首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The authors investigate the solution of a nonlinear reaction-diffusion equation connected with nonlinear waves. The equation discussed is more general than the one discussed recently by Manne et al. (2000). The results are presented in a compact and elegant form in terms of Mittag-Leffler functions and generalized Mittag-Leffler functions, which are suitable for numerical computation. The importance of the derived results lies in the fact that numerous results on fractional reaction, fractional diffusion, anomalous diffusion problems, and fractional telegraph equations scattered in the literature can be derived, as special cases, of the results investigated in this article.  相似文献   

2.
3.
It is shown, that the potential obtained from Joukovsky's formula, corresponding to a given family of orbits is a general solution of Szebehely's equation. Then it is shown how a general solution of Szebehely's equation can be obtained from its particular solution. This method is applied to several examples. Potentials generating families of concentric elliptic orbits and families of orbits of conic sections are determined. Finally, the inverse Keplerian problem is solved using Szebehely's equation in polar coordinates.  相似文献   

4.
The aim of the present work is to find the secular solution around the triangular equilibrium points and reduce it to the periodic solution in the frame work of the generalized restricted thee-body problem. This model is generalized in sense that both the primaries are oblate and radiating as well as the gravitational potential from a belt. We show that the linearized equation of motion of the infinitesimal body around the triangular equilibrium points has a secular solution when the value of mass ratio equals the critical mass value. Moreover, we reduce this solution to periodic solution, as well as some numerical and graphical investigations for the effects of the perturbed forces are introduced. This model can be used to examine the existence of a dust particle near the triangular points of an oblate and radiating binary stars system surrounded by a belt.  相似文献   

5.
根据大气水平运动方程推导出Ekman层风速随高度分布方程,该分布可用二阶线性微分方程表示,用有限差分法求解该二阶线性微分方程的边值问题的数值解,并给出计算程序,输出结果。将结果与经典解析解比较,讨论了经典解的正确性和适用范围。  相似文献   

6.
We have suggested in a previous article that the coarse-grained evolution of a collisionless stellar system could be viewed as a diffusion process in velocity space compensated by an appropriate friction. Using a quasi-linear theory, we calculate the diffusion coefficient associated with this evolution. This provides a new self-consistent relaxation equation for f , the locally averaged distribution function. This equation bears some resemblance to the conventional Fokker–Planck equation of collisional systems but the friction term is non-linear in f (accounting for degeneracy effects) and the relaxation time is much smaller (in agreement with the concept of 'violent relaxation'). Under the condition that the diffusion current vanishes identically at equilibrium, we recover Lynden-Bell's distribution function; but if we allow stars to escape from the system at a constant rate, we can derive a truncated model which coincides with Lynden-Bell's solution in the core but provides a depletion of high-energy stars in the halo. This distribution function has a finite mass and is the generalization of the Michie–King model to the case of (possibly degenerate) collisionless stellar systems.  相似文献   

7.
In this investigation, a procedure is described for extending the application of canonical perturbation theories, which have been applied previously to the study of conservative systems only, to the study of non-conservative dynamical systems. The extension is obtained by imbedding then-dimensional non-conservative motion in a 2n-dimensional space can always be specified in canonical form, and, consequently, the motion can be studied by direct application of any canonical perturbation method. The disadvantage of determining a solution to the 2n-dimensional problem instead of the originaln-dimensional problem is minimized if the canonical transformation theory is used to develop the perturbation solution. As examples to illustrate the application of the method, Duffing's equation, the equation for a linear oscillator with cubic damping and the van der Pol equation are solved using the Lie-Hori perturbation algorithm.This research was supported by the Office of Naval Research under Contract N00014-67-a-0126-0013.  相似文献   

8.
The determination of the explicit form of vector constants of the motion for a point mass moving in an arbitrary spherically symmetric time-independent potential is reduced to the solution of an ordinary second-order linear differential equation. The vectors to be determined are assumed to be orthogonal to the angular momentum. The differential equation is solved for some particular fields of force and the corresponding vectors are constructed.  相似文献   

9.
This paper extends Clairaut's theory of rotational equilibrium to third order terms in a small parameter and is meant to be a sequel to a 1962 publication by the author bearing on the same topic. It has been feasible to obtain the Clairaut equation, which governs the deformation of the equipotential surfaces within a rapidly rotating mass in hydrostatic equilibrium, as an ordinary differential equation. This has been achieved by eliminating the two integral terms which appeared in the original formulation. It is expected that the numerical integration of this newly obtained equation will contribute toward a more precise solution of certain geophysical problems — e.g., the determination of the geoid to an accuracy of ±1 m, and the correction to the travel-time of seismic waves; it should also assist in some planetary questions like the determination of the exterior shape for the rapidly rotating planets Jupiter and Saturn.  相似文献   

10.
The key purpose of this article is to introduce an efficient computational method for the approximate solution of the homogeneous as well as non-homogeneous nonlinear Lane-Emden type equations. Using proposed computational method given nonlinear equation is converted into a set of nonlinear algebraic equations whose solution gives the approximate solution to the Lane-Emden type equation. Various nonlinear cases of Lane-Emden type equations like standard Lane-Emden equation, the isothermal gas spheres equation and white-dwarf equation are discussed. Results are compared with some well-known numerical methods and it is observed that our results are more accurate.  相似文献   

11.
We study the propagation of solitary waves of vortices within a spherical shell which constitutes the uppermost layer of a solid planet. This solid-liquid configuration rotates with constant angular velocity about an axis which is fixed with respect to the solid surface. The fluid within the shell is inviscid, incompressible, and of constant density. The motion imparted by the planetary rotation upon this fluid mass is governed by the Laplace tidal equation from which the potential of the extraplanetary forces has been deleted. Consistent with this ocean model, we establish that the stream function of a solitary wave of vortices must satisfy a third-order partial differential equation. We obtain solutions to this wave equation by imposing the condition that the vertical component of vorticity be functionally related to the stream function. We find that this dependence must necessarily be of the exponential type and that the solution to the wave equation then reduces to a quadrature depending on some arbitrary parameters. We prove that we can always choose the values of these parameters in order to approximate the integral in question by means of an analytic function: we reach a representation of the stream function of a solitary wave of vortices in terms of hyperbolic functions of time and position.This paper is dedicated to the memory of Professor Zdenek Kopal.  相似文献   

12.
In this paper we propose Sinc-Collocation method for solving Lane–Emden equation which is a nonlinear ordinary differential equation on a semi-infinite interval. It is found that Sinc procedure converges with the solution at an exponential rate. This method is utilized to reduce the computation of this problem to some algebraic equations. We also compare this solution with some well-known results and show that it is accurate.  相似文献   

13.
S. I. Grachev 《Astrophysics》2001,44(4):505-517
A new method is proposed for the numerical solution of nonsteady problems in the theory of radiative transfer. In this method, if the solution at some time t (such as the initial time) is known, then by representing the radiation intensity and all time-dependent quantities (level populations, kinetic temperature, etc.) in the form of Taylor series expansions in the vicinity of t, one can, from the transfer equation and the equations accompanying it (population equations, energy-balance equation, etc.), find all derivatives of that solution at the given time from certain recursive equations. From the Taylor series one can then calculate the solution at some later time t + t, and so forth. The method enables one to analyze nonsteady tradiative transfer both in stationary media and in media with characteristics that vary with time in a given way. This method can also be used to solve nonlinear problems, i.e., those in which the radiation field significantly affects the characteristics of the medium. No iterations are used for this: everything comes down to calculations based on recursive equations. Several problems, both linear and nonlinear, are solved as examples.  相似文献   

14.
The bounce with non-minimal coupling is very interesting topic because in the early time, general relativity is likely to be modified, which can give some valuable effects to the evolution of our universe. In this paper we introduce a string-inspired model for bouncing universe, utilizing the tachyon field as well as contributions from general non-minimal kinetic couplings and curvature. It is shown numerically that the bouncing solution appears in the model whereas the equation of state (EoS) parameter crosses the phantom divider.  相似文献   

15.
We have constructed a model in Lyra manifold and time varying cosmological constant with perfect fluid using LVDP (Linear Varying Deceleration Parameter). Bianchi type-III metric is used as source of investigation. To get a deterministic solution of the field equation the expansion scalar (θ) is considered as proportional to the shear scalar (σ). The cosmological constant is found to be positive which satisfies the result obtained by supernova Type-Ia Observations [1999]. Here we analyse the behaviour of pressure and deceleration parameter by using different form of dark energy(DE). In addition to it, some physical and geometrical properties of the solutions are studied.  相似文献   

16.
Generalized Jacobi's equation is derived by introducing the friction force into the equations of motion of mass points constituting the system.The exact solution of the equation of virial oscillations of celestial bodies written for non-conservative systems is obtained using non-linear time scale in the course of the change of variables for a particular friction force law.The nature of the undamped virial oscillations of celestial bodies is though to be related to the system unstability near the state determined by the virial theorem. Thus, the friction force changes its sign near the unstable equilibrium state and due to dissipation of energy during evolution of the system the undamped virial oscillations can be described as self-exited oscillations.  相似文献   

17.
We present a solution to the Einstein field equations for a massless scalar field in a Bianchi type-V spacetime, which can be interpreted as a solution for a perfect fluid with the equation of state of stiff matter. This solution complements a solution previously given by us for an anisotropic fluid.  相似文献   

18.
The nonlinear propagation of ion acoustic waves in ideal plasmas consisting of degenerate electrons and positrons, and isothermal ions is investigated. The Korteweg de Vries (K-dV) equation that contains the lowest order nonlinearity and dispersion is derived from the lowest order of perturbation and a linear inhomogeneous (K-dV type) equation that accounts for the higher order nonlinearity and the dispersion relation is obtained. The stationary wave solution for these equations has been found using the renormalization method. Also, the effects of electrons and positrons densities and ion temperature on the amplitude and width of solitary waves are investigated, numerically. It is seen that higher order corrections significantly change the properties of the K-dV solitons. Also, it is found that both compressive and rarefactive solitary waves can be propagated in such plasma system.  相似文献   

19.
Solitons and shocks are addressed in a pair ion plasma in the presence of a kappa distribution. The dissipation is taken care of through the kinematic viscosity of both positive and negative ions in the plasma. The Kadomtsev–Petviashvili–Burger (KPB) equation is derived using the small amplitude expansion method. The Abel equation is obtained from the KPB equation and a solution is obtained by using the factorization method. The effect of the parameters κ and β (temperature ratio of ion species) is observed. Analytically we can find both solitons and shocks. The change of profile from soliton to shocks is shown in the figures. This study may be of wide relevance for the study of the formation of shocks and solitons in laboratory-produced pair ion plasmas.  相似文献   

20.
A new simple method for the closed-form solution of nonlinear algebraic and transcendental equations through integral formulae is proposed. This method is applied to the solution of the famous Kepler equation in the two-body problem for elliptic orbits. The resulting formulae are quite elementary and, beyond their analytical interest, they can also provide quite accurate numerical results by using Gausstype quadrature rules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号