首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the spatial and temporal distribution of abundances of chemical elements in large “gradual” solar energetic-particle (SEP) events, and especially the source plasma temperatures, derived from those abundances, using measurements from the Wind and Solar TErrestrial RElations Observatory (STEREO) spacecraft, widely separated in solar longitude. A power-law relationship between abundance enhancements and mass-to-charge ratios [\(A/Q\)] of the ions can be used to determine \(Q\)-values and source plasma temperatures at remote spacecraft with instruments that were not designed for charge-state measurements. We search for possible source variations along the accelerating shock wave, finding one clear case where the accelerating shock wave appears to dispatch ions from \(3.2\pm 0.8~\mbox{MK}\) plasma toward one spacecraft and those from \(1.6\pm 0.2~\mbox{MK}\) plasma toward another, 116° away. The difference persists for three days and then fades away. Three other SEP events show less-extreme variation in source temperatures at different spacecraft, in one case observed over 222° in longitude. This initial study shows how the power-law relation between abundance enhancements and ion \(A/Q\)-values provides a new technique to determine \(Q\) and plasma temperatures in the seed population of SEP ions over a broad region of space using remote spacecraft with instruments that were not originally designed for measurements of ionization states.  相似文献   

2.
Kocharov  Leon  Torsti  Jarmo  Laitinen  Timo  Teittinen  Matti 《Solar physics》1999,190(1-2):295-307
We have analyzed five solar energetic particle (SEP) events observed aboard the SOHO spacecraft during 1996–1997. All events were associated with impulsive soft X-ray flares, Type II radio bursts and coronal mass ejections (CMEs). Most attention is concentrated on the SEP acceleration during the first 100 minutes after the flare impulsive phase, post-impulsive-phase acceleration, being observed in eruptions centered at different solar longitudes. As a representative pattern of a (nearly) well-connected event, we consider the west flare and CME of 9 July 1996 (S10 W30). Similarities and dissimilarities of the post-impulsive-phase acceleration at large heliocentric-angle distance from the eruption center are illustrated with the 24 September 1997 event (S31 E19). We conclude that the proton acceleration at intermediate scales, between flare acceleration and interplanetary CME-driven shock acceleration, significantly contributes to the production of ≳10 MeV protons. This post-impulsive-phase acceleration seems to be caused by the CME lift-off.  相似文献   

3.
Clayton  E.G.  Guzik  T.G.  Wefel  J.P. 《Solar physics》2000,195(1):175-194
During the 1990–1991 solar maximum, the CRRES satellite measured helium from 38 to 110 MeV n–1, with isotopic resolution, during both solar quiet periods and a number of large solar flares, the largest of which were seen during March and June 1991. Helium differential energy spectra and isotopic ratios are analyzed and indicate that (1) the series of large solar energetic particle (SEP) events of 2–22 June display characteristics consistent with CME-driven interplanetary shock acceleration; (2) the SEP events of 23–28 March exhibit signatures of both CME-driven shock acceleration and impulsive SEP acceleration; (3) below about 60 MeV n–1, the helium flux measured by CRRES is dominated by solar helium even during periods of least solar activity; (4) the solar helium below 60 MeV n–1 is enriched in 3He, with a mean 3He/4He ratio of about 0.18 throughout most of the CRRES mission `quiet' periods; and (5) an association of this solar component with small CMEs occurring during the periods selected as solar `quiet' times.  相似文献   

4.
On 2012 March 7, the STEREO Ahead and Behind spacecraft, along with near-Earth spacecraft(e.g. SOHO, Wind) situated between the two STEREO spacecraft, observed an extremely large global solar energetic particle(SEP) event in Solar Cycle 24. Two successive coronal mass ejections(CMEs) have been detected close in time. From the multi-point in-situ observations, it can be found that this SEP event was caused by the first CME, but the second one was not involved. Using velocity dispersion analysis(VDA),we find that for a well magnetically connected point, the energetic protons and electrons are released nearly at the same time. The path lengths to STEREO-B(STB) for protons and electrons have a distinct difference and deviate remarkably from the nominal Parker spiral path length, which is likely due to the presence of interplanetary magnetic structures situated between the source and STB. Also, the VDA method seems to only obtain reasonable results at well-connected locations and the inferred release times of energetic particles in different energy channels are similar. We suggest that good-connection is crucial for obtaining both an accurate release time and path length simultaneously, agreeing with the modeling result of Wang Qin(2015).  相似文献   

5.
The behavior of solar energetic particles (SEPs) in a shock – magnetic cloud interacting complex structure observed by the Advanced Composition Explorer (ACE) spacecraft on 5 November 2001 is analyzed. A strong shock causing magnetic field strength and solar wind speed increases of about 41 nT and 300 km s−1, respectively, propagated within a preceding magnetic cloud (MC). It is found that an extraordinary SEP enhancement appeared at the high-energy (≥10 MeV) proton intensities and extended over and only over the entire period of the shock – MC structure passing through the spacecraft. Such SEP behavior is much different from the usual picture that the SEPs are depressed in MCs. The comparison of this event with other top SEP events of solar cycle 23 (2000 Bastille Day and 2003 Halloween events) shows that such an enhancement resulted from the effects of the shock – MC complex structure leading to the highest ≥10 MeV proton intensity of solar cycle 23. Our analysis suggests that the relatively isolated magnetic field configuration of MCs combined with an embedded strong shock could significantly enhance the SEP intensity; SEPs are accelerated by the shock and confined into the MC. Further, we find that the SEP enhancement at lower energies happened not only within the shock – MC structure but also after it, probably owing to the presence of a following MC-like structure. This is consistent with the picture that SEP fluxes could be enhanced in the magnetic topology between two MCs, which was proposed based on numerical simulations by Kallenrode and Cliver (Proc. 27th ICRC 8, 3318, 2001b).  相似文献   

6.
Multi-spacecraft observations are used to study the in-situ effects of a large coronal mass ejection (CME) erupting from the farside of the Sun on 3 November 2011, with particular emphasis on the associated solar energetic particle (SEP) event. At that time both Solar Terrestrial Relations Observatory (STEREO) spacecraft were located more than 90 degrees from Earth and could observe the CME eruption directly, with the CME visible on-disk from STEREO-B and off the limb from STEREO-A. Signatures of pressure variations in the corona such as deflected streamers were seen, indicating the presence of a coronal shock associated with this CME eruption. The evolution of the CME and an associated extreme-ultraviolet (EUV) wave were studied using EUV and coronagraph images. It was found that the lateral expansion of the CME low in the corona closely tracked the propagation of the EUV wave, with measured velocities of 240±19 km?s?1 and 221±15 km?s?1 for the CME and wave, respectively. Solar energetic particles were observed to arrive first at STEREO-A, followed by electrons at the Wind spacecraft at L1, then STEREO-B, and finally protons arrived simultaneously at Wind and STEREO-B. By carrying out a velocity-dispersion analysis on the particles arriving at each location, it was found that energetic particles arriving at STEREO-A were released first and that the release of particles arriving at STEREO-B was delayed by about 50 minutes. Analysis of the expansion of the CME to a wider longitude range indicates that this delay is a result of the time taken for the CME edge to reach the footpoints of the magnetic-field lines connected to STEREO-B. The CME expansion is not seen to reach the magnetic footpoint of Wind at the time of solar-particle release for the particles detected here, suggesting that these particles may not be associated with this CME.  相似文献   

7.
Miroshnichenko  L.I.  Pérez EnrÍquez  R.  Mendoza  B. 《Solar physics》1999,186(1-2):381-400
It is widely accepted now that a significant fraction of the solar energetic particles (SEPs) observed at 1 AU after major solar flares are actually accelerated at a CME-driven shock. In addition, in the emerging new paradigm for SEP acceleration in different sources at or near the Sun, the existence of two types of flares – impulsive and gradual – is recognized. Within this concept, it is tempting also to separate SEPs into two groups – interacting and escaping – and to derive their 'source spectra' from observational data on various flare emissions (protons, gamma rays, neutrons, etc.). By different techniques, those spectra have been reconstructed for 80 solar proton events (SPE) in 1949–1991. In this paper, all available data on the source spectra of solar protons are summarized and revised. We discuss in detail existing uncertainties in the derived spectral indexes, consider other methodological problems involved in this study, and suggest several possible lines for the future investigations of solar flares and SCRs using the source spectrum data. It is noted that some peculiarities of the spectra, for instance, spectral steepening for high energies, may be characteristic of large events of the 23 February 1956 type.  相似文献   

8.
Mason  G. M.  Desai  M. I.  Mall  U.  Korth  A.  Bucik  R.  von Rosenvinge  T. T.  Simunac  K. D. 《Solar physics》2009,256(1-2):393-408

During the 2007 and 2008 solar minimum period, STEREO, Wind, and ACE observed numerous Corotating Interaction Regions (CIRs) over spatial separations that began with all the spacecraft close to Earth, through STEREO separation angles of ~?80 degrees in the fall of 2008. Over 35 CIR events were of sufficient intensity to allow measurement of He and heavy ion spectra using the IMPACT/SIT, EPACT/STEP and ACE/ULEIS instruments on STEREO, Wind, and ACE, respectively. In addition to differences between the spacecraft expected on the basis of simple corotation, we observed several events where there were markedly different time-intensity profiles from one spacecraft to the next. By comparing the energetic particle intensities and spectral shapes along with solar wind speed we examine the extent to which these differences are due to temporal evolution of the CIR or due to variations in connection to a relatively stable interaction region. Comparing CIRs in the 1996?–?1997 solar minimum period vs. 2007?–?2008, we find that the 2007?–?2008 period had many more CIRs, reflecting the presence of more high-speed solar wind streams, whereas 1997 had almost no CIR activity.

  相似文献   

9.
We study the spatial distribution of solar energetic particles (SEPs) throughout the inner heliosphere during six large SEP events from the period 1977 through 1979, as deduced from observations on the Helios 1 and 2, IMP 7 and 8, ISEE 3, and Voyager 1 and 2 spacecraft. Evidence of intensity maxima associated with the expanding shock wave is commonly seen along its central and western flanks, although the region of peak acceleration or “nose” of the shock is sometimes highly localized in longitude. In one event (1 January 1978) a sharp peak in 20?–?30 MeV proton intensities is seen more strongly by Voyager at ~?2 AU than it is by spacecraft at nearby longitudes at ~?1 AU. Large spatial regions, or “reservoirs,” often exist behind the shocks with spatially uniform SEP intensities and invariant spectra that decrease adiabatically with time as their containment volume expands. Reservoirs are seen to sweep past 0.3 AU and can extend out many AU. Boundaries of the reservoirs can vary with time and with particle velocity, rather than rigidity. In one case, a second shock wave from the Sun reaccelerates protons that retain the same hard spectrum as protons in the reservoir from the preceding SEP event. Thus reservoirs can provide not only seed particles but also a “seed spectrum” with a spectral shape that is unchanged by a weaker second shock.  相似文献   

10.
T. Gregory Guzik 《Solar physics》1988,118(1-2):185-208
The current state of Solar Energetic Particle (SEP) observations above 1 MeV nucl.–1 is examined and compared to gamma-ray observations to assess the degree to which current understanding of the solar flare process can explain the observations and to delineate directions for future research. The particle acceleration appears to be due to either Fermi-type stochastic processes or flare-generated shock waves, but the available data can not yet distinguish between these two mechanisms. Large SEP events generally show no gamma-ray emission and may be examples of shock acceleration in the corona. The pre-accelerated matter, however, seems to be a mixture of hot (> 106 K) and cold (< 105 K) plasma with an elemental composition enriched with respect to the photosphere in ions of low first ionization potential (< 10 eV) and sometimes enhanced in heavy ions (Z > 10). These enrichments may be due to thermal/ pressure gradient diffusion and neutral gravitational settling. Gamma-ray line emission events are often associated with small, electron rich SEP events, some of which also include heavy ion enhancements. While time profiles of the gamma emission show that electrons and ions can be accelerated promptly (t < 1 s), comparison of the inferred flux of particles at the Sun with SEP observations in space indicate that few of these particles escape. The conditions for SEP release to interplanetary space have yet to be systematically detailed.  相似文献   

11.
We find that element abundances in energetic ions accelerated by shock waves formed at corotating interaction regions (CIRs) mirror the abundances of the solar wind modified by a decreasing power-law dependence on the mass-to-charge ratio \(A\)/\(Q\) of the ions. This behavior is similar in character to the well-known power-law dependence on \(A\)/\(Q\) of abundances in large gradual solar energetic particles (SEP). The CIR ions reflect the pattern of \(A\)/\(Q\), with \(Q\) values of the source plasma temperature or freezing-in temperature of 1.0?–?1.2 MK typical of the fast solar wind in this case. Thus the relative ion abundances in CIRs are of the form \((A\mbox{/}Q)^{a}\), where \(a\) is nearly always negative and evidently decreases with distance from the shocks, which usually begin beyond 1 AU. For one unusual historic CIR event where \(a \approx 0\), the reverse shock wave of the CIR seems to occur at 1 AU, and these abundances of the energetic ions become a direct proxy for the abundances of the fast solar wind.  相似文献   

12.
We have studied the dynamic proton spectra for the two solar energetic particle(SEP) events on2000 July 14(hereafter GLE59) and 2005 January 20(hereafter GLE69). The source locations of GLE59 and GLE69 are N22 W07 and N12 W58 respectively. Proton fluxes 30 Me V have been used to compute the dynamic spectral indices of the two SEP events. Our results show that spectral indices of the two SEP events increased more swiftly at early times, suggesting that the proton fluxes 30 Me V might be accelerated particularly by the concurrent flares at early times for the two SEP events. For the GLE69 with source location at N12 W58, both flare site and shock nose are well connected with the Earth at the earliest time. However, only the particles accelerated by the shock driven by eastern flank of the CME can propagate along the interplanetary magnetic field line to the Earth after the flare. For the GLE59 with source location at N22 W07, only the particles accelerated by the shock driven by western flank of the associated CME can reach the Earth after the flare. Our results also show that there was slightly more than one hour during which the proton spectra for GLE69 are softer than that for GLE59 after the flares, suggesting that the shock driven by eastern flank of the CME associated with GLE69 is weaker than the shock driven by the western flank of the CME associated with GLE59. The results support that quasi-perpendicular shock has stronger potential in accelerating particles than the quasi-parallel shock. These results also suggest that only a small part of the shock driven by western flank of the CME associated with the GLE59 is quasi-perpendicular.  相似文献   

13.

Solar energetic particles (SEPs) are released into the heliosphere by solar flares and coronal mass ejections (CMEs). They are mostly protons, with smaller amounts of heavy ions from helium to iron, and lesser amounts of species heavier than iron. The spectra of heavy ions have been previously studied mostly by using the fluence of the particles in an event-integrated spectrum in a small number of spectral snapshots. In this article, we analyze the temporal evolution of the heavy-ion spectra using two large SEP events (27 January 2012 and 7 January 2014) from the Solar TErrestrial Relations Observatory (STEREO) era using Advanced Composition Explorer (ACE) Solar Isotope Spectrometer (SIS) and Ultra Low Energy Isotope Spectrometer (ULEIS), Energetic Particles: Acceleration, Composition and Transport (EPACT) onboard Wind, and the STEREO-A (Ahead) and -B (Behind) Low-Energy Telescope (LET) and Suprathermal Ion Telescope (SIT) instruments, taking a large number of snapshots covering the temporal evolution of the event. We find large differences in the spectra of the ions after the main flux enhancement in terms of the grouping of similar species, but also in terms of the location of the instruments. Although it is somewhat less noticeable than in the case of the temporal evolution of protons (Doran and Dalla, Solar Phys. 291, 2071, 2016), we observe a wave-like pattern travelling through the heavy ion spectra from the highest energies to the lowest, creating an “arch” structure that later straightens into a power law after 18 to 24 hours.

  相似文献   

14.
《Planetary and Space Science》1987,35(11):1359-1366
The Low Energy Charged Particle (LECP) experiment on the Voyager 2 spacecraft in the outer heliosphere ( > 10 a.u.) has observed several occasions when there was a peak in the interplanetary ion spectra for ions of energies ∼ 0.5–1.0 MeV. Such enhancements can last for several days, suggesting that at these times particles of these energies dominate the low energy cosmic population in this region of the heliosphere. Two specific cases are discussed. The enhancements seem to be associated with the passage of transient interplanetary shock events, with the ion anisotropies generally showing outflow. The most straight-forward explanation for the observations seems to involve only a propagation effect of ions from the inner to the outer solar system. This conclusion is supported by simple modeling of the propagation of an event observed at 1 a.u. to the spacecraft at ∼ 12 a.u.  相似文献   

15.
We have analyzed radio type IV bursts in the interplanetary (IP) space at decameter–hectometer (DH) wavelengths to determine their source origin and a reason for the observed directivity. We used radio dynamic spectra from the instruments on three different spacecraft, STEREO-A, Wind, and STEREO-B, which were located approximately 90 degrees apart from each other in 2011?–?2012, and thus gave a 360 degree view of the Sun. The radio data were compared to white-light and extreme ultraviolet (EUV) observations of flares, EUV waves, and coronal mass ejections (CMEs) in five solar events. We find that the reason that compact and intense DH type IV burst emission is observed from only one spacecraft at a time is the absorption of emission in one direction and that the emission is blocked by the solar disk and dense corona in the other direction. The geometry also makes it possible to observe metric type IV bursts in the low corona from a direction where the higher-located DH type IV emission is not detectable. In the absorbed direction we found streamers, and they were estimated to be the locations of type II bursts, caused by shocks at the CME flanks. The high-density plasma was therefore most probably formed by shock–streamer interaction. In some cases, the type II-emitting region was also capable of stopping later-accelerated electron beams, which were visible as type III bursts that ended near the type II burst lanes.  相似文献   

16.
We report on the analysis of a fast (>2,000 km/s) CME-driven shock event observed with the UVCS telescope operating aboard SoHO on 23 July 2002. The same shock was also detected in the metric band by several ground-based radiospectrographs. The peculiarity of this event is the presence in the radio spectra of two intense metric type II bursts features drifting at different rates, together with clear shock/related broadenings of the O VI doublet lines observed by UVCS that were found to be temporally associated with the above radio features. The nature of these multiple radio lanes in the metric band is still under debate. One possible explanation is that they are produced by multiple shock waves generated by different ejections or, alternatively, by the flare and the associated CME. Also, emission from the upstream and downstream shock regions can produce split bands. By adopting a plausible CME model, together with a detailed analysis of the white-light, UV, and radio data associated with this event, we are able to conclude that both the radio and the UV shock signatures were produced by a single shock wave surface generated by the expanding CME.  相似文献   

17.
Recently,S.W.Kahler studied the timescales of solar energetic particle(SEP) events associated with coronal mass ejections(CMEs) from analysis of spacecraft data.They obtained different timescales for SEP events,such as TO,the onset time from CME launch to SEP onset,TR,the rise time from onset to half the peak intensity(0.5I_p),and TD,the duration of the SEP intensity above 0.5I_p.In this work,we solve the transport equation for SEPs considering interplanetary coronal mass ejection(ICME) shocks as energetic particle sources.With our modeling assumptions,our simulations show similar results to Kahler's analysis of spacecraft data,that the weighted average of TD increases with both CME speed and width.Moreover,from our simulation results,we suggest TD is directly dependent on CME speed,but not dependent on CME width,which were not found in the analysis of observational data.  相似文献   

18.
The magnetic field structures of two interplanetary coronal mass ejections (ICMEs), each observed by a pair of spacecraft close to radial alignment, have been analysed. The ICMEs were observed in situ by MESSENGER and STEREO-B in November 2010 and November 2011, while the spacecraft were separated by more than 0.6 AU in heliocentric distance, less than 4° in heliographic longitude, and less than 7° in heliographic latitude. Both ICMEs took approximately two days to travel between the spacecraft. The ICME magnetic field profiles observed at MESSENGER have been mapped to the heliocentric distance of STEREO-B and compared directly to the profiles observed by STEREO-B. Figures that result from this mapping allow for easy qualitative assessment of similarity in the profiles. Macroscale features in the profiles that varied on timescales of one hour, and which corresponded to the underlying flux rope structure of the ICMEs, were well correlated in the solar east–west and north–south directed components, with Pearson’s correlation coefficients of approximately 0.85 and 0.95, respectively; microscale features with timescales of one minute were uncorrelated. Overall correlation values in the profiles of one ICME were increased when an apparent change in the flux rope axis direction between the observing spacecraft was taken into account. The high degree of similarity seen in the magnetic field profiles may be interpreted in two ways. If the spacecraft sampled the same region of each ICME (i.e. if the spacecraft angular separations are neglected), the similarity indicates that there was little evolution in the underlying structure of the sampled region during propagation. Alternatively, if the spacecraft observed different, nearby regions within the ICMEs, it indicates that there was spatial homogeneity across those different regions. The field structure similarity observed in these ICMEs points to the value of placing in situ space weather monitors well upstream of the Earth.  相似文献   

19.
We present a study of seven large solar proton events in the current solar cycle 24(from 2009 January up to the current date). They were recorded by the GOES spacecraft with the highest proton fluxes being over 200 pfu for energies 10 Me V. In situ particle measurements show that:(1) The profiles of the proton fluxes are highly dependent on the locations of their solar sources, namely flares or coronal mass ejections(CMEs), which confirms the "heliolongitude rules" associated with solar energetic particle fluxes;(2) The solar particle release(SPR) times fall in the decay phase of the flare emission, and are in accordance with the times when the CMEs travel to an average height of 7.9 solar radii; and(3) The time differences between the SPR and the flare peak are also dependent on the locations of the solar active regions. The results tend to support the scenario of proton acceleration by the CME-driven shock,even though there exists a possibility of particle acceleration at the flare site, with subsequent perpendicular diffusion of accelerated particles in the interplanetary magnetic field. We derive the integral time-of-maximum spectra of solar protons in two forms: a single power-law distribution and a power law roll-over with an exponential tail. It is found that the unique ground level enhancement that occurred in the event on 2012 May 17 displays the hardest spectrum and the largest roll-over energy which may explain why this event could extend to relativistic energies.  相似文献   

20.
Simnett  G.M. 《Solar physics》2003,213(2):387-412
In 2001 the Ulysses spacecraft crossed the ecliptic plane near perihelion. The heliographic longitude with respect to the Earth was within ±20° of the west solar limb while it was ±15° of the ecliptic plane, which meant that coronal mass ejections seen off the solar west limb were likely to pass over Ulysses. On 10 May the largest >38 keV electron intensity of the mission, since the Jovian encounter in 1992, was observed, which was accompanied by a fast perpendicular shock. This event was preceded by a fast coronal mass ejection some two and a half days earlier which is the probable source of the shock. However, both the ACE spacecraft and Ulysses observed, simultaneously, an intense, prompt electron event on 7 May from a solar flare associated with earlier coronal mass ejections also observed off the west limb; Ulysses was magnetically connected to a longitude well behind the west limb. ACE did not observe any (at the 0.1% level) energetic electrons which were associated with the 10 May event seen at Ulysses. We discuss in detail the energetic particles seen at the two spacecraft during 7–11 May, with the objective of understanding the origin of the intense electron event seen on 10 May and the manner in which particles escaping from the shock populate the inner heliosphere. The energy spectrum of the ions at both ACE and Ulysses exhibits a maximum at around 400 keV; this form of the spectrum was seen at the shock itself. It appears that the strong shock driven by the fast coronal mass ejection is able to populate a large fraction of the inner heliosphere with accelerated ions. The shock-accelerated electrons do not pervade the inner heliosphere in the same manner as the ions. We suggest that the electron acceleration was enhanced by the presence of multiple coronal mass ejections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号