首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response of a two-dimensional thermohaline ocean circulation model to a random freshwater flux superimposed on the usual mixed boundary conditions for temperature and salinity is considered. It is shown that for a wide range of vertical and horizontal diffusivities and a box geometry that approximates the Atlantic Ocean, 200–300 yr period oscillations exist in the basic-state, interhemispheric meridional overturning circulation with deep convection in the north. These fluctuations can also be described in terms of propagating salinity anomalies which travel in the direction of the thermohaline flow. For large horizontal (K h = 15 × 103 m2/s) and small vertical (K v = 0.5 × 10–4 m2/s) diffusivities, the random forcing also excites deca-millennial oscillations in the basic structure of the thermohaline circulation. In this case, the meridional circulation pattern slowly oscillates between three different stages: a large positive cell, with deep convection in the North Atlantic and upwelling in the south; a symmetric two-cell circulation, with deep convection in both polar regions and upwelling near the equator; and a large negative cell, with deep convection in the South Atlantic and upwelling in the north. Each state can persist for 0 (10 kyr).  相似文献   

2.
An experimental micrometeorological set-up was established at the CARBOEURO-FLUX site in Tharandt, Germany, to measure all relevant variables for the calculation of the vertical and horizontal advective fluxes of carbon dioxide. The set-up includes two auxiliary towers to measure horizontal and vertical CO2 and H2O gradients through the canopy, and to make ultrasonic wind measurements in the trunk space. In combination with the long-term flux tower an approximately even-sided prism with a typical side-length of 50 m was established. It is shown that under stable (nighttime) conditions the mean advective fluxes have magnitudes on the same order as the daily eddy covariance (EC) flux, which implies that they play a significant, but not yet fully understood, role in the carbon budget equation. The two advective fluxes are opposite and seem to cancel each other at night (at least for these measurements). During the day, vertical advection tends to zero, while horizontal advection is still present implying a flow of CO2 out of the control volume. From our measurements, a mean daily gain of 2.2 gC m–2 d–1 for the horizontal advection and a mean daily loss of 2.5 gC m–2d–1 for the vertical advection is calculated for a period of 20 days. However the large scatter of the advective fluxes has to be further investigated. It is not clear yet whether the large variability is natural or due to measurement errors and conceptual deficiencies of the experiment. Similar results are found in the few comparable studies.  相似文献   

3.
Variability of the Pacific Ocean is examined in numerical simulations with an ocean general circulation model forced by observed anomalies of surface heat flux, wind stress and turbulent kinetic energy (TKE) over the period 1970-88. The model captures the 1976-77 winter time climate shift in sea surface temperature, as well as its monthly, seasonal and longer term variability as evidenced in regional time series and empirical orthogonal function analyses. Examination of the surface mixed-layer heat budget reveals that the 1976-77 shift was caused by a unique concurrance of sustained heat flux input anomalies and very strong horizontal advection anomalies during a multi-month period preceding the shift in both the central Pacific region (where cooling occurred) and the California coastal region (where warming occurred). In the central Pacific, the warm conditions preceding and the cold conditions following the shift tend to be maintained by anomalous vertical mixing due to increases in the atmospheric momentum flux (TKE input) into the mixed layer (which deepens in the model after the shift) from the early 1970s to the late 1970s and 1980s. Since the ocean model does not contain feedback to the atmosphere and it succeeds in capturing the major features of the 1976-77 shift, it appears that the midlatitude part of the shift was driven by the atmosphere, although effects of midlatitude ocean-atmosphere feedback are still possible. The surface mixed-layer heat budget also reveals that, in the central Pacific, the effects of heat flux input and vertical mixing anomalies are comparable in amplitude while horizontal advection anomalies are roughly half that size. In the California coastal region, in contrast, where wind variability is much weaker than in the central Pacific, horizontal advection and vertical mixing effects on the mixed layer heat budget are only one-quarter the size of typical heat flux input anomalies.This paper was presented at the Second International Conference on Modelling of Global Climate Variability, held in Hamburg 7–11 September 1992 under the auspices of the Max Planck Institute for Meteorology. Guest Editor for these papers is L. Dümenil  相似文献   

4.
This study deals with the variability of mixing height during daylight hours in the summer months for weak wind regimes. A two-dimensional model was employed using simulated input variables which are quite representative of conditions found over the midwestern United States in late summer and early fall. With the aid of this model and various analytical techniques, the dependence of the urban mixing height on such factors as horizontal advection, downward heat flux across the stable mixing-layer interface, lapse rate in the stable layer, etc., was delineated and compared with actual mixing height variations observed in St. Louis, Missouri during selected days for August, 1972.The experiment indicated the following: (1) A spatially symmetric surface heating profile over a city is accompanied by a similarly symmetric mixing-height profile in the absence of vertical wind shear; (2) When the same heating assumption is invoked and vertically variable wind profiles are introduced, the model-generated mixing-height contours become increasingly asymmetric with vertical wind shear; (3) The modelled mixing heights are more sensitive to temperature fluctuations than to those of wind over the range of speeds studied (wind speeds 4ms–1); (4) Present operational methods of predicting the time of erosion of an inversion (based upon forecast surface temperature ranges and adiabatic diagram considerations) underestimate breakup time by a factor which is proportional to the amount of available downward heat flux from the stable layer into the mixed layer below.  相似文献   

5.
A parallelized large-eddy simulation model has been used to investigate the effects of two-dimensional, discontinuous, small-scale surface heterogeneities on the turbulence structure of the convective boundary layer.Heterogeneities had a typical size of about the boundary-layer heightzi. They were produced by a surface sensible heat flux pattern ofchessboard-type and of strong amplitude as typical, e.g., for the marginalice zone. The major objectives of this study were to determinethe effects of such strong amplitude heat flux variations and to specify theinfluence of different speeds and directions of the background wind.Special emphasis has been given to investigate the secondary circulations induced by the heterogeneities by means of three-dimensional phase averages.Compared with earlier studies of continuous inhomogeneities, the same sizeddiscontinuous inhomogeneities in this study show similar but stronger effects.Significant changes compared with uniform surface heating are only observedwhen the scale of the inhomogeneities is increased to zi. Especially the vertical energy transport is much more vigorous and even the mean emperature profile shows a positive lapse rate within the whole mixed layer. However, the effects are not directly caused by the different shape of the inhomogeneities but can mainly be attributed to the large amplitude of the imposed heat flux,as it is typical for the partially ice covered sea during cold air outbreaks.The structure of the secondary flow is found to be very sensitive to the wavelength and shape of the inhomogeneities as well as to the heatflux amplitude, wind speed and wind direction. The main controlling parameter is the near-surface temperature distribution and the related horizontal pressure gradient perpendicular to the main flow direction. The secondary flow varies from a direct circulation with updraughts mainly above the centre of the heated regions to a more indirect circulation with updraughts beneath the centre and downdraughts above it. For background winds larger than 2.5 m s–1 a roll-like circulation pattern is observed.From previous findings it has often been stated that moderate backgroundwinds of 5 m s–1 eliminate all impacts of surface inhomogeneitiesthat could potentially be produced in realistic landscapes. However, this studyshows that the effects caused by increasing the wind speed stronglydepend on the wind direction relative to the orientation of theinhomogeneities. Secondary circulations remain strong, even for abackground wind of 7.5 m s–1, when the wind direction is orientatedalong one of the two diagonals of the chessboard pattern. On the otherhand, the effects of inhomogeneities are considerably reduced, even undera modest background wind of 2.5 m s–1, if the wind direction isturned by 45°. Mechanisms for the different flow regimesare discussed.  相似文献   

6.
We analyzed a long-term (37 year) record of monthly average below-ground temperatures, at depths ranging from the surface down to 12.8 m,to determine the ground heat flux. Temperatures at all depths have increased over the period, evidence of a non-zero mean ground heat flux. Analysis indicates an average downward flux out of the root zone (below 1.6m) over the period of approximately 1.1 MJ m–2year–1. The corresponding average flux through the bottomplane of measurement has been approximately 0.22 MJ m–2year–1, indicating that 20% of the heat storage duringthe period has been at depths greater than 12.8 m. Current representations of ground heat flux in global climate models are inadequate to realistically simulate these results. This warming, if it continues, could affect a range of biotic and abiotic below-ground processes.  相似文献   

7.
Nocturnal convection, originating in a well-mixed marine cloud-topped boundary layer, advected onshore, was observed using a Doppler sodar on the Tyrrhenian coast in Italy. The horizontal and vertical dimensions of the downdrafts were evaluated. The oscillation frequency triggered by the downdrafts at the inversion layer, derived from the harmonic analysis of the sodar measured vertical velocity (w), is compared with the Brunt-Vaisala frequency, obtained from the rawinsonde temperature profile. A similarity function for the 2w vertical profile was used to fit the sodar experimental data and to retrieve the depth of the mixing layer and the sensible heat flux at the top of the cloud layer. The results are in agreement with the convection layer depth observed in the sodar echoes facsimile record, and with the energy budget evaluated at the top of the cloud layer using the rawinsonde profiles.  相似文献   

8.
Observations of a single boundary-layer event — the generation of an atmospheric gravity wave by an unstable shear flow at Haswell, Colorado on November 12, 1971 — are briefly described and discussed. The observations were made using: (a) an acoustic echo sounder, (b) anemometers mounted at two fixed levels on a 150-m tower, (c) an anemometer and a thermometer mounted on a movable carriage on the tower, and (d) a microbarograph array, including one microbarograph mounted atop the tower. The wave phase velocity (–3.5–4.0 m s–1) was found to equal the wind velocity in the middle of the shear flow, as assumed by other authors. The wave-associated vertical fluxes of momentum and energy measured just above the wave critical layer were estimated to be –5 dyn cm–2 and –800 erg cm–2 s–1, respectively. These are large values. The annual average vertical flux of momentum at temperate and high latitudes is –0.25 dyn cm–2, while the average kinetic energy dissipation rate in a unit column of atmosphere is –5 × 103 erg cm–2 s–1. If the region of wave generation was itself propagating horizontally, its propagation velocity was large compared with the horizontal phase speed of the small-scale waves generated. Wave generation appeared to occur over an area large compared with the size of the microbarograph array (i.e., 2 km).  相似文献   

9.
The spatial variability and temporal behavior of the vertical flux of ozone have been investigated from turbulence measurements collected on aircraft flight legs in the daytime period during two consecutive summer experimental field programs. The data were obtained during horizontal flight legs conducted over agricultural crops and forested land in three different regions of the eastern United States.Results from individual experimental cases and statistics derived from all cases in each region are presented. Ozone flux generally exhibited a significant height dependency. The strongest negative (downward) fluxes in the lowest-level flight legs were primarily attributed to the uptake of ozone by the surface and vegetative cover. Fluxes were near-zero in the middle of the convective boundary layer (CBL) in the afternoon period. As ozone flux was proportional to concentration, slightly stronger fluxes were found in low-level urban plume segments where ozone concentrations were 10–20 ppb higher than in the surrounding area. The derived deposition velocity showed no such bias as a function of position across the urban plume. Ozone flux differences were not apparent between the more heavily forested sections and the primarily agricultural cropland areas in these regions. During the afternoon period when no clear temporal trend was evident, means from values obtained below 0.15Z i (Z i being the CBL height) were -0.421 and -0.431 ppb m-2 s-1 for ozone flux and 0.81 and 0.82 cm s-1 for the derived mean deposition velocity in the southeastern Pennsylvania and central Ohio areas, respectively. These experimental results for ozone provide support to a dry deposition parameterization module which computes grid-area averaged deposition velocities for use in regional-scale models.On assignment from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce.  相似文献   

10.
The first-order (linear) response of the planetary boundary layer is calculated for flow over periodic terrain, for variations in both surface roughness and terrain elevation. Calculations are made for horizontal wavenumbers varying from 10–4m–1 to 3 × 10–3m–1. A simple second-order closure model of the turbulence is used, and Coriolis and buoyancy forces are neglected. As expected, flow over a periodic terrain produces corresponding periodic structure in all meteorological fields above the surface. The periodic structure consists of two components. The first is very nearly evanescent with height, showing little vertical structure. It corresponds to the motion that would be observed were the atmosphere inviscid. The second component, introduced by turbulent viscosity, exhibits considerable vertical structure, with vertical wavelengths the order of 100 m, and thus could be responsible for the layering often seen on acoustic sounder observations of the atmospheric boundary layer.Wave Propagation Laboratory.Environmental Science Group.  相似文献   

11.
DMS emissions and fluxes from the Australasian sector of the Antarctic and Subantarctic Oceans, bound by 46–68° S and 65.5–142.6° E, were determined from a limited number of samples (n=32) collected during three summer resupply voyages to Australian Antarctic continental research bases between November 1988 and January 1989 (a 92 day period). The maximum DMS emission from this sector of the Antarctic Ocean was in an area near the Antarctic Divergence (60–63° S) and the minimum DMS emission was from the Antarctic coastal and offshelf waters. The greatest emission of DMS from this sector of the Southern Ocean was from the Subantarctic waters. DMS flux from the Australasian Antarctic Ocean was 64.3×106 (±115) mol d–1 or 5.9 (±10.6)×109 mol based on an emission of 10.9 (±19.5) µmol m–2 d–1 (n=26). The flux of DMS from the Australasian sector of the Subantarctic Ocean was probably twice the flux of DMS from the adjacent Antarctic Ocean.  相似文献   

12.
A study to explain the emission of nitric oxide from a marsh soil   总被引:1,自引:0,他引:1  
In the period 18–21 September 1989, soil NO emission was studied at Halvergate Marshes, Norfolk (U.K.) within the framework of the BIATEX-LOVENOX joint field experiment. Using a dynamic chamber technique, 186 measurements at four plots were performed showing a net NO flux of 7.2–14.6×10–12 kgN m–2 s–1. Soil samples from a soil profile (1.0 m) at a representative site and from the uppermost layer (0.1 m) of each of the four plots were sent to the laboratory for (a) detailed physical and chemical soil analysis, (b) determination of NO production rates, NO uptake rate constants, and NO compensation mixing ratios, and (c) characterization of the microbial processes involved. A diffusive model (Galbally and Johansson, 1989) was applied to the laboratory results to infer NO fluxes of the individual soil samples. When we compared these fluxes with those measured in the field, we found agreement within a factor 2–4. Furthermore, laboratory studies showed, that NO was produced and consumed only in the upper soil layer (0–0.1 m depth) and that the NO production and consumption activities observed in the Halvergate marsh soil were most probably due to the anaerobic metabolism of denitrifying bacteria operating in anaerobic microniches within the generally aerobic soil.  相似文献   

13.
A system capable of measuring the fluxes of trace gases was developed. It is based on a simpler version of the eddy-accumulation technique (EA), known as the relaxed eddy-accumulation technique (REA). It accumulates air samples associated with updrafts and downdrafts at a constant flow rate in two containers for later analysis of the trace gas mean concentration. The flux integration is based on the durations of updraft and downdraft events, rather than on the vertical wind velocity (W) as is the case for EA and eddy-correlation (EC) techniques. The flux, calculated by the REA technique, is equal to the difference in the mean concentration of the trace gas of interest between the upward and downward moving eddies, multiplied by the standard deviation of the vertical wind velocity and an empirical coefficient. CO2 fluxes measured for 162 half-hour periods over a soybean field by both EC and REA techniques showed excellent agreement (coefficient of determination,R 2=0.92). The slope (0.985) and the intercept (–0.042 mg m–2 s–1) were not significantly different from 1 and 0, respectively, at the 5% level; and the standard error of estimate was 0.074 mg m–2 s–1. It is also shown that the empirical coefficient can be calculated from either latent or sensible heat fluxes. A model describing the effect on this empirical coefficient of not sampling aroundW equal to zero is proposed.Centre for Land and Biological Resources Research Contribution No. 92-212.  相似文献   

14.
Equations are presented to correct eddy-covariancemeasurements for both fluctuations in density andnon-zero mean advection, induced by convergence ordivergence of flow, and spatial source/sinkinhomogeneity, under steady-state and transientconditions. This correction collapses to theWebb–Pearman–Leuning expression ifthe mean vertical velocity is zero, and formally addsthe Webb–Pearman–Leuning expression to the correctionssuggested by Lee for conditions ofnon-zero vertical velocity and source/sink and meanscalar horizontal homogeneity. The equation requiresmeasurement of the mean vertical gradients of thescalar concentration of interest (air temperature,humidity, CO2) as well as an accurateestimation of the mean vertical velocity, in additionto the vertical eddy covariance of the scalar. Simplemethods for the approximation of sensor tilt andcomplex terrain flow angle are presented, to allowestimation of non-zero mean vertical velocities. Theequations are applied to data from a maize crop and aforest to give examples of when the correction issignificant. In addition, a term for thethermodynamic expansion energy associated with watervapour flux is derived, which implies that the sonictemperature derived sensible heat flux will accuratelyinclude this contribution.  相似文献   

15.
The vertical turbulent fluxes have been determined during the Atlantic Trade Wind Experiment (ATEX) both by direct and profile methods. The drag coefficient obtained from direct measurements was c D = 1.39 × 10–3. A distortion of the wind profile due to wave action could be demonstrated, this produced an increased drag coefficient estimated by the profile method. The dissipation technique using the downwind spectrum gave a lower drag coefficient of 1.26 × 10–3, probably due to non-isotropic conditions (the ratio of vertical to downwind spectrum at high frequencies scattered considerably with an average of 1 instead of 4/3).From direct measurements, the sensible heat flux showed a poor correlation with the bulk parameter product U, contrary to the heat flux obtained from profiles. It is shown that this is due to the higher frequency part of the cospectrum, say above 0.25 Hz, which contributes more than 50 % of the total flux. Determination of the heat flux from temperature fluctuations by the dissipation method would be in agreement with the direct determination only if the corresponding Kolmogoroff constant were 2.1 instead of 0.8.For the vertical flux of water vapor obtained from profiles, the bulk transfer coefficient was 1.28 × 10–3.This work was supported by the Deutsche Forschungsgemeinschaft, Schwerpunktprogramm Meeresforschung and later the Sonderforschungsbereich Meeresforschung Hamburg.  相似文献   

16.
热力强迫对台风次级环流的作用   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用无量纲的台风次级环流方程,用西太平洋地区11年的综合台风资料,计算了热力因子强迫的次级环流。通过计算,得到主要结论如下: 1.非绝热加热和积云热量垂直混合是主要的热力强迫因子,二者的作用具有同样量级。 2.热量的湍流涡旋通量及积云的热量水平输送作用都比较小。 3.Ekman抽吸与积云热量垂直混合是相互促进,共同发展的。有利于次级环流的增强。  相似文献   

17.
Heat transfer was studied between intact leaves of various sizes and shapes in vivo under free and forced air conditions. Use of a wind tunnel and a microwave transmitter to heat the leaves facilitated measurements of convective, along with radiative and evaporative, heat losses from plant leaves. Knowledge of input energy, analysis of cooling curves, and established formulae, respectively, formed the basis of the steady-state, unsteady-state, and analytical methods for the determination of heat transfer coefficients.Typical values of steady-state free convection coefficients for Peperomia obtusifolia varied from 1.5 × 10–4 to 1.9 × 10–4 cal cm–2 s–1 C–1 as the temperature difference was increased from 5.9 to 9.6°C, whereas the forced convection coefficient was found to be 4.2 × 10–4 cal cm–2 s–1 C–1 at 122 cm s–1 wind velocity. For egg-plant, this value was about 9 × 10–4 cal cm–2 s–1 C–1 at 488 cm s–1 wind velocity. Convection coefficients as determined under steady-state conditions are compared with those of the unsteady-state and with analytical values for a single leaf and leaves of three different plants. In general, experimental values were found to be higher than the analytical ones.  相似文献   

18.
Assessment of Major Pools and Fluxes of Carbon in Indian Forests   总被引:3,自引:0,他引:3  
The major pools including phytomass, soil, litter, and fluxes of carbon (C)due to litterfall and landuse changes were estimated for Indian forests. Basedon growing stock-volume approach at the state and district levels, the Indianforest phytomass was estimated in the range of 3.8–4.3 PgC. The totalsoil organic pool in the top 1m depth was estimated as 6.8 PgC, usingestimated soil organic carbon densities and Remote Sensing (RS) based area byforest types. Based on 122 published Indian studies and RS-based forest area,the total litterfall carbon flux was estimated as 208.8 MgCha–1 yr–1.The cumulative net carbon flux (1880–1996) from Indian forests(1880–1996) due to landuse changes (deforestation, afforestation andphytomass degradation) was estimated as 5.4 PgC, using a simple book-keepingapproach. The mean annual net C flux due to landuse changes during1985–1996 was estimated as 9.0 TgC yr–1. For the recentperiod, the Indian forests are nationally a small source with some regionsacting as small sinks of carbon as well. The improved quantification of poolsand fluxes related to forest carbon cycle is important for understanding thecontribution of Indian forests to net carbon emissions as well as theirpotential for carbon sequestration in the context of the Kyoto protocol.  相似文献   

19.
We describe a fast response methane sensor based on the absorption of radiation generated with a near-infrared InGaAsP diode laser. The sensor uses an open path absorption region 0.5 m long; multiple pass optics provide an optical path of 50 m. High frequency wavelength modulation methods give stable signals with detection sensitivity (S/N=1, 1 Hz bandwidth) for methane of 65 ppb at atmospheric pressure and room temperature. Improvements in the optical stability are expected to lower the current detection limit. We used the new sensor to measure, by eddy correlation, the CH4 flux from a clay-capped sanitary landfill. Simultaneously we measured the flux of CO2 and H2O. From seven half-hourly periods of data collected after a rainstorm on November 23, 1991, the average flux of CH4 was 17 mmol m–2 hr–1 (6400 mg CH4 m–2 d–1) with a coefficient of variation of 25%. This measurement may underrepresent the flux by 15% due to roll-off of the sensor response at high frequency. The landfill was also a source of CO2 with an average flux of 8.1 mmol m–2 hr–1 (8550 mg CO2 m–2 d–1) and a coefficient of variation of 26%. A spectral analysis of the data collected from the CH4, CO2, and H2O sensors showed a strong similarity in the turbulent transfer mechanisms.  相似文献   

20.
The vertical and horizontal temperature structure of the atmospheric boundary layer (ABL) were studied using aircraft observations made in the lowest 2.4 km above ground level during the summer monsoon.The vertical temperature structure of the ABL in the region may be classified into the following four categories.Category The ABL consisted of two layers of thickness 700–900 m separated by a thin transition layer. The lapse rates in the former two layers were dry adiabatic.Category The lowest layer of the ABL of thickness 400–600 m was adiabatically stratified and the overlying layer was stable with gradients of potential temperature 4–5°C km–1. The stable layer contained a thin adiabatic stratified layer of 200–300 m thickness at a height of 1.5 km.Category The lowest 200–400 m layer of the ABL was adiabatically stratified and the overlying layer was stable with potential temperature gradients of 5–6 °C km1.Category The ABL was mainly stable with potential temperature gradients of 6 °C km–1 or greater. Occasionally thin layers with adiabatic stratification were found embedded in the ABL.The temperature distribution of the horizontal temperature at 900 m was mainly normal. The high-frequency portion of the spectra lying between 0.05 and 0.16 Hz (corresponding to wave length 1 km to 300 m) oscillated around the –\2/3 power law line. The spectral curve showed a significant peak at 0.011 Hz having a wave-length of 5 km.Department of Geoscience, North Carolina State University, Raleigh, NC, 27650, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号