首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The magnetic field in the neutron-proton-electron (npe) layer of a neutron star is caused by quasi-stationary vortex current of superconducting and normal protons relative to the normal electrons. The same current generates the radio emission due to the Josephson effect. The radiation propagates in the magnetically-active medium and goes out the crust through the cracks to the magnetosphere (npe-layer is optically thick layer). As a result the hot radiospots on the star surface develop and a resulting polarized radiation pattern near the magnetic poles is formed. The cross-section of this radiation pattern gives the observed pulse structure of the pulsar. The variations of quasi-stationary vortex current can result in the amplitude-frequency variations of the radiation spectrum due to specific properties of the radiation mechanism. From this we have the variations of the fine spectrum structure, pulse amplitude and pulse structure and the correlation of them with the spectral index variations of pulsars in this model.  相似文献   

2.
3.
A consistent theory of excitation, stabilization, and propagation of electromagnetic oscillations in a relativistic one-dimensional electron-positron plasma flowing along curved magnetic field lines is presented. It is shown that in such a medium which is typical of the magnetosphere of a neutron star there exist unstable natural modes of oscillations. Nonlinear saturation of the instability leads to an effective energy conversion into transverse oscillations capable of leaving the magnetosphere of a pulsar. The polarization spectrum and the directivity pattern of generated radiation are determined. A comparison with observations has shown that the theory makes it possible to explain practically all the basic characteristics of observed pulsar radio emission.  相似文献   

4.
5.
It is shown that radio emission from pulsars is unlikely to be of coherent synchrotron origin if the surface magnetic field of the central neutron star is greater than 108 G.  相似文献   

6.
7.
8.
9.
We discuss the correlations between the luminosities of radio pulsars in various frequency ranges and the magnetic fields on the light cylinder. These correlations suggest that the observed emission is generated in outer layers of the pulsar magnetospheres by the synchrotron mechanism. To calculate the distribution functions of the relativistic particles in the generation region, we use a model of quasilinear interactions between the waves excited by cyclotron instability and particles of the primary beam and the secondary electron—positron plasma. We derive a formula for calculating the X-ray luminosity L x of radio pulsars. A strong correlation was found between L x and the parameter \(\dot P_{ - 15} /P^{3.5}\), where P is the neutron-star rotation period, in close agreement with this formula. The latter makes it possible to predict the detection of X-ray emission from more than a hundred (114) known radio pulsars. We show that the Lorentz factors of the secondary particles are small (γ p = 1.5–8.5), implying that the magnetic field near the neutron-star surface in these objects is multipolar. It follows from our model that almost all of the millisecond pulsars must emit X-ray synchrotron radiation. This conclusion differs from predictions of other models and can be used to test the theory under consideration. The list of potential X-ray radiators presented here can be used to search for X-ray sources with existing instruments.  相似文献   

10.
Byurakan Astrophysical Observatory. Translated from Astrofizika, Vol. 31, No. 1, pp. 101–110, July–August, 1989.  相似文献   

11.
12.
The theory of pulsar radio emission is reviewed critically, emphasizing reasons why there is no single, widely-accepted emission mechanism. The uncertainties in our understanding of how the magnetosphere is populated with plasma preclude predicting the properties of the emission from first principles. Some important observational features are incorporated into virtually all the proposed emission mechanisms, and other observational features are either controversial or fail to provide criteria that clearly favor one mechanism over others. It is suggested that the criterion that the emission mechanism apply to millisecond, fast young, and slow pulsars implies that it is insensitive to the magnetic field strength. It is argued that coherent emission processes in all astrophysical and space plasmas consist of emission from many localized, transient subsources, that any theory requires both an emission mechanism and a statistical theory for the subsource, and, that this aspect of coherent emission has been largely ignored in treatments of pulsar radio emission. Several specific proposed emission mechanisms are discussed critically: coherent curvature emission by bunches, relativistic plasma emission, maser curvature emission, cyclotron instability and free electron maser emission. It is suggested that some form of relativistic plasma emission is the most plausible candidate although one form of maser curvature emission and free electron maser emission are not ruled out. Propagation effects are discussed, emphasizing the interpretation of jumps between orthogonal polarizations.  相似文献   

13.
This paper is primarily concerned with the questions of models and the mechanisms of radio emission for pulsars, the polarization of this radiation and related topic. For convenience and to provide a more complete picture of the problems involved, a short summary of the data on pulsars is also given. Besides the introduction, the paper contains the following sections:
  1. Some Facts about Pulsars.
  2. The Astrophysical Nature of Pulsars.
  3. Coherent Mechanisms of Radio Emission from Pulsars.
  4. Models of Pulsars: Magnetic, Pulsating White Dwarfs and Neutron Stars.
  5. The Polarization of the Radio Emission from Pulsars.
  6. A Synthesized Model of Pulsars — Magnetic, Pulsating and Rotating Neutron Stars.
  7. Concluding Remarks.
  相似文献   

14.
Pulsars are fast rotating neutron stars with a strong magnetic field, that emit over a wide frequency range. In spite of all efforts during the 40 years after the discovery of pulsars, the mechanism of their radio emission so far remains unknown. We propose a new approach to solving this problem for a subset of pulsars with a high-frequency cutoff of the spectrum from the Pushchino catalogue (the “Pushchino” sample). We provide a theoretical explanation of the observed dependence of the high-frequency cutoff on the pulsar period, and we predict the dependence of the cutoff position from the magnetic field. This explanation is based on a new mechanism for electron radio emission in pulsars. Namely, radiation occurs in the inner (polar) gap, when electrons are accelerated in the electric field that is increasing from zero level at the star surface. In this case the acceleration of electrons passes through a maximum and goes to zero when the electron velocity approaches the speed of light. All the radiated power is located within the radio frequency band. The averaging of radiation intensity over the polar cap, with some natural assumptions of the coherence of the radiation, leads to the observed spectra. It also leads to an acceptable estimate of the power of radio emission.  相似文献   

15.
We investigate the statistical effects of non-discrete timing irregularities on observed radio pulsar braking indices using correlations between the second derivative of the measured anomalous frequency(■_(obs)) and some parameters that have been widely used to quantify pulsar timing fluctuations(the timing activity parameter(A),the amount of timing fluctuations absorbed by the cubic term(σ_(R23)) and a measure of pulsar rotational stability(σ_z)) in a large sample of 366 Jodrell Bank Observatory radio pulsars.The result demonstrates that anomalous braking indices are largely artifacts produced by aggregations of fluctuations that occur within or outside the pulsar system.For a subsample of 223 normal radio pulsars whose observed timing activity appeared consistent with instabilities in rotation of the underlying neutron stars(or timing noise) over timescales of ~10-40 yr,|■_(obs)| strongly correlates(with correlation coefficient|r|~0.80-0.90) with the pulsar timing activity parameters and spin-down properties.On the other hand,no meaningful correlations(r0.3) were found between■_(obs) and the timing activity diagnostics and spindown parameters in the remaining 143 objects,whose timing activity appears significantly dominated by white noise fluctuations.The current result can be better understood if the timing noise in isolated pulsars originates from intrinsic spin-down processes of the underlying neutron stars,but white noise fluctuations largely arise from processes external to the pulsar system.  相似文献   

16.
We explore the possibilities for detecting pulsars that have ceased to radiate in the radio band. We consider two models: the model with hindered particle escape from the pulsar surface [first suggested by Ruderman and Sutherland (1975)] and the model with free particle escape (Arons 1981; Mestel 1999). In the model with hindered particle escape, the number of particles that leave the pulsar magnetosphere is small and their radiation cannot be detected with currently available instruments. At the same time, for Arons' model, both the number of particles and the radiation intensity are high enough for such “extinct” pulsars to be detectable with the GLAST and INTEGRAL satellites.  相似文献   

17.
We analyze the statistical distribution of weakly radiating pulsars, i.e., radio pulsars that have passed to the stage of an orthogonal rotator during the evolution of the inclination angle X. We discuss in detail the factors that lead to a significant reduction in the energy losses for this class of objects. We have determined the number of weakly radiating radio pulsars and their distribution in spin period P. The predictions of a theory based on the model of current losses are shown to be consistent with observational data.  相似文献   

18.
19.
We study the statistical distribution of extinct radio pulsars at the stage of an ejector. An important element that distinguishes our study from other works is a consistent allowance for the evolution of the angle of inclination of the magnetic axis to the spin axis. We determined the distribution of extinct radio pulsars in spin period for two models: the model with hindered particle escape from the neutron-star surface and the model with free particle escape. The total number of extinct radio pulsars is shown to be much smaller than that in the model in which the evolution of the angle of axial inclination is disregarded. This is because when the evolution of the angle of axial inclination is taken into account, the transition to the stage of a propeller occurs at much shorter neutron-star spin periods (P ~ 5–10 s) than assumed previously.  相似文献   

20.
It is shown that if neutron stars contain dynamically de-coupled components, most plausibly discrete superfluid zones, then it is possible for the spin axes of these components o become slightly misaligned with respect to the crustal spin following a series of glitches. The crust will then undergo Lense-Thirring precession about the total angular moment with a period of ∼ 6–7.5P (assuming a crustal superfluid) and ∼ 3–6P (if the core superfluid is not tightly coupled to the crust). The precise precessional period is diagnostic of the mass distribution within each component. The implications of recent observational inferences concerning glitching pulsars are discussed. The conditions necessary for precession to be observable are analysed phenomenologically and a search of pulse-timing data for evidence of a Lense-Thirring modulation within the period range ∼ 3–8P is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号