首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The angular diameter of a star can be estimated from interferometric observations by fitting the data with the visibility function for a uniformly illuminated disc and then using published correction factors to convert the uniform-disc angular diameter to the limb-darkened angular diameter. The correction factors are strictly valid only for monochromatic light. We investigate the effect of using a broad bandwidth, and present a simple method for calculating broad-band correction factors from the monochromatic factors.
The technique of fitting the data with a uniform-disc visibility function is only useful for stars with compact atmospheres and 'typical' limb-darkening profiles. It should not be applied to stars with extended atmospheres or that show extreme limb darkening. These stars have visibility functions that are qualitatively different from a uniform-disc visibility function, so they can be distinguished observationally from compact-atmosphere stars.  相似文献   

2.
With the rapid development of large scale sky surveys like the Sloan Digital Sky Survey (SDSS), GAIA and LAMOST (Guoshoujing telescope), stellar spectra can be obtained on an ever-increasing scale. Therefore, it is necessary to estimate stel- lar atmospheric parameters such as Teff, log g and [Fe/H] automatically to achieve the scientific goals and make full use of the potential value of these observations. Feature selection plays a key role in the automatic measurement of atmospheric parameters. We propose to use the least absolute shrinkage selection operator (Lasso) algorithm to select features from stellar spectra. Feature selection can reduce redundancy in spectra, alleviate the influence of noise, improve calculation speed and enhance the robustness of the estimation system. Based on the extracted features, stellar atmospheric param- eters are estimated by the support vector regression model. Three typical schemes are evaluated on spectral data from both the ELODIE library and SDSS. Experimental results show the potential performance to a certain degree. In addition, results show that our method is stable when applied to different spectra.  相似文献   

3.
Homogeneous independent subsamples from selected catalogues and libraries of effective temperatures for metal deficient F–G stars are treated here by combining them in triples and pairs for the stars in common to determine their external errors from data intercomparisons. The effective temperatures are then averaged (with the weights inversely proportional to the squared errors) to produce mean homogenized catalogues which may be used for calibration of spectral and photometric data in large Galactic surveys. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The paper presents an adaptive particle swarm optimization (APSO) as an alternative method to determine the optimal orbital elements of the star η Bootis of MK type G0 IV. The proposed algorithm transforms the problem of finding periodic orbits into the problem of detecting global minimizers as a function, to get a best fit of Keplerian and Phase curves. The experimental results demonstrate that the proposed approach of APSO generally more accurate than the standard particle swarm optimization (PSO) and other published optimization algorithms, in terms of solution accuracy, convergence speed and algorithm reliability.  相似文献   

5.
We have determined new statistical relations to estimate the fundamental atmospheric parameters of effective temperature and surface gravity, using MK spectral classification, and vice versa. The relations were constructed based on the published calibration tables(for main sequence stars) and observational data from stellar spectral atlases(for giants and supergiants). These new relations were applied to field giants with known atmospheric parameters, and the results of the comparison of our estimations with available spectral classification have been quite satisfactory.  相似文献   

6.
In recent times evidence for bimodal distributions of stars in the H–R diagram has reached a striking evidence. These bimodal distributions seem to be correlated with a bimodal distribution of masses and angular velocities. The approach we propose to explain the observed bimodality suggests that this latter is due to a bimodal mass loss by magnetically controlled stellar winds during stellar evolution, owing to different magnetic field configurations. It is assumed a mechanism analogous to that which produces solar wind, with magnetic field generated by dynamo working in the convection zone. Different field geometries (dipole cr quadrupole), which depend on the mode the dynamo operates, can produce different but discrete mass losses during stellar evolution, thus producing bimodal distributions of masses and angular velocities.  相似文献   

7.
The variable star SU Equulei was classified as a close binary with an eclipse light curve previously categorized as WUMa type. The aim of this paper is a review of this old classification on the basis of new observations and a new determination of variable star ephemeris as well as the determination of SU Equ spectral type and distance. New photometric observations in different colours allow a precise determination of the period of variability and yield more accurate light curves allowing a re‐classification of the type of variability. We find the best period of variability to be half the old value. The shape of the light curve is inconsistent with an eclipse curve but consistent with an RR Lyrae type c classification. From the B, V, and R colours we deduce a new spectral classification. SU Equulei is an RRc Lyrae type variable of spectral class A8 at a distance of ≈12.4 kpc instead of a late‐type eclipsing binary (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Small levels of turbulence can be present in stellar radiative interiors due to, e.g., the instability of rotational shear. In this paper we estimate turbulent transport coefficients for stably stratified rotating stellar radiation zones. Stable stratification induces strong anisotropy with a very small ratio of radial‐to‐horizontal turbulence intensities. Angular momentum is transported mainly due to the correlation between azimuthal and radial turbulent motions induced by the Coriolis force. This non‐diffusive transport known as the Λ‐effect has outward direction in radius and is much more efficient compared to the effect of radial eddy viscosity. Chemical species are transported by small radial diffusion only. This result is confirmed using direct numerical simulations combined with the test‐scalar method. As a consequence of the non‐diffusive transport of angular momentum, the estimated characteristic time of rotational coupling (≲100 Myr) between radiative core and convective envelope in young solar‐type stars is much shorter compared to the time‐scale of Lithium depletion (∼1 Gyr) (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
A number of spectroscopic surveys have been carried out or are planned to study the origin of the Milky Way. Their exploitation requires reliable automated methods and softwares to measure the fundamental parameters of the stars. Adopting the ULySS package,we have tested the effect of different resolutions and signal-tonoise ratios(SNR) on the measurement of the stellar atmospheric parameters(effective temperature Teff,surface gravity log g,and metallicity [Fe/H]) . We show that ULySS is reliable for determ...  相似文献   

10.
We use the random forest to regress the surface effective temperatures of stars in APOGEE from SDSS DR16 and LAMOST DR6. When the NUV-u, u-g, g-r, r-i, i-J, J-H, H-K, K-WISE_4_5 magnitudes are used as machine learning features, the coefficient of determination of regression are 94.91% in APOGEE and 90.46% in LAMOST. The standard deviation of the prediction and pipeline temperatures are 93.89K in APOGEE and 113.10K in LAMOST. When the NUV-J, J-H, H-K, K-WISE_4_5 magnitudes are used as features, the coefficient of determination of regression are 94.37% in APOGEE and 88.89% in LAMOST. The standard deviation is 96.59K in APOGEE and 119.92K in LAMOST. The J-H magnitudes are the most important feature to predict the effective temperatures, and the NUV-J magnitudes are the second important feature. The NUV-J, J-H, H-K, K-WISE_4_5 magnitudes are from the all-sky survey and can be employed widely to regress the effective temperatures of stars.  相似文献   

11.
In order to obtain the internal structure of a main-sequence star such as the Sun usually one has to solve the detailed structure equations numerically. This paper is an attempt to construct analytic models for the stellar nuclear energy generation. We give closed-form analytic results for the stellar luminosity and stellar neutrino emission rate when the radial matter density of the spherical star under consideration is linear. For the numerical estimation of the neutrino flux of a specified stellar nuclear reaction we take into account parameters of the standard solar model. The present paper gives for the first time the connection between stellar structure parameters and neutrino fluxes in an analytic stellar model.  相似文献   

12.
We have compared stellar parameters, including temperature, gravity and metallicity, for common stars in the LAMOST DR2 and SDSS DR12/APOGEE datasets. It is found that the LAMOST dataset provides a more well-defined red clump feature than the APOGEE dataset in the Teff versus log g diagram. With this advantage, we have separated red clump stars from red giant stars, and attempt to establish calibrations between the two datasets for the two groups of stars. The results show that there is a good consistency in temperature with a calibration close to the one-to-one line, and we can establish a satisfactory metallicity calibration of[Fe/H]APOGEE= 1.18[Fe/H]LAMOST + 0.11 with a scatter of ~ 0.08 dex for both the red clump and red giant branch samples. For gravity, there is no correlation for red clump stars between the two datasets, and scatters around the calibrations of red giant stars are substantial. We found two main sources of scatter in log g for red giant stars. One is a group of stars with 0.00253 × Teff- 8.67 log g 2.6 located in the forbidden region, and the other is the contaminated red clump stars, which could be picked out from the unmatched region where stellar metallicity is not consistent with position in the Teff versus log g diagram. After excluding stars in these two regions,we have established two calibrations for red giant stars, log g APOGEE = 0.000615 ×Teff,LAMOST+ 0.697 × log g LAMOST- 2.208(σ = 0.150) for [Fe/H] -1 and log gAPOGEE= 0.000874×Teff,LAMOST+0.588×log g LAMOST-3.117(σ = 0.167)for [Fe/H] -1. The calibrations are valid for stars with Teff = 3800- 5400 K and log g = 0- 3.8 dex, and are useful in work aiming to combine the LAMOST and APOGEE datasets in a future study. In addition, we find that an SVM method based on asteroseismic log g is a good way to greatly improve the accuracy of gravity for these two regions, at least in the LAMOST dataset.  相似文献   

13.
The response function defines the response of line profiles to a depth variation of such atmospheric parameters as velocity, magnetic field and turbulence. The properties of this function are derived and compared with the so-called contribution function.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

14.
The properties of the neutrino burst generated by massive 1.5–2M collapsing stellar iron-oxygen cores are discussed. Special attention is given to the neutrino heat conductivity theory which allows us to calculate the transport of neutrinos through the collapsing stellar core up to the formation and during the first seconds of cooling of a hot hydrostatic neutron star. The theoretical predictions seem to be in good agreement with both the KAMIOKANDE II and IMB data on the neutrino burst detected from SN 1987A. The most reliable constraint on the neutrino rest mass is shown to bem v <20–30eV, while the safest upper limit on the neutrino magnetic moment, µ v < 10–11 Bohr magnetons, results rather from the cooling of white dwarfs than from the SN 1987A neutrino data.Presented to the 13th International Conference Neutrino-88, Boston, U.S.A., 5–11 June, 1988.  相似文献   

15.
Using the flux values determined with the infrared flux method (IRFM) developed by Blackwell and Lynas-Gray (1993), we derived the empirical relationship between flux (F v ) and (V — K) colour appropriate to Dwarf Cepheids. For three Dwarf Cepheids CY Aqr, YZ Boo and SZ Lyn where both VK photometry and radial velocities were available from the literature, effective temperatures were determined using the intrinsic Strömgren indices, model atmosphere grids for (V — K) and the relation between temperature and (V — K) colour. Then, by applying the infrared surface brightness method, radii and distances and hence masses and absolute magnitudes were estimated with effective temperatures determined by three different methods. It was found that the average mass of these variables is about 0.5 solar mass and this result supports the hypothesis that Dwarf Cepheids are pre-white dwarf objects. It was also confirmed that the temperatures determined with the IRFM are most successful in the application of the surface brightness method to the radius estimation of Dwarf Cepheids.  相似文献   

16.
We demonstrate that when charged particles interact with a plane electromagnetic wave which possesses a random amplitude, then the particles are accelerated to high energy because they are pushed along by the wave's Poynting vector. Not only are they so accelerated, as they are carried along by the wave, but also they diffuse at right angles to the direction of the Poynting flux (i.e. in the direction of the wave's electric field). The ultimate energy that such particles can reach is determined when they radiate as much energyper unit time as they receive from the plane wave. For numbers believed typical of the Crab nebula this ultimate energy is of order 1010 mc 2. We have done these calculations to show that turbulent electromagnetic waves are quite efficient in generating high energy particles from low energy particles. Thus when the low frequency coherent waves emitted by a magnetized rotating neutron star are turned into incoherent waves because of wave-plasma interactions in a surrounding nebula, they still accelerate particles to rather high energies. Accordingly, while it obviously takes less time to produce high energy particles with a coherent wave than with a turbulent wave, the calculations given here show that the bulk of the relativistic electrons in the Crab nebula could still be energized by the turbulent remnants of a coherent wave.  相似文献   

17.
A time-resolved spectroscopic study of V603 Aql (Nova Aquilae 1918) is presented. An orbital period of P orb=01385±00002, consistent with previous results, and a radial velocity semi-amplitude of K =20±3 km s1 are obtained from the radial velocity variations of the H emission line. Similar K values are also found in H , H , and He  i emission lines. Using the measured FWHM of the H line and assuming that the derived semi-amplitude is that of the white dwarf, we deduce a most likely mass ratio of q =0.24±0.05 and stellar masses of M 2=0.29±0.04 M and M 1=1.2±0.2 M for the secondary and primary (the white dwarf) star, respectively. The dynamical solution also indicates a very low orbital inclination, i =13°±2°. We find that the continuum and line variations are modulated with both the positive and the negative superhump periods, indicating that they arise from similar regions of the accretion disc. Moreover, we find, for the first time from spectroscopy, evidence of negative superhumps in addition to the positive superhumps. Positive superhumps are explained within the disc instability model as caused by an eccentric disc surrounding the white dwarf, which is precessing (apsidal advance) because of tidal instabilities, causing the observed positive superhumps. A nodal precession in the accretion disc is currently believed to be the cause of the observed negative superhumps. The low value of q is consistent with the expected value for systems that show superhumps, in accordance with the eccentric disc model. We find no evidence of periodicity associated with the spin period.  相似文献   

18.
19.
The absolute proper motions of about 275 million stars from the Kharkov XPM catalog have been obtained by comparing their positions in the 2MASS and USNO-A2.0 catalogs with an epoch difference of about 45 yr for northern-hemisphere stars and about 17 yr for southern-hemisphere stars. The zero point of the system of absolute proper motions has been determined using 1.45 million galaxies. The equatorial components of the residual rotation vector of the ICRS/UCAC2 coordinate system relative to the system of extragalactic sources have been determined by comparing the XPM and UCAC2 stellar proper motions: ω x,y,z = (−0.06, 0.17, −0.84) ± (0.15, 0.14, 0.14) mas yr−1. These parameters have been calculated using about 1 million faintest UCAC2 stars with magnitudes R UCAC2 > 16 m and J > 14 m . 7, for which the color and magnitude equation effects are negligible.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号