首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 702 毫秒
1.
PSR B0540-69 has a braking index measurement in its persistent state: n = 2.129 ± 0.012.Recently, it has been reported to have changes in its spin-down state: a sudden 36% increase in the spindown rate. Combining the persistent state braking index measurement with different spin-down states, PSR B0540-69 is more powerful than intermittent pulsars in constraining pulsar spin-down models. The pulsar wind model is applied to explain the variable timing behavior of PSR B0540-69. The braking index of PSR B0540-69 in its persistent state results from the combined effect of magnetic dipole radiation and particle wind. The particle density reflects the magnetospheric activity in real-time and may be responsible for the changing spin-down behavior. Corresponding to the 36% increase in the spin-down rate of PSR B0540-69,the relative increase in the particle density is 88% in the vacuum gap model. The braking index calculated with the model in the new state is n = 1.79. Future observations that measure the braking index of PSR B0540-69 in the new spin-down state will be very powerful in distinguishing between different pulsar spin-down models and different particle acceleration models in the wind braking scenario. The variable timing behavior of PSR J1846-0258 is also understandable in the pulsar wind model.  相似文献   

2.
The very small braking index of PSR J1734–3333,n=0.9±0.2,challenges the current theories of braking mechanisms in pulsars.We present a possible interpretation that this pulsar is surrounded by a fall-back disk and braked by it.A modified braking torque is proposed based on the competition between the magnetic energy density of the pulsar and the kinetic energy density of the fall-back disk.With this torque,a self-similar disk can fit all the observed parameters of PSR J1734–3333with natural initial values of parameters.In this regime,the star will evolve to the region having anomalous X-ray pulsars and soft gamma repeaters in the P˙P diagram in about 20 000 years and stay there for a very long time.The mass of the disk around PSR J1734–3333 in our model is about 10M⊕,similar to the observed mass of the disk around AXP 4U 0142+61.  相似文献   

3.
A digital pulsar backend based on a Field Programmable Gate Array(FPGA) is developed.It is designed for incoherent de-dispersion of pulsar observations and has a maximum bandwidth of512 MHz. The channel bandwidth is fixed to 1 MHz, and the highest time resolution is 10 μs. Testing observations were carried out using the Urumqi 25-m telescope administered by Xinjiang Astronomical Observatory and the Kunming 40-m telescope administered by Yunnan Observatories, targeting PSR J0332+5434 in the L band and PSR J0437–4715 in the S band, respectively. The successful observation of PSR J0437–4715 demonstrates its ability to observe millisecond pulsars.  相似文献   

4.
PSR J0742-2822 is known for its quasi-periodic changes in the observed pulse profile and spindown rate.In this paper,we analyzed 13 years of timing data obtained with the Nanshan 25-m radio telescope and the Parkes 64-m radio telescope.We found that the average values of the spin-down rate((v))of this pulsar changed in four different states.We investigated the correlation between v and W50,and ascertained that the correlation changed in different states.Moreover,not all the changes in states and correlation can be associated with glitch activities.We examined the long term evolution ofγ-ray flux(0.1-300 GeV)and the pulse profiles corresponding to the four different states using Fermi-LAT Pass8(P8 R3)data from 2008 August 5 to 2019 October 1.We did not detect a significant change inγ-ray flux or the pulse profile.Our results suggest that the connection between pulsar rotation and emission is more complex than previously reported for this pulsar.  相似文献   

5.
We investigate a unique accreting millisecond pulsar with X-ray eclipses,SWIFT J1749.4-2807(hereafter J1749),and try to set limits on the binary system by various methods including use of the Roche lobe,the mass-radius relations of both main sequence(MS)and white dwarf(WD)companion stars,as well as the measured mass function of the pulsar.The calculations are based on the assumption that the radius of the companion star has reached its Roche radius(or is at 90%),but the pulsar's mass has not been assumed to be a certain value.Our results are as follows.The companion star should be an MS one.For the case that the radius equals its Roche one,we have a companion star with mass M(~-)0.51 M⊙ and radius Rc(~-)0.52 R⊙,and the inclination angle is i(~-)76.5°; for the case that the radius reaches 90% of its Roche one,we have M(~-)0.43 M⊙,Re()0.44 R⊙ and i(~-)75.7°.We also obtain the mass of J1749,Mp(~-)1 M⊙,and conclude that the pulsar could be a quark star if the ratio of the critical frequency of rotation-mode instability to the Keplerian one is higher than~0.3.The relatively low pulsar mass(about~M⊙)may also challenge the conventional recycling scenario for the origin and evolution of millisecond pulsars.The results presented in this paper are expected to be tested by future observations.  相似文献   

6.
I present a novel mechanism to boost magnetic field amplification of newly born neutron stars in core collapse supernovae.In this mechanism,that operates in the jittering jets explosion mechanism and comes on top of the regular magnetic field amplification by turbulence,the accretion of stochastic angular momentum in core collapse supernovae forms a neutron star with strong initial magnetic fields but with a slow rotation.The varying angular momentum of the accreted gas,which is unique to the jittering jets explosion mechanism,exerts a varying azimuthal shear on the magnetic fields of the accreted mass near the surface of the neutron star.This,I argue,can form an amplifying effect which I term the stochastic omega(Sω) effect.In the common αω dynamo the rotation has constant direction and value,and hence supplies a constant azimuthal shear,while the convection has a stochastic behavior.In the Sω dynamo the stochastic angular momentum is different from turbulence in that it operates on a large scale,and it is different from a regular rotational shear in being stochastic.The basic assumption is that because of the varying direction of the angular momentum axis from one accretion episode to the next,the rotational flow of an accretion episode stretches the magnetic fields that were amplified in the previous episode.I estimate the amplification factor of the Sω dynamo alone to be ≈ 10.I speculate that the Sω effect accounts for a recent finding that many neutron stars are born with strong magnetic fields.  相似文献   

7.
We investigate the statistical effects of non-discrete timing irregularities on observed radio pulsar braking indices using correlations between the second derivative of the measured anomalous frequency(■_(obs)) and some parameters that have been widely used to quantify pulsar timing fluctuations(the timing activity parameter(A),the amount of timing fluctuations absorbed by the cubic term(σ_(R23)) and a measure of pulsar rotational stability(σ_z)) in a large sample of 366 Jodrell Bank Observatory radio pulsars.The result demonstrates that anomalous braking indices are largely artifacts produced by aggregations of fluctuations that occur within or outside the pulsar system.For a subsample of 223 normal radio pulsars whose observed timing activity appeared consistent with instabilities in rotation of the underlying neutron stars(or timing noise) over timescales of ~10-40 yr,|■_(obs)| strongly correlates(with correlation coefficient|r|~0.80-0.90) with the pulsar timing activity parameters and spin-down properties.On the other hand,no meaningful correlations(r0.3) were found between■_(obs) and the timing activity diagnostics and spindown parameters in the remaining 143 objects,whose timing activity appears significantly dominated by white noise fluctuations.The current result can be better understood if the timing noise in isolated pulsars originates from intrinsic spin-down processes of the underlying neutron stars,but white noise fluctuations largely arise from processes external to the pulsar system.  相似文献   

8.
The very small braking index of PSR J1734-3333, n = 0.9 ± 0.2, chal- lenges the current theories of braking mechanisms in pulsars. We present a possible interpretation that this pulsar is surrounded by a fall-hack disk and braked by it. A modified braking torque is proposed based on the competition between the magnetic energy density of the pulsar and the kinetic energy density of the fall-back disk. With this torque, a self-similar disk can fit all the observed parameters of PSR J1734-3333 with natural initial values of parameters. In this regime, the star will evolve to the re- gion having anomalous X-ray pulsars and soft gamma repeaters in the P -/5 diagram in about 20 000 years and stay there for a very long time. The mass of the disk around PSR J1734-3333 in our model is about 10M similar to the observed mass of the disk around AXP 4U 0142+61.  相似文献   

9.
HESS J1303-631 is an extended TeV pulsar wind nebula powered by the pulsar PSR J1301-6305 detected with the High Energy Stereoscopic System. We present an analysis of the GeV γ-ray region of HESS J1303-631 with about14 yr of Fermi Large Area Telescope data. The GeV γ-ray emission, coincident with the very-high-energy source,has a photon index of 1.69 ± 0.09 in 10–500 GeV band, and the GeV morphology has an extension to the same direction as indicated in the TeV band. Moreover, the observed multi...  相似文献   

10.
We determine spectral indices of 228 pulsars by using Parkes pulsar data observed at 1.4 GHz,among which 200 spectra are newly determined.The indices are distributed in the range from-4.84 to-0.46.Together with known pulsar spectra from literature,we tried to find clues to the pulsar emission process.The weak correlations between the spectral index,the spin-down energy loss rate E and the potential drop in the polar gap △Ψ hint that emission properties are related to the particle acceleration process in a pulsar's magnetosphere.  相似文献   

11.
The spin period variations and hard X-ray spectral properties of the Be/Xray pulsar GRO J1008–57 are studied with INTEGRAL observations during two outbursts in 2004 June and 2009 March.The pulsation periods of~93.66 s in 2004and~93.73 s in 2009 are determined.Pulse profiles of GRO J1008–57 during outbursts are strongly energy dependent with a double-peaked profile from 3–7 keV and a single-peaked profile in hard X-rays above 7 keV.Combined with previous measurements,we find that GRO J1008–57 has undergone a spin-down trend from 1993–2009 with a rate of~4.1×10-5s d-1,and could have changed into a spin-up trend after 2009.We find a relatively soft spectrum in the early phase of the 2009 outburst with cutoff energy~13 keV.Above a hard X-ray flux of~10-9erg cm-2s-1,the spectra of GRO J1008–57 during outbursts need an enhanced hydrogen absorption with column density~6×1022cm-2.The observed dip-like pulse profile of GRO J1008–57 in soft X-ray bands could be caused by this intrinsic absorption.Around the outburst peaks,a possible cyclotron resonance scattering feature at~74 keV is detected in the spectra of GRO J1008–57 which is consistent with the feature that was reported in MAXI/GSC observations,making the source a neutron star with the highest known magnetic field(~6.6×1012G)among accreting X-ray pulsars.This marginal feature is supported by the present detections in GRO J1008–57 following the correlation between the fundamental line energies and cutoff energies in accreting X-ray pulsars.Finally we discovered two modulation periods at~124.38 d and~248.78 d using RXTE/ASM light curves of GRO J1008–57.Two flare peaks appearing in the folded light curve had different spectral properties.The normal outburst lasting 0.1 of an orbital phase had a hard spectrum and could not be significantly detected below 3 keV.The second flare lasting ten days showed a very soft spectrum without significant detections above 5 keV.GRO J1008–57 is a good candidate of an accreting system with an equatorial circumstellar disk around the companion star.The neutron star passing the disk of the Be star near periastron and apastron produces two X-ray flares.The soft spectral properties in the secondary flares still need further detailed studies with soft X-ray spectroscopy.  相似文献   

12.
There are two ways of expressing the precession of orbital plane of a binary pulsar system, given by Barker & O'Connell, Apostolatos et al. and Kidder, respectively. We point out that these two ways actually come from the same Lagrangian under different degrees of freedom. Damour & Schafer and Wex & Kopeikin applied Barker & O'Connell's orbital precession velocity in pulsar timing measurement. This paper applies Apostolatos et al.'s and Kidder's orbital precession velocity. We show that Damour & Schafer's treatment corresponds to negligible Spin-Orbit induced precession of periastron, while Wex & Kopeikin and this paper both found significant (but not equivalent) effects. The observational data of two typical binary pulsars, PSR J2051-0827 and PSR J1713+0747, apparently support a significant Spin-Orbit coupling effect. Specific binary pulsars with orbital plane nearly edge on could discriminate between Wex & Kopeikin and this paper: if the orbital period derivative of the double-pulsar system PSRs J0737-3039 A and B, with orbital inclination angle i = 87.7129 deg, is much larger than that of the gravitational radiation induced one, then the expression in this paper is supported, otherwise Wex & Kopeikin's is supported.  相似文献   

13.
Recently another long period radio pulsar GPM J1839-10 has been reported, similar to GLEAM-X J162759.5-523504.3. Previously, the energy budget and rotational evolution of long period radio pulsars had been considered.This time, the death line and pulse width for neutron star and white dwarf pulsars are investigated. The pulse width is included as the second criterion for neutron star and white dwarf pulsars. It is found that:(1) PSR J0250+5854 and PSR J0901-4046 etc. should be normal radio pulsa...  相似文献   

14.
As the asteroid rotational period is important to the study of the properties of asteroids(e.g.,super-fast rotators have structures owing an internal cohesion(rather than being rubble piles bounded by gravity only) so as not to fly apart), constructing an effective and fast method used to search the period attracts much researchers' attention. Recently, the Bayesian generalized Lomb–Scargle(BGLS)periodogram was developed to improve the convergence efficiency of the Lomb–Scargle method. However,the result of BGLS varies with the frequency range and cannot meet the two minimum/maximum requirements for a complete rotation of the asteroid. We propose a robust BGLS-based method that efficiently determines rotational periods. The proposed method employs a polynomial series to fit folded light curves with potential periods, initially calculated using the BGLS periodogram, and adopts a merit function to estimate and refine best-fit periods. We estimate the rotational periods of 30 asteroids applying the new method to light curves from the Palomar Transient Factory. Results confirm the effectiveness of the BGLS-based method in deriving rotational periods from ground-based observations of asteroids. Further application of the BGLS-based method to sparse light curves, such as Gaia data, is discussed.  相似文献   

15.
Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients(ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to≈10-2M⊙yr-1for solar type stars, and up toion≈1 M-⊙yr1for very massive stars. We speculate that magnetic fields amplified in such extreme condits might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.  相似文献   

16.
Rotochemical heating originates in the deviation from beta equilibrium due to spin-down compression, which is closely related to the dipole magnetic field. We numerically calculate the deviation from chemical equilibrium and thermal evolution of neutron stars with decaying magnetic fields. We find that the power-law long term decay of the magnetic field slightly affects the deviation from chemical equilibrium and surface temperature. However, the magnetic decay leads to older neutron stars that could have a different surface temperature with the same magnetic field strength. That is, older neutron stars with a low magnetic field(108G) could have a lower temperature even with rotochemical heating in operation, which probably explains the lack of other observations on older millisecond pulsars with higher surface temperature,except millisecond pulsar J0437–4715.  相似文献   

17.
We report the results from our analysis of Fermi Large Area Telescope(LAT) data for the transitional millisecond pulsar binary PSR J1023+0038. The time period of the data is nearly 9 yr, and that after the source's transition, in June 2013 from the disk-free state to the active state of having an accretion disk, is approximately 4 yr. We identify a high-energy 5.5 GeV component in the source's spectrum in the active state, and find this component is only significantly detected in half of the orbital phase centered at the descending node(when the pulsar is moving towards the Earth). Considering the pulsar scenario proposed for multi-frequency emission from the source, in which the pulsar is still active and a cold-relativistic pulsar wind inverse-Compton scatters the photons from the accretion disk, we discuss the origin of the high-energy component. In order to explain the observed spectrum, a power-law distribution of particles, with an index of ~3, in the pulsar wind is required, while the orbital variations are possibly due to changes in power-law index as a function of orbital phase.  相似文献   

18.
We perform a theoretical analysis of the observational dependence between angular momentum of galaxy clusters and their mass(richness), based on the method introduced in our previous paper.For that we obtain the distribution function of gravitational fields for astronomical objects(like galaxies and/or smooth halos of different kinds) due to their tidal interaction. By applying the statistical method of Chandrasekhar, we are able to show that the distribution function is determined by the form of interaction between objects and for multipole(tidal) interaction it is never Gaussian. Our calculation permits demonstrating how the alignment of galaxy angular momenta depends on cluster richness. The specific form of the corresponding dependence is due to assumptions made about cluster morphology. Our approach also predicts the time evolution of stellar object angular momenta within CDM and ΛCDM models. Namely, we have shown that angular momentum of galaxies increases with time.  相似文献   

19.
In this paper,CCD photometric light curves for the short-period eclipsing binary 1 SWASP J140533.33+114639.1(hereafter J1405) in the BV R bands are presented and analyzed using the 2013 version of the Wilson-Devinney(W-D) code. It is discovered that J1405 is a W-subtype shallow contact binary with a contact degree of f = 7.9±0.5% and a mass ratio of q = 1.55±0.02. In order to explain the asymmetric light curves of the system,a cool starspot on the more massive component is employed. This shallow contact eclipsing binary may have been formed from a short-period detached system through orbital shrinkage due to angular momentum loss. Based on the(O-C) method,the variation of orbital period is studied using all the available times of minimum light. The(O-C) diagram reveals that the period is increasing continuously at a rate of d P/dt = +2.09×10~(-7) d yr~(-1),which can be explained by mass transfer from the less massive component to the more massive one.  相似文献   

20.
We use controlled N-body simulation to investigate the dynamical processes (dynamical friction, tidal truncation, etc.) involved in the merging of small satellites into bigger halos. We confirm the validity of some analytic formulae proposed earlier based on simple arguments. For rigid satellites represented by softened point masses, the merging time scale depends on both the orbital shape and concentration of the satellite. The dependence on orbital ellipticity is roughly a power law, as suggested by Lacey & Cole, and the dependence on satellite concentration is similar to that proposed by White. When merging satellites are represented by non-rigid objects, Tidal effects must be considered. We found that material beyond the tidal radius are stripped off. The decrease in the satellite mass might mean an increase in the merging time scale, but in fact, the merging time is decreased, because the stripped-off material carries away a proportionately larger amount of of orbital energy and angular momentum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号