首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new structural and kinematic study of the Hospitalet dome (Pyrenees) is presented. This dome corresponds to the eastern half of an EW‐trending antiformal structure made of an orthogneissic core intruded by granitoids, partly covered by Upper Proterozoic to Lower Ordovician metapelites. Its Variscan evolution can be split into four stages: (i) development of a strong high temperature pervasive deformation associated with subhorizontal foliations and lineations, and with non‐coaxial top‐to‐the‐east kinematics; (ii) formation of a south‐verging overturned megafold; (iii) emplacement of calc‐alkaline granitoids; and (iv) formation of mylonitic bands on the southern border of the dome, with reverse dextral kinematics. The flat lying pervasive high‐T deformation is interpreted as a large lateral flow developed in a dextral transpressive regime inducing an important uncoupling between the middle and upper crusts. The next stages happened in a progressive deformation in the same transpressive regime.  相似文献   

2.
The EW-striking Variscan Mérens shear zone (MSZ), located on the southern border of the Aston dome (Pyrenees), corresponds to variously mylonitized gneisses and plutonic rocks that are studied using the Anisotropy of Magnetic Susceptibility (AMS) technique. The plutonic rocks form EW-striking bands with, from south to north, gabbro-diorites, quartz diorites and granodiorites. The MSZ underwent a mylonitic deformation with an intensity progressively increasing from the mafic to the more differentiated rocks. The foliations are EW to NW–SE striking and subvertical. A first set of lineations shows a moderate WNW plunge, with a dextral reverse kinematics. More recent subvertical lineations correspond to an uplift of the northern compartment. To the east, the MSZ was cut by a N120°E-striking late shear band, separating the MSZ from the Quérigut pluton. The different stages of mylonitization relate to Late Variscan dextral transpression. This regime allowed the ascent of magmas along tension gashes in the middle crust. We interpret the MSZ as a zone of magma transfer, which fed a pluton now eroded that was similar to the Quérigut and Millas plutons located to the east. We propose a model of emplacement of these plutons by successive pulses of magmas along en-échelon transfer zones similar to the MSZ.  相似文献   

3.
《Geodinamica Acta》2013,26(3-4):197-211
This work deals with the magnetic susceptibility and its anisotropy (AMS) in the Variscan Millares pluton in the Central Pyrenees. The zonation of low-field magnetic susceptibility is consistent with the concentric arrangement of rock-types, with more basic compositions at the external areas. Magnetic foliations defined from AMS strike NE-SW and dip gently towards the NW. Magnetic foliations are mainly perpendicular and oblique to the elongation of the pluton in map view (NW-SE) and show a concentric pattern at the central part, where the more acid rocks crop out. Magnetic lineations are scattered between NW-SE and NE-SW and plunge shallowly to the N. In map view magnetic lineations are distributed in domains normal to the elongation of the pluton. The contours of P' (degree of magnetic anisotropy) are oriented NE-SW and bands of oblate and prolate ellipsoids alternate perpendicular to the elongation of the pluton in map view. P' is between 1.009 and 1.055 in 93% of the specimens. Such low values are currently recorded in granites having magmatic fabrics and for which the anisotropy is mainly carried by biotite. The attitude of the magnetic foliation and the magnetic lineation, the geometry of the pluton, and their relationship with the host-rock structure suggest an intrusion contemporary with a transpressional regime, syntectonic with the late stages of the Variscan orogeny.  相似文献   

4.
This paper aims to decipher the thermal evolution of the Montagne Noire Axial Zone (MNAZ, southern French Massif Central) gneiss core and its metasedimentary cover through determination of P–T paths and temperature gradients. Migmatitic gneiss from the core of the dome record a clockwise evolution culminating at 725 ± 25 °C and 0.8 ± 0.1 GPa with partial melting, followed by a decompression path with only minor cooling to 690 ± 25° C and 0.4 ± 0.1 GPa. Field structural analyses as well as detailed petrological observations indicate that the cover sequence experienced LP‐HT metamorphism. Apparent thermal gradients within the cover were determined with garnet–biotite thermometry and Raman Spectroscopy on Carbonaceous Matter. High‐temperature apparent gradients (e.g. 530 °C km?1 along one transect) are explained by late brittle–ductile extensional shearing evidenced by phyllonites that post‐date peak metamorphism. In areas where normal faults are less abundant and closely spaced, gradients of 20 to 50 °C km?1 are calculated. These gradients can be accounted for by a combination of dome emplacement and ductile shearing (collapse of isotherms), without additional heat input. Finally, the thermal evolution of the MNAZ is typical for many gneiss domes worldwide as well as with other LP‐HT terranes in the Variscides.  相似文献   

5.
The tectonic evolution of the Rhodope massif involves Mid-Cretaceous contractional deformation and protracted Oligocene and Miocene extension. We present structural, kinematic and strain data on the Kesebir–Kardamos dome in eastern Rhodope, which document early Tertiary extension. The dome consists of three superposed crustal units bounded by a low-angle NNE-dipping detachment on its northern flank in Bulgaria. The detachment separates footwall gneiss and migmatite in a lower unit from intermediate metamorphic and overlying upper sedimentary units in the hanging wall. The high-grade metamorphic rocks of the footwall have recorded isothermal decompression. Direct juxtaposition of the sedimentary unit onto footwall rocks is due to local extensional omission of the intermediate unit. Structural analysis and deformational/metamorphic relationships give evidence for several events. The earliest event corresponds to top-to-the SSE ductile shearing within the intermediate unit, interpreted as reflecting Mid-Late Cretaceous crustal thickening and nappe stacking. Late Cretaceous–Palaeocene/Eocene late-tectonic to post-tectonic granitoids that intruded into the intermediate unit between 70 and 53 Ma constrain at least pre-latest Late Cretaceous age for the crustal-stacking event. Subsequent extension-related deformation caused pervasive mylonitisation of the footwall, with top-to-the NNE ductile, then brittle shear. Ductile flow was dominated by non-coaxial deformation, indicated by quartz c-axis fabrics, but was nearly coaxial in the dome core. Latest events relate to brittle faulting that accommodated extension at shallow crustal levels on high-angle normal faults and additional movement along strike-slip faults. Radiometric and stratigraphic constraints bracket the ductile, then brittle, extensional events at the Kesebir–Kardamos dome between 55 and 35 Ma. Extension began in Paleocene–early Eocene time and displacement on the detachment led to unroofing of the intermediate unit, which supplied material for the syn-detachment deposits in supra-detachment basin. Subsequent cooling and exhumation of the footwall unit from beneath the detachment occurred between 42 and 37 Ma as indicated by mica cooling ages in footwall rocks, and extension proceeded at brittle levels with high-angle faulting constrained at 35 Ma by the age of hydrothermal adularia crystallized in open spaces created along the faults. This was followed by Late Eocene–Oligocene post-detachment overlap successions and volcanic activity. Crustal extension described herein is contemporaneous with the closure of the Vardar Ocean to the southwest. It has accommodated an earlier hinterland-directed unroofing of the Rhodope nappe complex, and may be pre-cursor of, and/or make a transition to the Aegean back-arc extension that further contributed to its exhumation during the Late Miocene. This study underlines the importance of crustal extension at the scale of the Rhodope massif, in particular, in the eastern Rhodope region, as it recognizes an early Tertiary extension that should be considered in future tectonic models of the Rhodope and north Aegean regions.  相似文献   

6.
《Geodinamica Acta》2013,26(6):385-392
In low grade rocks of the Eastern Pyrenees syn-orogenic Variscan extension is achieved by kilometric scale low-angle brittle normal faults. Evidence of these faults is generally depicted by subtractive contacts between Devonian upon Cambro-Ordovician rocks. Normal faults are cut by a Variscan granodiorite pluton and U-Pb available geochronologic data of the granodiorite, 305 Ma ± 3 [30], indicates that the age of extension can be attributed to Moscovian times. Extension postdates the main period of Variscan crustal thickening and occurs in N-S to NE-SW direction, roughly perpendicular to the trend of the main Variscan compressional structures. Such relationships point out that the onset of Variscan extension occurs after compression and prior to the granodiorite emplacement and to the deposition of post-orogenic volcanics.  相似文献   

7.
The Lugo gneiss dome, in the NW Iberian Massif (Spain) is a Variscan structure developed during late stages of orogenic collapse. Crustal extension was mainly accomplished by two kilometre-scale conjugate extensional shear zones and by the late development of the dome and a huge normal fault. These structures overprint previous contractional recumbent folds and a thrust fault. The Lugo dome and its southward continuation, the Sanabria dome, are the site of the conspicuous Eastern Galicia Magnetic Anomaly (EGMA), a N–S band, 50 km wide and 190 km long, with a maximum amplitude of 190 nT. Integrated potential field modelling of the EGMA and its corresponding gravity signature have been carried out aided by constraints provided by the measurement of c. 900 magnetic susceptibilities and by previous geophysical data, mainly seismic refraction and reflection profiles. Results suggest that a large volume of low-density migmatites and associated inhomogeneous granites are the main source of the magnetic anomaly. Small massifs of basic and ultrabasic rocks inside the migmatites and high-susceptibility iron ore bodies sparsely distributed in low-grade Middle Ordovician slates are also thought to contribute to the anomaly but to a minor extent. Although otherwise similar to other gneiss domes, the Lugo dome is accompanied by a striking magnetic anomaly whose origin is discussed in terms of the tectonic evolution of this structure and the provenance of the magnetite-bearing migmatites and inhomogeneous granites that core it.  相似文献   

8.
During the Late Palaeozoic Variscan Orogeny, Cambro‐Ordovician and/or Neoproterozoic metasedimentary rocks of the Albera Massif (Eastern Pyrenees) were subject to low‐pressure/high‐temperature (LPHT) regional metamorphism, with the development of a sequence of prograde metamorphic zones (chlorite‐muscovite, biotite, andalusite‐cordierite, sillimanite and migmatite). LPHT metamorphism and magmatism occurred in a broadly compressional tectonic regime, which started with a phase of southward thrusting (D1) and ended with a wrench‐dominated dextral transpressional event (D2). D1 occurred under prograde metamorphic conditions. D2 started before the P–T metamorphic climax and continued during and after the metamorphic peak, and was associated with igneous activity. P–T estimates show that rocks from the biotite‐in isograd reached peak‐metamorphic conditions of 2.5 kbar, 400 °C; rocks in the low‐grade part of the andalusite‐cordierite zone reached peak metamorphic conditions of 2.8 kbar, 535 °C; rocks located at the transition between andalusite‐cordierite zone and the sillimanite zone reached peak metamorphic conditions of 3.3 kbar, 625 °C; rocks located at the beginning of the anatectic domain reached peak metamorphic conditions of 3.5 kbar, 655 °C; and rocks located at the bottom of the metamorphic series of the massif reached peak metamorphic conditions of 4.5 kbar, 730 °C. A clockwise P–T trajectory is inferred using a combination of reaction microstructures with appropriate P–T pseudosections. It is proposed that heat from asthenospheric material that rose to shallow mantle levels provided the ultimate heat source for the LPHT metamorphism and extensive lower crustal melting, generating various types of granitoid magmas. This thermal pulse occurred during an episode of transpression, and is interpreted to reflect breakoff of the underlying, downwarped mantle lithosphere during the final stages of oblique continental collision.  相似文献   

9.
Staurolite–cordierite assemblages are common in mica schists of the Aston and Hospitalet gneiss domes of the central Axial Zone, Pyrenees (France, Andorra). Within a 200 m wide zone, staurolite, cordierite and andalusite porphyroblasts contain inclusion trails that preserve the same stage of development of a crenulation cleavage, strongly suggesting that all three phases are contemporaneous. Their syntectonic growth occurred during a short period at the beginning of the formation of the dominant schistosity (S2) of the domes. Staurolite and cordierite touching each other further indicates an equilibrium relationship. Whole‐rock analyses show that some staurolite–cordierite schists are depleted in K2O compared to post‐Archean shales (PAAS) and amphibolite facies pelites. Analysis of the st‐crd paragenesis in K‐poor schists without muscovite using KFMASH and MnNCKFMASH petrogentic grids, pseudosections and AFM compatibility diagrams predicts stable conditions at pressures of ~3.5 kbar at 575 °C. For metapelites with intermediate XMg values (0.7 >  XMg >0.48) a ‘muscovite‐out window’ exists from 550–650 °C at 3.5 kbar in the KFMASH system. Conventional thermobarometry (GB‐GASP, AvT‐AvP) and petrogenetic grids show an isobaric P–T path to peak temperatures of ~650 °C, supported by the presence of sillimanite‐K‐feldspar gneiss and migmatites. LP‐HT metamorphism in the Aston dome is related to early Carboniferous (c. 339 Ma) granitic intrusions into the dome core. As metamorphism is directly linked with the formation of the main S2 schistosity, the temporal relations demonstrated in this study conflict with previous studies which constrained LP‐HT metamorphism and the development of flat‐lying schistosity to the late Carboniferous (315–305 Ma) – at least in the eastern Axial Zone.  相似文献   

10.
The Hercynian Bordères-Louron pluton (20 km2) in the Central Pyrenees intrudes Devonian and Carboniferous metasediments. It shows a concentric zoning and consists of a significant proportion of (quartz) gabbros in its periphery, and of granodiorites, biotite monzogranites and biotite-muscovite monzogranites in its core. AMS study shows that the pluton corresponds to an elongated dome with a N100°E-trending axis. The anisotropy intensity Ppara% is high in the south and in the core of the pluton, whereas it is low in the north. The shape parameter T indicates that the fabric is strongly planar in a large central band oriented NW-SE, whereas it is strongly linear in the western and eastern tips of the pluton. These characteristics suggest that the Bordères-Louron pluton emplaced in two episodes: (1) intrusion of mafic magmas along a N100°E sill parallel to the regional foliation of the host metasediments; and (2) injection of three successive silicic batches (granodiorite, biotite monzogranite, two-micas monzogranite) which pushed aside the early mafic injections. In situ U-Pb dating of zircon grains indicates that the emplacement age of the biotite monzogranite is 309 ± 4 Ma, synchronous with the D 2 dextral transpressive event and close to the ages of the eastern Pyrenean plutons, may be slightly older.  相似文献   

11.
The structural and magnetic fabric study of the Marimanha granite, Axial Zone of the Pyrenees, provides new data to characterize the zonation and the internal structure of the pluton. The Marimanha granite intrudes Cambro–Ordovician clastic rocks and Silurian–Devonian limestones and slates. The zonation of the low field magnetic susceptibility, consistent with the petrological zonation of the igneous body, indicates a concentric arrangement of rock types, with more basic compositions at the external areas. This pluton is characterized by a low susceptibility, and rock–magnetic studies indicate a majority of “paramagnetic” samples. Magnetic foliations strike parallel to petrographic contacts and to contours of zonation of magnetic susceptibility, and show a dominant NE–SW strike, steeply dipping towards the North. Locally, in the northern border of the pluton foliation directions become perpendicular to petrographic contacts and depict sigmoidal trajectories. Magnetic lineations are characterized by the predominance of NE–SW trends with shallow plunges to the NE and SW. These foliations and lineations are parallel to the slight elongation of internal petrographic zonation. Magnetic fabric within the granitoid body and internal elliptical shape of petrographic zonation, suggest an intrusion contemporary with a transpressional regime and NNW–SSE shortening, syntectonic with the late stages of the Variscan orogeny. These results are in accordance with anisotropy of magnetic susceptibility studies of others plutons in the Pyrenees. To explain the origin of the Marimanha granite we propose magma ascent through faults at depth and emplacement by ballooning in situ at the rheological boundary between Cambro–Ordovician and Siluro–Devonian metasediments.  相似文献   

12.
Field work in the South-Central Pyrenees suggests that omission contacts (i.e. younger over older rocks) occur at the base of the Cadí unit (Cadí thrust), and pass laterally into thrusts. This change occurs across tear faults which are present in the hangingwall of the Cadí thrust sheet and which controlled the deposition of Upper Cretaceous sediments (Adraén formation). Detailed mapping in the contact area between the Nogueres and Cadí units has shown that the actual thrust geometry in the study area is controlled by preexisting normal and transfer faults which developed in an already compressional context. Lateral ramps or tear faults develop depending on the angle between the pre-existing extensional transfer fault and the thrust transport direction.  相似文献   

13.
Gneiss domes involving the South Tibetan Detachment System provide evidence for crustal extension simultaneous with shortening. The Nielaxiongbo gneiss dome is composed of a metamorphic complex of granitic gneiss, amphibolite, and migmatite; a ductilely deformed middle crustal layer of staurolite- or garnet-bearing schist; and a cover sequence of weakly metamorphosed Triassic and Lower Cretaceous strata. The middle crust ductilely deformed layer is separated from both the basement complex and the cover sequence by lower and upper detachments, respectively, with a smaller detachment fault occurring within the ductilely deformed layer. Leucogranites crosscut the basement complex, the lower detachment, and the middle crustal layer, but do not intrude the upper detachment or the cover sequence. Three deformational fabrics are recognized: a N–S compressional fabric (D1) in the cover sequence, a north- and south-directed extensional fabric (D2) in the upper detachment and lower tectonic units, and a deformation (D3) related to the leucogranite intrusion. SHRIMP zircon U–Pb dating yielded a metamorphic age of ~514 million years for the amphibolite and a crystallization age of ~20 million years for the leucogranite. Hornblende from the amphibolite has an 40Ar/39Ar age of 18 ± 0.3 million years, whereas muscovites from the schist and leucogranite yielded 40Ar/39Ar ages between 13.5 ± 0.2 and 13.0 ± 0.2 million years. These results suggest that the basement was consolidated at ~510 Ma and then exhumed during extension and silicic plutonism at ~20 Ma. Continuing exhumation led to cooling through the 500°C Ar closure temperature in hornblende at ~18 Ma to the 350°C Ar closure temperature in muscovite at ~13 Ma. The middle crustal ductilely deformed layer within gneiss domes of southern Tibet defines a southward-extruding ductile channel, marked by leucogranites emplaced into migmatites and amphibolites. We propose a model involving thinned upper crust for the initial extension of the Tibetan Plateau in the early Miocene.  相似文献   

14.
A kilometre-scale shear zone is recognized in the Cambro–Ordovician schist of the Bossòst dome, a Variscan metamorphic and structural dome in the Axial Zone of the central Pyrenees. Non-coaxial deformation is recorded by rotated garnet and staurolite porphyroblasts following regional metamorphism M1, while coaxial conditions prevailed during later contact metamorphic M2 growth of andalusite and cordierite. Mineral compositions and bulk rock analyses show that garnet–staurolite–andalusite–cordierite assemblages are significantly enriched in Mg and Mn over the garnet–staurolite assemblage, which lacks sufficient Mg for cordierite to form. The garnet–staurolite assemblage preserves conditions during M1, estimated by AFM diagrams and PT pseudosections to be 5.5 kbar and 580 °C, respectively. Pseudosections also indicate that staurolite is not a stable phase in cordierite–andalusite assemblages of M2, suggesting polyphase metamorphism and decompression along a clockwise PT path for the staurolite–cordierite–andalusite assemblages. This concurs with proposed extensional tectonics along the regional shear zone. To cite this article: J.E. Mezger et al., C. R. Geoscience 336 (2004).  相似文献   

15.
In the southern French Massif Central, the Rocles leucogranite of Variscan age consists of three petrographic facies; textural analysis shows that they experienced the same subsolidus deformation. New chemical U-Th-Pb dating on monazite yielded 324 ± 4 Ma and 325 ± 5 Ma ages for muscovite-rich and biotite-rich facies respectively. AMS-study results agree with petrostructural observations. The magnetic planar and linear fabrics, which correspond to the preferred orientation of biotite and muscovite, are consistent with the foliation and lineation defined by the preferred mineral orientation. This fabric developed during pluton emplacement. The accordance of this granite foliation with that observed in the host rock, suggests that the Rocles pluton is a laccolith, but its present geometry resulted from post-emplacement southward tilting due to the uplift of the Late Carboniferous Velay dome. Restoration of the primary geometry of the pluton and its country-rocks to a flat-lying attitude places the granite lineation close to the trend measured in other plutons of the area. This restoration further supports the interpretation of the Rocles laccolith as a pluton emplaced along a tectonic contact reactivated during the late-orogenic collapse of the Variscan Belt.  相似文献   

16.
The purpose of this study is to achieve an understanding of the failure mechanisms which caused the Eaux-Bonnes landslide. The geological investigations carried out on the slope of the landslide showed that the sliding mass was cut by numerous faults. The factors controlling the landslide failure were complex, and it is known that neither earthquakes nor heavy precipitation could have triggered the disruption. The groundwater within the solid rock mass has been surveyed, because significant precipitation events during the 2 years preceding the beginning of the paroxysmal phase of the landslide could have led to an increase in pore water pressure along these fractures, thereby triggering the landslide. In order to achieve a full understanding of the failure mechanism, and to identify the origin of the groundwater, a hydrogeochemical survey was carried out over a period of 1 year. The results reveal the existence of high sulphate concentrations in the groundwater originating in springs located at the bottom of the landslide. The sulphate concentrations are correlated with high calcium concentrations, and clearly indicate the presence of gypsum in the vicinity of the lower reaches of the landslide. The presence of gypsum in this area of the Pyrenees suggests that deep groundwater played a role in triggering the landslide.  相似文献   

17.
Deformational, metamorphic, monazite age and fabric data from Rengali Province, eastern India converge towards a multi-scale transpressional deformational episode at ca. 498–521 Ma which is linked with the latest phase of tectonic processes operative at proto-India-Antarctica join. Detailed sector wise study on mutual overprinting relationships of macro-to microstructural elements suggest that deformation was regionally partitioned into fold-thrust dominated shortening zones alternating with zones of dominant transcurrent deformation bounded between the thrust sense Barkot Shear Zone in the north and the dextral Kerajang Fault Zone in the south. The strain partitioned zones are further restricted between two regional transverse shear zones, the sinistral Riamol Shear Zone in the west and the dextral Akul Fault Zone in the east which are interpreted as synthetic R and antithetic R' Riedel shear plane, respectively. The overall structural disposition has been interpreted as a positive flower structure bounded between the longitudinal and transverse faults with vertical extrusion and symmetric juxtaposition of mid-crustal amphibolite grade basement gneisses over low-grade upper crustal rocks emanating from the central axis of the transpressional belt.  相似文献   

18.
Low pressure-high temperature (LPHT) metamorphism, with geothermal gradients in the order of 50–100°C/km, is a common feature of the late evolution of collisional orogens. These abnormal thermal conditions may be the results of complex interactions between magmatism, metamorphism and deformation. The Agly massif, in the French Pyrenees, preserves the metamorphic footprints of the late Variscan thermal structure of an almost continuous section from the upper and middle continental crust. The upper crust is characterized by a very high geothermal gradient of ~55°C/km, evolving from greenschist to amphibolite facies, while the middle crust, exposed in a gneissic core, exhibits granulite facies conditions with a near isothermal geothermal gradient (<8°C/km) between 740 and 790°C. The abnormal and discontinuous crustal geothermal gradient, dated at c. 305 Ma on syn-granulitic monazite by LA-ICP-MS, is interpreted to be the result of magmatic intrusions at different structural levels in the crust: the Ansignan charnockite (c. 305 Ma) in the deepest part of the gneissic core, the Tournefort granodiorite (c. 308 Ma) at the interface between the gneissic core and the upper crust and the Saint-Arnac granite (c. 304 Ma) in the upper section of the massif. The heat input from these magmas combined with the thermal buffering effect of the biotite dehydration-melting reaction resulted in the near isothermal geothermal gradient in the gneissic core (melt-enhanced geotherm). The higher geothermal gradient (>50°C/km) in the upper crust is only due to conduction between the hot middle crust and the Earth's surface. The estimated maximum finite pressure range suggests that ~10 to 12 km of crust are exposed in the Agly massif while the present-day thickness does not exceed 5–6 km. This pressure/depth gap is consistent with the presence of several normal mylonitic shear zones that could have contributed to the subtraction of ~5 km of the rock pile. Monazite U–Th–Pb ages carried out on monazite overgrowths from a highly mylonitized sample suggest that this vertical thinning of the massif occurred at c. 296–300 Ma. This later Variscan extension might have slightly perturbed the 305 Ma geothermal gradient, resulting in an apparent higher conductive geothermal gradient in the upper crust. Although the Agly massif has been affected by Cretaceous extension and Eocene Alpine compression, we suggest that most of the present-day thickness of the column rock was acquired by the end of the Palaeozoic.  相似文献   

19.
The Montagne Noire in the southernmost French Massif Central is made of an ENE‐elongated gneiss dome flanked by Palaeozoic sedimentary rocks. The tectonic evolution of the gneiss dome has generated controversy for more than half a century. As a result, a multitude of models have been proposed that invoke various tectonic regimes and exhumation mechanisms. Most of these models are based on data from the gneiss dome itself. Here, new constraints on the dome evolution are provided based on a combination of very low‐grade petrology, K–Ar geochronology, field mapping and structural analysis of the Palaeozoic western Mont Peyroux and Faugères units, which constitute part of the southern hangingwall of the dome. It is shown that southward‐directed Variscan nappe‐thrusting (D1) and a related medium‐P metamorphism (M1) are only preserved in the area furthest away from the gneiss dome. The regionally dominant pervasive tectono‐metamorphic event D2/M2 largely transposes D1 structures, comprises a higher metamorphic thermal gradient than M1 (transition low‐P and medium‐P metamorphic facies series) and affected the rocks between c. 309 and 300 Ma, post‐dating D1/M1 by more than 20 Ma. D2‐related fabrics are refolded by D3, which in its turn, is followed by dextral‐normal shearing along the basal shear zone of both units at c. 297 Ma. In the western Mont Peyroux and Faugères units, D2/M2 is largely synchronous with shearing along the southern dome margin between c. 311 and 303 Ma, facilitating the emplacement of the gneiss dome into the upper crust. D2/M2 also overlaps in time with granitic magmatism and migmatization in the Zone Axiale between c. 314 and 306 Ma, and a related low‐P/high‐T metamorphism at c. 308 Ma. The shearing that accompanied the exhumation of the dome therefore was synchronous with a peak in temperature expressed by migmatization and intrusion of melts within the dome, and also with the peak of metamorphism in the hangingwall. Both, the intensity of D2 fabrics and the M2 metamorphic grade within the hangingwall, decrease away from the gneiss dome, with grades ranging from the anchizone–epizone boundary to the diagenetic zone. The related zonation of the pre‐D3 metamorphic field gradients paralleled the dome. These observations indicate that D2/M2 is controlled by the exhumation of the Zone Axiale, and suggest a coherent kinematic between the different crustal levels at some time during D2/M2. Based on integration of these findings with regional geological constraints, a two‐stage exhumation of the gneiss dome is proposed: during a first stage between c. 316 and 300 Ma dome emplacement into the upper crust was controlled by dextral shear zones arranged in a pull‐apart‐like geometry. The second stage from 300 Ma onwards was characterized by northeast to northward extension, with exhumation accommodated by north‐dipping detachments and hangingwall basin formation along the northeastern dome margin.  相似文献   

20.
Situated in the inner zone of the Iberian massif, the Tormes gneiss dome is composed of two units with different lithological contents and metamorphic evolution. The upper unit consists of a thick sequence of low- to high-grade metasediments, ranging in age from Late Proterozoic to Silurian. The lower unit is a high-grade metamorphic complex composed mostly of granitic orthogneisses and minor amounts of metasediments. Four Variscan deformations are distinguished. At deep structural levels, the most prominent D1 ductile structures are recumbent anticlines with NE vergence, cored by orthogneisses, and separated by narrow synclines. These recumbent folds grade upward into less-flattened and NE-vergent steeper structures. The overall structure is that of a large-scale stacking of orthogneissic slices underlying a shortened and thickened sedimentary sequence that formed a huge orogenic wedge in this region. During the heterogeneous and ductile D2 deformation, the rheological behaviour of the orthogneisses and metasediments became similar. The vertical D2 shortening associated with a strong top-to-the-SE shearing in a large-scale subhorizontal shear zone folded the prior SW-dipping structures, developing SW-vergent folds with axes close to NW–SE L2 mineral and stretching lineations. D2 corresponds to post-collisional crustal thinning following D1 crustal thickening. The D3 and D4 late structures are much more localized and occurred under retrograde conditions, but have a significant effect on the final geometry of the metamorphic complex. This sequence of contractional and extensional deformative events permits a tectonic interpretation in the framework of the dynamic wedge theory based on the evolution in the time of the stress configuration applied to a portion of the crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号