input accelerograms representative of the Portuguese seismic actions are first used to validate and evaluate the feasibility of these strategies.The obtained results show that structural systems using SA devices can in general outperform those equipped with passive devices for lower fundamental frequency structural systems,namely base-isolated buildings.The effectiveness of the proposed strategies is also evaluated on a 10 storey base-isolated dual frame-wall building.The force tracking scheme with an integral controller outperforms the other three as well as the original structure and the structure equipped with passive devices.  相似文献   

7.
This paper deals with the optimal design of yielding metallic dampers and friction dampers together as they both have similar design characteristics and parameters. Ample tests and analytical studies have confirmed the effectiveness of these energy dissipation devices for seismic response control and protection of building structures. Since these devices are strongly non‐linear with several parameters controlling their behaviour, their current design procedures are usually cumbersome and not optimal. In this paper, a methodology is presented to determine the optimal design parameters for the devices installed at different locations in a building for a desired performance objective. For a yielding metallic damper, the design parameters of interest are the device yield level, device stiffness, and brace stiffness. For a friction device, the parameters are the slip load level and brace stiffness. Since the devices and the structures installed with these devices behave in a highly non‐linearly manner, and thus must be evaluated by a step‐by‐step time history approach, the genetic algorithm is used to obtain the globally optimal solution. This optimal search approach allows an unusual flexibility in the choice of performance objectives. For demonstration purposes, several sets of numerical examples of optimal damper designs with different performance objectives are presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Previous studies have demonstrated the good performance of friction dampers in symmetric frame structures subjected to earthquake excitation. This paper examines their effectiveness in asymmetric structures where lateral-torsional coupling characterizes the behaviour. A parametric study is first performed employing an idealized single-storey structure; this is followed by the example of a three-dimensional 5-storey prototype structure equipped with friction dampers. The parametric results show that it is necessary to tune the friction damped braces with respect to both the stiffness of the braces and the slip load of the devices. For properly tuned structures, maximum response for all magnitudes of eccentricity between the centres of stiffness and mass is reduced to levels equal to or less than that of the corresponding symmetric structure. Compared to this prediction, the prototype structure with friction damped bracing exhibits the desired improvement in performance; namely, the devices slip at all storey levels while the frames remain elastic.  相似文献   

9.
Tuned mass dampers for response control of torsional buildings   总被引:1,自引:0,他引:1  
This paper presents an approach for optimum design of tuned mass dampers for response control of torsional building systems subjected to bi‐directional seismic inputs. Four dampers with fourteen distinct design parameters, installed in pairs along two orthogonal directions, are optimally designed. A genetic algorithm is used to search for the optimum parameter values for the four dampers. This approach is quite versatile as it can be used with different design criteria and definitions of seismic inputs. It usually provides a globally optimum solution. Several optimal design criteria, expressed in terms of performance functions that depend on the structural response, are used. Several sets of numerical results for a torsional system excited by random and response spectrum models of seismic inputs are presented to show the effectiveness of the optimum designs in reducing the system response. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Base isolated structures have been found to be at risk in near-fault regions as a result of long period pulses that may exist in near-source ground motions.Various control strategies,including passive,active and semi-active control systems,have been investigated to overcome this problem.This study focuses on the development of a semi-active control algorithm based on several performance levels anticipated from an isolated building during different levels of ground shaking corresponding to various earthquake hazard levels.The proposed performance-based algorithm is based on a modified version of the well-known semi-active skyhook control algorithm.The proposed control algorithm changes the control gain depending on the level of shaking imposed on the structure.The proposed control system has been evaluated using a series of analyses performed on a base isolated benchmark building subjected to seven pairs of scaled ground motion records.Simulation results show that the newly proposed algorithm is effective in improving the structural and nonstructural performance of the building for selected earthquakes.  相似文献   

11.
工程结构地震响应模糊半主动控制   总被引:2,自引:1,他引:2  
提出了使用MR阻尼器(Magnetorheological Damper)作为控制设备,模糊集为基础的半主动控制算法,并运用提出的算法对土木工程结构地震响应进行了振动控制分析.本文方法的优势在于算法自身的鲁棒性、处理非线性问题的能力和不需要结构的精确数学模型,算法需要的输入变量少,可以解决实际工程中结构响应信息难以测量的困难.模糊算法的输出直接控制MR阻尼器的输入电压,控制器的计算非常简单且易于在工程中实现.本文以一个3层框架结构为算例,分析了本文算法与前人研究算法的异同.数值结果表明,本文提出的模糊半主动控制具有较高的效率,可以减小需要的控制力,充分使用了MR阻尼器的输入电压可以调节的功能,使MR阻尼器的功能得到了更好的发挥.  相似文献   

12.
摩擦阻尼器是一种构造简单的耗能减振装置,已应用于国内外多座新建建筑的抗震设计和已建建筑的抗震加固.半主动磨擦阻尼器则通过调整阻尼器的起滑力来改善被动摩擦阻尼器的耗能减振性能。本文研究了被动及半主动摩擦阻尼器对于高耸塔架结构地震反应的减振效果。为满足摩擦阻尼器对高耸塔架结构风振控制的特殊需要,本文建立了合肥电视塔的空间桁架有限元模型和串联多自由度体系模型,并在形成控制力变换矩阵和计算摩擦阻尼器两端的相对位移的过程中综合地运用了这两种力学模型。在半主动摩擦阻尼器的控制策略方面,本文提出了一种基于次优控制理论的半主动控制策略.本文研究表明,摩擦阻尼器可以抑制高耸塔架结构的地震反应.而半主动摩擦阻尼辞的耗能减振效果明显优于被动摩擦阻尼器.  相似文献   

13.
Hysteretic dampers are used to dissipate earthquake‐induced energy in base‐isolated structures by acquiring inelastic deformations, rendering their hysteretic behavior of vital importance. The present paper focuses on investigating the behavior of U‐shaped steel dampers under bidirectional loading; this is significantly different from their corresponding uniaxial behavior. Two main sets of loading tests on full‐scale specimens are conducted in this regard: (i) quasi‐static tests with simple histories and (ii) dynamic tests with realistic loading histories. Based on the results obtained in the quasi‐static tests, an interaction curve that accounts for the reduction of the cyclic deformation capacity is proposed. However, the fidelity of this relation must be assessed under loading conditions similar to those of a seismically isolated structure subjected to an earthquake, which represents the goal of the second set of tests. The results of the dynamic tests validate the proposed interaction curve for estimating the deformation capacity of U‐shaped steel dampers under bidirectional loading. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The usefulness of energy dissipation devices to reduce seismic response of structures is now well established. For a given installation of such devices in a structure, one can easily compute the level of response reduction achieved. However, the solution of an inverse problem of how many devices one would need to achieve a desired level of response reduction in a structure, or to achieve an expected level of performance from a structural system, is not quite as straightforward and well formulated. In this paper, a method is presented to obtain the amount of viscous and visco‐elastic damping one would need to obtain a desired level of response reduction. The needed supplemental devices are also optimally distributed in the structure to achieve the best performance. To solve the optimal problem, a gradient‐based optimization approach is used. To illustrate the application, numerical results for a 24‐storey building structure are presented where the objective is to achieve the maximum reduction in the performance functions expressed in terms of the inter‐storey drifts, base shear, or floor accelerations. Other forms of performance functions can also be treated similarly. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
This paper is focused on the study of an earthquake protection system, the tuned liquid damper (TLD), which can, if adequately designed, reduce earthquake demands on buildings. This positive effect is accomplished taking into account the oscillation of the free surface of a fluid inside a tank (sloshing). The behaviour of an isolated TLD, subjected to a sinusoidal excitation at its base, with different displacement amplitudes, was studied by finite element analysis. The efficiency of the TLD in improving the seismic response of an existing building, representative of modern architecture buildings in southern European countries was also evaluated based on linear dynamic analyses.  相似文献   

16.
This paper presents a direct displacement-based design procedure for seismic retrofit of existing buildings using nonlinear viscous dampers according to equivalent linear systems. Unlike conventional methods, the equivalent linear viscous damping provided by the nonlinear viscous dampers is derived based on the assumption that the average energy dissipated between the linear and the nonlinear viscous dampers is equal. Also, the equivalent period and viscous damping for the equivalent linear systems which are used for representing the behavior of bare frames (the buildings without dampers) are derived from the concept of average storage energy and average dissipated energy, respectively. It is shown from nonlinear time-history analyses that the nonlinear action of the retrofitted structures can be reasonably captured by the presented direct displacement-based procedure.  相似文献   

17.
In conventional modal analysis procedures, usually only a few dominant modes are required to describe the dynamic behavior of multi-degrees-of-freedom buildings. The number of modes needed in the dynamic analysis depends on the higher-mode contribution to the structural response, which is called the higher-mode effect. The modal analysis approach, however, may not be directly applied to the dynamic analysis of viscoelastically damped buildings. This is because the dynamic properties of the viscoelastic dampers depend on their vibration frequency. Therefore, the structural stiffness and damping contributed from those dampers would be different for each mode. In this study, the higher-mode effect is referred to as the response difference induced by the frequency-dependent property of viscoelastic dampers at higher modes. Modal analysis procedures for buildings with viscoelastic dampers distributed proportionally and non-proportionally to the stiffness of the buildings are developed to consider the higher-mode effect. Numerical studies on shear-type viscoelastically damped building models are conducted to examine the accuracy of the proposed procedures and to investigate the significance of the higher-mode effect on their seismic response. Two damper models are used to estimate the peak damper forces in the proposed procedures. Study results reveal that the higher-mode effect is significant for long-period viscoelastically damped buildings. The higher-mode effect on base shear is less significant than on story acceleration response. Maximum difference of the seismic response usually occurs at the top story. Also, the higher-mode effect may not be reduced by decreasing the damping ratio provided by the viscoelastic dampers. For practical application, it is realized that the linear viscous damping model without considering the higher-mode effect may predict larger damper forces and hence, is on the conservative side. Supported by: Science Council, Chinese Taipei, grant no. 88-2625-2-002-006  相似文献   

18.
采用摩擦垫层及阻尼器对外套加层结构体系的减振研究   总被引:1,自引:0,他引:1  
本文提出了一种耗能减震加层结构新体系,即利用旧有建筑顶层与加层结构之间的摩擦垫层井依靠在两结构各层连接点处增设的耗能阻尼器来吸收耗散能量的减振体系。在进行非线性动力分析过程中,首次建立了系统的结构模型,引入了一种新的库仑摩擦力表达式并对影响体系减振率的有关参数进行了研究。最后通过对一实际工程的设计和计算,验证了这种加层减振做法的有效性。  相似文献   

19.
Coupling adjacent buildings using discrete viscoelastic dampers for control of response to low and moderate seismic events is investigated in this paper. The complex modal superposition method is first used to determine dynamic characteristics, mainly modal damping ratio and modal frequency, of damper-linked linear adjacent buildings for practical use. Random seismic response of linear adjacent buildings linked by dampers is then determined by a combination of the complex modal superposition method and the pseudo-excitation method. This combined method can effectively and accurately determine random seismic response of non-classically damped systems in the frequency domain. Parametric studies are finally performed to identify optimal parameters of viscoelastic dampers for achieving the maximum modal damping ratio or the maximum response reduction of adjacent buildings. It is demonstrated that using discrete viscoelastic dampers of proper parameters to link adjacent buildings can reduce random seismic responses significantly. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   

20.
This paper presents a two-dimensional numerical study on the nonlinear seismic response of buildings equipped with two types of energy dissipators: Constant Friction Slip Braces (CFSB) and Adding Damping and Stiffness (ADAS). Three types of reinforced concrete buildings with 3, 7 and 15 storeys, representatives of the short-medium- and long-period ranges, are considered. Dissipators are placed in steel diagonal braces in all the floors. The sliding threshold (or yielding) forces for each mechanism are selected using two different criteria: (i) they are taken as 50, 75 and 100 per cent of those generated by the equivalent static lateral forces recommended by the UBC-91 for a ductile moment resisting frame and (ii) they are constant in the whole building (this constant value is chosen equal to the maximum forces obtained with the previous criterion). The input consists of ten recorded earthquakes (normalized with respect to their Housner intensity) corresponding to medium and stiff local soil conditions. Average values on the ten registers are given for the maximum horizontal displacement, the base shear, the energy dissipated and the interstorey drift. The possibility of failure in some devices has been numerically simulated to assess the robustness of the system. The obtained results show that both devices are useful to reduce the response compared to the bare frame and that CFSB is more efficient than ADAS; for 7- and 15-storey frames the lateral displacement with CFSB is even smaller than the one for the braced frame (rigid connections instead of dissipators). The conclusions are expected to provide simple design guidelines. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号