首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper contains the report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites as presented at the XVIIIGeneral Assembly held at Patras, Greece, 1982. Tables give the recommended values for the direction of the north poles of rotation and the prime meridians of the planets and satellites referred to both the B1950 and J2000 standard coordinate systems. Reference surfaces for mapping these bodies are described. An appendix discusses the principal changes to the tables since 1979.  相似文献   

2.
Every three years the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the north poles of rotation and the prime meridians of the planets, satellites, and asteroids. This report introduces a system of cartographic coordinates for asteroids and comets. A topographic reference surface for Mars is recommended. Tables for the rotational elements of the planets and satellites and size and shape of the planets and satellites are not included, since there were no changes to the values. They are available in the previous report (Celest. Mech. Dyn. Astron., 82, 83–110, 2002), a version of which is also available on a web site.  相似文献   

3.
Every three years the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report introduces improved values for the pole and rotation rate of Pluto, Charon, and Phoebe, the pole of Jupiter, the sizes and shapes of Saturn satellites and Charon, and the poles, rotation rates, and sizes of some minor planets and comets. A high precision realization for the pole and rotation rate of the Moon is provided. The expression for the Sun’s rotation has been changed to be consistent with the planets and to account for light travel time  相似文献   

4.
Every three years the IAU/IAG Working Group on cartographic coordinates and rotational elements of the planets and satellites revises tables giving the directions of the north poles of rotation and the prime meridians of the planets, satellites, and asteroids. Also presented are revised tables giving their sizes and shapes. Changes since the previous report are summarized in the Appendix.Merton Davies, The original chairman of this Working Group, died on April 17, 2001.  相似文献   

5.
Calculations of the topography and shape of planetary bodies are presented for two sets of models. One set of models deals with the effects of static loading on bodies, taking into account strengths of materials, density, and size. The other set considers the effects of creep deformation on model bodies of differing composition, size and temperature. Application of these models to asteroids and satellites of the major planets indicates that model, even the largest asteroids could retain highly nonspherical shapes, and the four large satellites of Jupiter could sustain statically loaded topography on the order of 10 km. (2) If silicate asteroids have not been heated to near the melting temperature of silicates, initial topography should survive for at least 109 yr under creep deformation. Topography on an insulated icy asteroid will be rapidly reduced if it is of larger scale than the insulating layer, no matter what the thermal history. (3) Of the Galilean satellites of Jupiter, J1 and J2 should retain topography created on silicate surfaces since their formation (or since the surfaces were near the silicate melting temperature. If ice layers of any significant thickness exist, topography on a scale smaller than the layer's thickness will be reduced rapidly. (4) J4 and J3 probably fit an icy model throughout and topography of all scales may be reduced with relaxation times < 106yr. These satellites are thus likely to preserve only very recent features on their surfaces, in contrast to the other Galilean satellites. If melting has taken place since formation, these conclusions become even stronger. (5) Of the satellites of the other planets, only Titan appears likely to have undergone topographic reduction by creep, under the models presented. However, if ices other than water are present in large proportion on these satellites relaxation times for topography may be shorter than calculated from the water ice models.  相似文献   

6.
The ephemerides of satellites of major planets are needed in planning spacecraft missions both for studying the satellites themselves and for navigational support during the flights of spacecraft in the vicinity of planets. In addition, accurate numerical theories of motion of the natural satellites of major planets make it possible to increase the accuracy of the ephemerides of their central planets based on positional (photographic and CCD) observations of the satellites. Numerical theories of Neptune’s satellites, Triton and Nereid, constructed within the framework of the ERA software package developed at the Institute of Applied Astronomy of the Russian Academy of Sciences are presented.  相似文献   

7.
The survival of the Jovian planets and their satellites as the Sun becomes a Red Giant is considered. It is found that the Jovian planets would not lose any matter - not even hydrogen. The satellites would lose their gaseous or volatile envelopes. Their rocky cores would resist melting and survive. Both the planets and the satellites would be unsuited to support human life.  相似文献   

8.
It is shown by linear stability analysis that a preplanetary (presatellite) disk of dust and gas with Keplerian velocity field can become unstable due to the collective self-gravity of the disk. The radial distribution of rings, which may result from this instability, is derived. These rings later on can be the formation sites for planets around the Sun and for satellites around the planets. The derived orbits are shown to be in good agreement with that of the planets and the satellites (of Jupiter, Saturn, and Uranus). Predictions and conclusions seem to be possible for the existence of three yet unknown Uranian satellites, the origin of the early Moon and the possible radial extension of the planetary system.  相似文献   

9.
目前已发现了285颗围绕太阳系八大行星公转的卫星, 它们的轨道和物理性质呈现了丰富多样性. 目前为止, 几乎所有的卫星研究工作都基于单个卫星系统或者卫星群, 似乎缺少统一的研究. 提出了一个新的与行星性质无关、只与恒星半径有关的轨道参数n, 定义为以太阳半径为单位的轨道半长轴的自然对数. 不同行星的卫星的n值都存在双极分布, 绝大部分卫星在$n\gtrsim2$区间, 其次在$n\lesssim-1$区间, 位于中间区域的行星则很少. 从卫星物理参数和轨道参数与n的关系中发现, 分属六大行星的卫星有明显的共同特征. 首先, 轨道偏心率和轨道倾角偏大的卫星的n值都在3.5左右, 它们都是巨行星的不规则卫星. 其次, n值在-1和1之间的卫星绝大部分体积大、质量大、反照率高、自转速度慢. 从文献中找到11颗系外卫星候选体, 获得了它们轨道n值和卫星质量, 发现后者也是在-1< n< 1区间最大,其他区间偏小.这些统一的 规律暗示,太阳系内不同行星的卫星形成机制以及太阳系外卫星的形成机制可能一样或类似.  相似文献   

10.
Every three years the IAU Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report takes into account the IAU Working Group for Planetary System Nomenclature (WGPSN) and the IAU Committee on Small Body Nomenclature (CSBN) definition of dwarf planets, introduces improved values for the pole and rotation rate of Mercury, returns the rotation rate of Jupiter to a previous value, introduces improved values for the rotation of five satellites of Saturn, and adds the equatorial radius of the Sun for comparison. It also adds or updates size and shape information for the Earth, Mars?? satellites Deimos and Phobos, the four Galilean satellites of Jupiter, and 22 satellites of Saturn. Pole, rotation, and size information has been added for the asteroids (21) Lutetia, (511) Davida, and (2867) ?teins. Pole and rotation information has been added for (2) Pallas and (21) Lutetia. Pole and rotation and mean radius information has been added for (1) Ceres. Pole information has been updated for (4) Vesta. The high precision realization for the pole and rotation rate of the Moon is updated. Alternative orientation models for Mars, Jupiter, and Saturn are noted. The Working Group also reaffirms that once an observable feature at a defined longitude is chosen, a longitude definition origin should not change except under unusual circumstances. It is also noted that alternative coordinate systems may exist for various (e.g. dynamical) purposes, but specific cartographic coordinate system information continues to be recommended for each body. The Working Group elaborates on its purpose, and also announces its plans to occasionally provide limited updates to its recommendations via its website, in order to address community needs for some updates more often than every 3 years. Brief recommendations are also made to the general planetary community regarding the need for controlled products, and improved or consensus rotation models for Mars, Jupiter, and Saturn.  相似文献   

11.
The distribution of ejecta from impact craters significantly affects the surface characters of satellites and asteroids. In order to understand better the distinctive features seen on Phobos, Deimos, and Amalthea, we study the dynamics of nearby debris but include several factors — planetary tides plus satellite rotation and nonspherical shape-that complicate the problem. We have taken several different approaches to investigate the behavior of ejecta from satellites near planets. For example, we have calculated numerically the usual pseudoenergy (Jacobi) integral. This is done in the framework of a restricted three-body problem where we model the satellites as triaxial ellipsoids rather than point masses as in past work. Iso-contours of this integral show that Deimos and Amalthea are entirely enclosed by their Roche lobes, and the surfaces of their model ellipsoids lie nearly along equipotentials. Presumably this was once also the case for Phobos, before tidal evolution brought it so close to Mars. Presently the surface of Phobos overflows its Roche lobe, except for the regions within a few kilometers of the sub- and anti-Mars points. Thus most surface material on Phobos is not energetically bound: nevertheless it is retained by the satellite because local gravity has an inward component everywhere. Similar situations probably prevail for the newly discovered satellite of Jupiter (J14) and for the several objects found just outside Saturn's rings. We have also examined the fate of crater ejecta from the satellites of Mars by numerical integration of trajectories for particles leaving their surfaces in the equatorial plane. The ejecta behavior depends dramatically on the longitude of the primary impact, as well as on the speed and direction of ejection. Material thrown farther than a few degrees of longitude remains in flight for an appreciable time. Over intervals of an hour or more, the satellites travel through substantial arcs of their orbits, so that the Coriolis effect then becomes important. For this reason the limit of debris deposition is elongated toward the west while debris thrown to the east escapes at lower ejection velocities. We display some typical trajectories, which include many interesting special effects, such as loops, cusps, “folded” ejecta blankets, and even a temporary satellite of Deimos. Besides being important for understanding the formation of surface features on satellites, our work is perhaps pertinent to regolith development on small satellites and asteroids, and also to the budgets of dust belts around planets.  相似文献   

12.
Geological exploration of the solar system shows that solid-surfaced planets and satellites are subject to endogenic processes (volcanism and tectonism) and exogenic processes (impact cratering and gradation). The present appearance of planetary suffaces is the result of the complex interplay of these processes and is the linked to the evolution of planets and their environments. Terrestrial planets that have dynamic atmospheres are Earth, Mars, and Venus. Atmospheric interaction with the surfaces of these planets, oraeolian activity, is a form of gradation. The manifestation of aeolian activity is the weathering and erosion of rocks into sediments, transportation of the weathered debris (mostly sand and dust) by the wind, and deposition of windblown material. Wind-eroded features include small-scale ventifacts (wind-sculptured rocks) and large-scale landforms such as yardangs. Wind depositional features include dunes, drifts, and mantles of windblown sediments. These and other aeolian features are observed on Earth, Mars, and Venus.  相似文献   

13.
Numerous studies in the past few years have analyzed possible effects of planetary migration on the small bodies of the Solar System (mainly asteroids and KBOs), with the double aim of explaining certain dynamical structures in these systems, as well as placing limits on the magnitude of the radial migration of the planets. Here we undertake a similar aim, only this time concentrating on the dynamical stability of planetary satellites in a migration scenario. However, different from previous works, the strongest perturbations on satellite systems are not due to the secular variation of the semimajor axes of the planets, but from the planetesimals themselves. These perturbations result from close approaches between the planetesimals and satellites.We present results of several numerical simulations of the dynamical evolution of real and fictitious satellite systems around the outer planets, under the effects of multiple passages of a population of planetesimals representing the large-body component of a residual rocky disk. Assuming that this component dominated the total mass of the disk, our results show that the present systems of satellites of Uranus and Neptune do not seem to be compatible with a planetary migration larger than even one quarter that suggested by previous studies, unless these bodies were originated during the late stage of evaporation of the planetesimal disk. For larger variations of the semimajor axes of the planets, most of the satellites would either be ejected from the system or suffer mutual collisions due to excitation in their eccentricities. For the systems of Jupiter and Saturn, these perturbations are not so severe, and even large migrations do not introduce large instabilities.Nevertheless, even a small number of 1000-km planetesimals in the region may introduce significant excitation in the eccentricities and inclinations of satellites. Adequate values of this component may help explain the present dynamical distribution of distant satellites, including the highly peculiar orbit of Nereid.  相似文献   

14.
The planets and their satellites are formed in accordance with similar mechanisms as a result of spatially periodic condensation of gaseous matter during the formation of the central body.Using the diffusion theory one can calculate the age of the planets and explain the nature of the Titius-Bode law.  相似文献   

15.
Molecular composition of comets, planets and satellites surfaces is known to change radically after suffering impacts. New possibilities concerning the presence of volatile molecules in icy surfaces involving retaining processes are studied in this paper. To fulfill this aim we have carried out desorption experiments under high vacuum conditions based on a quadrupole mass spectrometer and a quartz crystal microbalance. From our results, the presence of certain volatiles in some frozen scenarios could be explained by several retaining mechanisms related to the structure of CO2 even when, after impact, temperatures above their characteristic sublimation ones are reached.  相似文献   

16.
John Caldwell 《Icarus》1977,32(2):190-209
Ultraviolet photometric and spectrophotometric observations of Mars and Saturn obtained by two Earth-orbiting satellites are combined in this report. High-resolution data from the S59 experiment aboard TD1A reveal no definite absorption features in the spectra of either planet. The absence of a prominent absorption in the Mars data near 2150 Å can be reconciled with the preliminary Viking measurement of NO only if that gas is preferentially concentrated at high Martian altitudes. Broadband photometry from OAO-2 shows that atmospheric dust on Mars during the great dust storm of 1971–1972 reduced the ultraviolet geometric albedo by a factor of ?3 at the height of the storm. This atmospheric energy deposition is probably an important mechanism in the storm dynamics. Diurnal variation in the ultraviolet brightness of Mars appears to be marginally detectable during the dust storm. A real brightness variation during a clear season is observed. The combined Saturn data from the two satellites strongly suggest that NH3 does not influence the ultraviolet spectrum of Saturn, but that some other absorber does. A candidate for such an absorber, H2S, is investigated. OAO-2 broadband photometry of Jupiter and of Saturn demonstrate that these planets have very similar albedos from 2100 to 2500 Å. This implies a common ultraviolet absorber on both planets, other than NH3.  相似文献   

17.
In a scenario produced by the Capture Theory of planetary formation, a collision between erstwhile solar-system giant planets, of masses 798.75 and 598.37 M , is simulated using smoothed-particle hydrodynamics. Due to grain-surface chemistry that takes place in star-forming clouds, molecular species containing hydrogen, with a high D/H ratio taken as 0.01, form a layer around each planetary core. Temperatures generated by the collision initiate D–D reactions in these layers that, in their turn, trigger a reaction chain involving heavier elements. The nuclear explosion shatters and disperses both planets, leaving iron-plus-silicate stable residues identified as a proto-Venus and proto-Earth. A satellite of one of the colliding planets, captured or retained by the proto-Earth core, gave the Moon; two massive satellites released into heliocentric orbits became Mercury and Mars. For the Moon and Mars, abrasion of their surfaces exposed to collision debris results in hemispherical asymmetry. Mercury, having lost a large part of its mantle due to massive abrasion, reformed to give the present high-density body. Debris from the collision gave rise to asteroids and comets, much of the latter forming an inner reservoir stretching outwards from the inner Kuiper Belt that replenishes the Oort Cloud when it is depleted by a severe perturbation. Other features resulting from the outcome of the planetary collision are the relationship of Pluto and Triton to Neptune, the presence of dwarf planets and light-atom isotopic anomalies in meteorites.  相似文献   

18.
In this work, we study the stability of hypothetical satellites of extrasolar planets. Through numerical simulations of the restricted elliptic three-body problem we found the borders of the stable regions around the secondary body. From the empirical results, we derived analytical expressions of the critical semimajor axis beyond which the satellites would not remain stable. The expressions are given as a function of the eccentricities of the planet, e P, and of the satellite, e sat. In the case of prograde satellites, the critical semimajor axis, in the units of Hill's radius, is given by a E≈ 0.4895   (1.0000 − 1.0305 e P− 0.2738 e sat). In the case of retrograde satellites, it is given by a E≈ 0.9309  (1.0000 − 1.0764 e P− 0.9812 e sat). We also computed the satellite stability region ( a E) for a set of extrasolar planets. The results indicate that extrasolar planets in the habitable zone could harbour the Earth-like satellites.  相似文献   

19.
Statistical analysis of the available data on the sizes and inertial parameters for all hitherto known satellites of the Solar system’s planets is performed. Analytical approximations are derived for the size distribution of satellites. Empirical relations are obtained to approximately estimate the inertial parameters of a satellite from its size. These relations can be used in statistical studies of the possibility of manifestations of various nonstandard rotational modes of planetary satellites. In particular, the probability of the “Amalthea effect” (the presence of two centers of synchronous resonance in the phase space of rotational motion) is shown to be much higher for minor (with diameters smaller than 100 km) satellites moving in close-to-circular orbits than for other satellites.  相似文献   

20.
Observations at a wavelength of 1.32 mm have been made of the Jovian planets, Ceres, the satellites Callisto and Ganymede, and the HII region DR 21. The observed brightness temperatures are presented. Those of the Jovian planets agree with the values expected from model atmosphere calculations, except that of Jupiter, which is lower than expected. Ceres and the satellites do not have atmospheres so their emission arised in their subsurface layers. The observed brightness temperatures are intermediate between those measured at infrared and centimeter wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号