首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bulges, often identified with the spheroidal component of a galaxy,have a complex pedigree. Massive bulges are generally red and old,but lower mass bulges have broader dispersions in color that may becorrelated with disk colors. This suggests different formationscenarios. I will review possible formation sequences for bulges,describe the various signatures that distinguish these scenarios, anddiscuss implications for the high redshift universe. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
We present a few results of a work in progress tackling the radial spectroscopic properties of bulges of spiral galaxies. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

3.
The results of magnesium-to-iron ratio estimates are presented for the nuclei and central bulges of disk galaxies. A great variety of behaviours is found: the nuclei have solar Mg/Fe ratio or are Mg-overabundant, the bulges can be more or less Mg-overabundant than the nuclei. But the most bulges have nearly solar Mg/Fe ratios, irrespective of their luminosity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
5.
6.
7.
We investigate the evolution of angular momentum in simulations of galaxy formation in a cold dark matter universe. We analyse two model galaxies generated in the N -body/hydrodynamic simulations of Okamoto et al. Starting from identical initial conditions, but using different assumptions for the baryonic physics, one of the simulations produced a bulge-dominated galaxy and the other one a disc-dominated galaxy. The main difference is the treatment of star formation and feedback, both of which were designed to be more efficient in the disc-dominated object. We find that the specific angular momentum of the disc-dominated galaxy tracks the evolution of the angular momentum of the dark matter halo very closely: the angular momentum grows as predicted by linear theory until the epoch of maximum expansion and remains constant thereafter. By contrast, the evolution of the angular momentum of the bulge-dominated galaxy resembles that of the central, most bound halo material: it also grows at first according to linear theory, but 90 per cent of it is rapidly lost as pre-galactic fragments, into which gas had cooled efficiently, merge, transferring their orbital angular momentum to the outer halo by tidal effects. The disc-dominated galaxy avoids this fate because the strong feedback reheats the gas, which accumulates in an extended hot reservoir and only begins to cool once the merging activity has subsided. Our analysis lends strong support to the classical theory of disc formation whereby tidally torqued gas is accreted into the centre of the halo conserving its angular momentum.  相似文献   

8.
9.
The rate coefficients for the formation of carbon monophosphide (CP) and silicon monophosphide (SiP) by radiative association are estimated for temperatures ranging from 300 to 14 100 K. In this temperature range, the radiative association rate coefficients are found to vary from  1.14 × 10−18  to  1.62 × 10−18 cm3 s−1  and from  3.73 × 10−20  to  7.03 × 10−20 cm3 s−1  for CP and SiP, respectively. In both cases, rate coefficients increase slowly with the increase in temperature.  相似文献   

10.
Both Uranus and Neptune are thought to have strong zonal winds with velocities of several 100 m s−1. These wind velocities, however, assume solid-body rotation periods based on Voyager 2 measurements of periodic variations in the planets’ radio signals and of fits to the planets’ magnetic fields; 17.24 h and 16.11 h for Uranus and Neptune, respectively. The realization that the radio period of Saturn does not represent the planet’s deep interior rotation and the complexity of the magnetic fields of Uranus and Neptune raise the possibility that the Voyager 2 radio and magnetic periods might not represent the deep interior rotation periods of the ice giants. Moreover, if there is deep differential rotation within Uranus and Neptune no single solid-body rotation period could characterize the bulk rotation of the planets. We use wind and shape data to investigate the rotation of Uranus and Neptune. The shapes (flattening) of the ice giants are not measured, but only inferred from atmospheric wind speeds and radio occultation measurements at a single latitude. The inferred oblateness values of Uranus and Neptune do not correspond to bodies rotating with the Voyager rotation periods. Minimization of wind velocities or dynamic heights of the 1 bar isosurfaces, constrained by the single occultation radii and gravitational coefficients of the planets, leads to solid-body rotation periods of ∼16.58 h for Uranus and ∼17.46 h for Neptune. Uranus might be rotating faster and Neptune slower than Voyager rotation speeds. We derive shapes for the planets based on these rotation rates. Wind velocities with respect to these rotation periods are essentially identical on Uranus and Neptune and wind speeds are slower than previously thought. Alternatively, if we interpret wind measurements in terms of differential rotation on cylinders there are essentially no residual atmospheric winds.  相似文献   

11.
Metallicity of 8 E and SO galaxies as well as that of red globulars of the LMC and SMC were obtained by means of DDO integrated photometry calibrated with galactic globular clusters (Bica and Pastoriza, 1983; hereafter referred to as Paper I). A correction was obtained in order to reduce the colors of the galaxies to zero redshift. The relation metallicity vsM V for the galaxies is analyzed (adding to our sample the observations of McClure and Van den Bergh, 1968; and Faber, 1973a). For the Magellanic Clouds we found metallicity ranging from intermediate to poor.  相似文献   

12.
Dale P. Cruikshank 《Icarus》1977,30(1):224-230
Thermal radiation has been detected from four asteroids of the Trojan group, and J6 and J7, the brightest of the outer satellites of Jupiter. The six objects all have exceedingly low geometric albedos of 0.02 or 0.03 according to calculations based on their known visual brightness and the measured thermal fluxes. 624 Hektor, the largest object studied here, has a radius of 110 ± 20 km, though the exact shape of this body is in question. While the sample observed in this work is small (the total number of Trojans larger than 0.25 km in radius is about 1000), the fact that all four studied have similarly low albedos suggests that this property is characterisic of the Trojans and at least two of the outer members of Jupiter's retinue of satellites. The low surface albedo of the Trojans may preclude the proposed origin of the Jovian group of comets among these bodies according to E. Rabe. Updated tables of the dimensions of all the Jovian satellites are given.  相似文献   

13.
14.
Abstract— An examination of data collected over the last 30 years indicates that the percent of glass fragments vs. whole splash forms in the Cenozoic microtektite strewn fields increases towards the source crater (or source region). We propose that this is due to thermal stress produced when tektites and larger microtektites fall into water near the source crater while still relatively hot (>1150 °C). We also find evidence (low major oxide totals, frothing when melted) for hydration of most of the North American tektite fragments and microtektites found in marine sediments. High-temperature mass spectrometry indicates that these tektite fragments and microtektites contain up to 3.8 wt% H2O. The H2O-release behavior during the high-temperature mass-spectrometric analysis, plus high CI abundances (0.05 wt%), indicate that the North American tektite fragments and microtektites were hydrated in the marine environment (i.e., the H2O was not trapped solely on quenching from a melt). The younger Ivory Coast and Australasian microtektites do not exhibit much evidence of hydration (at least not in excess of 0.5 wt% H2O); this suggests that the degree of hydration increases with age. In addition, we find that some glass spherules (with <65 wt% SiO2) from the upper Eocene clinopyroxene-bearing spherule layer in the Indian Ocean have palagonitized rims. These spherules appear to have been altered in a similar fashion to the splash form K/T boundary spherules. Thus, our data indicate that tektites and microtektites that generally contain >65 wt% SiO2 can undergo simple hydration in the marine environment, while impact glasses (with <65 wt% SiO2) can also undergo palagonitization.  相似文献   

15.
Gravitational lensing of a background source by a foreground galaxy lens occasionally produces four images of the source. The cusp and the fold relations impose conditions on the ratios of magnifications of these four-image lenses. In this theoretical investigation, we explore the sensitivity of these relations to the presence of substructure in the lens. Starting with a smooth lens potential, we add varying amounts of substructure, while keeping the source position fixed, and find that the fold relation is a more robust indicator of substructure than the cusp relation for the images. This robustness is independent of the detailed spatial distribution of the substructure, as well as of the ellipticity of the lensing potential and the presence of external shear.  相似文献   

16.
Planetology serves the understanding on the one hand of the solar system and on the other hand, for investigating similarities and differences, of our own planet. While observational evidence about the outer planets is very limited, substantial datasets exist for the terrestrial planets. Radar and optical images and detailed models of gravity and topography give an impressive insight into the history, composition and dynamics of moon and planets. However, there exists still significant lack of data. It is therefore recommended to equip all future satellite missions to the moon and to planets with full tensor gravity gradiometers and radar altimeters.  相似文献   

17.
V. Bumba 《Solar physics》1996,169(2):303-312
We have compiled the results of our long-term studies of the local magnetic field and its activity development, derived from investigating sunspot group evolution, photoelectrically measured longitudinal magnetic and velocity fields, and measurements of sunspot proper motions. We estimate certain regularities according to which the magnetic and velocity fields, and photospheric, as well as chromospheric activities develop. We speculate about the physical background of such processes.Dedicated to Cornelis de Jager  相似文献   

18.
An element set is advocated that is familiar (in traditional terms), and yet applicable to every type of conic-section orbit without loss of accuracy. It is not free of singularity, but this is not a serious deficiency. Conversion procedures, to and from position and velocity, are outlined, with Fortran-77 listings appended. Tests have indicated that the errors in the pair of procedures are minimal, accuracy being limited only by computer precision and the (fixed) number of iterations used in the Kepler-equation solutions.  相似文献   

19.
Abstract— NASA plans to resume human exploration of the Moon in the next decade. One of the pressing concerns is the effect that lunar dust (the fraction of the lunar regolith <20 μm in diameter) will have on systems, both human and mechanical, due to the fact that various problems were caused by dust during the Apollo missions. The loss of vacuum integrity in the lunar sample containers during the Apollo era ensured that the present lunar samples are not in the same condition as they were on the Moon; they have been passivated by oxygen and water vapor. To mitigate the harmful effects of lunar dust on humans, methods of “reactivating” the dust must be developed for experimentation, and, ideally, it should be possible to monitor the level of activity to determine methods of deactivating the dust in future lunar habitats. Here we present results demonstrating that simple grinding, as a simple analog to micrometeorite crushing, is apable of substantially activating lunar dust and lunar simulant, and it is possible to determine the level of chemical activity by monitoring the ability of the dust to produce hydroxyl radicals in aqueous solution. Comparisons between ground samples of lunar dust, lunar simulant, and quartz reveal that ground lunar dust is capable of producing over three times the amount of hydroxyl radicals as lunar simulant and an order of magnitude more than ground quartz.  相似文献   

20.
A method of construction of intermediate orbits for approximating the real motion of celestial bodies in the initial part of trajectory is proposed. The method is based on introducing a fictitious attracting centre with a time-variable gravitational parameter. The variation of thisparameter is assumed to obey the Eddington–Jeans mass-variationlaw. New classes of orbits having first-, second-, and third-order tangency to the perturbed trajectory at the initial instant of time are constructed. For planar motion, the tangency increases by one or two orders. The constructed intermediate orbits approximate the perturbed motion better than the osculating Keplerian orbit and analogous orbits of otherauthors. The applications of the orbits constructed in Encke's methodfor special perturbations and in the procedure for predicting themotion in which the perturbed trajectory is represented by a sequenceof short arcs of the intermediate orbits are suggested.The use of the constructed orbits is especially advantageous in the investigation of motion under the action of large perturbations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号