首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Banded iron formation (BIF) comprising high grade iron ore are exposed in Gorumahisani‐Sulaipat‐Badampahar belt in the east of North Orissa Craton, India. The ores are multiply deformed and metamorphosed to amphibolite facies. The mineral assemblage in the BIF comprises grunerite, magnetite/martite/goethite and quartz. Relict carbonate phases are sometimes noticed within thick iron mesobands. Grunerite crystals exhibit needles to fibrous lamellae and platy form or often sheaf‐like aggregates in linear and radial arrangement. Accicular grunerite also occur within intergranular space of magnetite/martite. Grunerite needles/accicules show higher reflectivity in chert mesoband and matching reflectance with that of adjacent magnetite/martite in iron mesoband. Some grunerite lamellae sinter into micron size magnetite platelets. This grunerite has high ferrous oxide and cobalt oxide content but is low in Mg‐ and Mn‐oxide compared to the ones, reported from BIFs, of Western Australia, Nigeria, France, USA and Quebec. The protolith of this BIF is considered to be carbonate containing sediments, with high concentrations of Fe and Si but lower contents of cobalt and chromium ± Mg, Mn and Ni. During submarine weathering quartz, sheet silicate (greenalite) and Fe‐Co‐Cr (Mg‐Mn‐Ni)‐carbonate solid solution were formed. At the outset of the regional metamorphic episode grunerite, euhedral magnetite and recrystalized quartz were developed. Magnetite was grown at the expense of carbonate and later martitized under post‐metamorphic conditions. With the increasing grade of metamorphism greenalite transformed to grunerite.  相似文献   

2.
The uncommon Mg-rich and Ti-poor Zhaoanzhuang serpentine-magnetite ores within Taihua Group of the North China Craton(NCC) remain unclear whether the protolith was sourced from ultramafic rocks or chemical sedimentary sequences. Here we present integrated petrographic and geochemical studies to characterize the protoliths and to gain insights on the ore-forming processes. Iron ores mainly contain low-Ti magnetite(TiO_2 ~0.1 wt%) and serpentine(Mg#=92.42–96.55), as well as residual olivine(Fo=89–90), orthopyroxene(En=89–90) and hornblende. Magnetite in the iron ores shows lower Al, Sc, Ti, Cr, Zn relative to that from ultramafic Fe-Ti-V iron ores, but similar to that from metamorphic chemical sedimentary iron deposit. In addition, interstitial minerals of dolomite, calcite, apatite and anhydrite are intergrown with magnetite and serpentine, revealing they were metamorphic, but not magmatic or late hydrothermal minerals. Wall rocks principally contain magnesian silicates of olivine(Fo=83–87), orthopyroxene(En=82–86), humite(Mg#=82–84) and hornblende [XMg=0.87–0.96]. Dolomite, apatite and anhydrite together with minor magnetite, thorianite(Th-rich oxide) and monazite(LREE-rich phosphate) are often seen as relicts or inclusions within magnesian silicates in the wall rocks, revealing that they were primary or earlier metamorphic minerals than magnesian silicates. And olivine exists as subhedral interstitial texture between hornblende, which shows later formation of olivine than hornblende and does not conform with sequence of magmatic crystallization. All these mineralogical features thus bias towards their metamorphic, rather than magmatic origin. The dominant chemical components of the iron ores are SiO_2(4.77–25.23 wt%), Fe_2O_3 T(32.9–80.39 wt%) and MgO(5.72–27.17 wt%) and uniformly, those of the wall rocks are also SiO_2(16.34–48.72 wt%), Mg O(16.71–33.97 wt%) and Fe_2O_3 T(6.98–30.92 wt%). The striking high Fe-Mg-Si contents reveal that protolith of the Zhaoanzhuang iron deposit was more likely to be chemical sedimentary rocks. The distinct high-Mg feature and presence of abundant anhydrite possibly indicate it primarily precipitated in a confined seawater basin under an evaporitic environment. Besides, higher contents of Al, Ti, P, Th, U, Pb, REE relative to other Precambrian iron-rich chemical precipitates(BIF) suggest some clastic terrestrial materials were probably input. As a result, we think the Zhaoanzhuang iron deposit had experienced the initial Fe-Mg-Si marine precipitation, followed by further Mg enrichment through marine evaporated process, subsequent high-grade metamorphism and late-stage hydrothermal fluid modification.  相似文献   

3.
Banded iron formation (BIF) of the Gorumahisani–Sulaipat–Badampahar (GSB) belt in Singhbhum Craton, India, consists predominantly of magnetite. This BIF is intruded by a magnetite dyke. The magnetite dyke is massive and compact with minor sulphide minerals while the host banded magnetite ore, a component of the BIF, shows thin lamination. The magnetite ore of the dyke is fine to medium grained and exhibits interlocking texture with sharp grain boundaries, which is different from the banded magnetite that is medium to coarse grained and show irregular martitised and goethitised grain boundaries. Relics of Fe–Ca–Mn–Mg‐carbonate and iron silicates (grunerite and cummingtonite) are observed in the banded magnetite. The intrusive magnetite is distinctly different in minor, trace and REE geochemistry from the banded magnetite. The banded magnetite contains higher amounts of Si, Al, Mn, Ca, Mg, Sc, Ga, Nb, Zr, Hf, Co, Rb and Cu. In contrast, the massive magnetite is enriched in Cr, Zn, V, Ni, Sr, Pb, Y, Ta, Cs and U with higher abundance of HREE. In the chondrite normalized plot, the massive magnetite shows a slight positive Eu anomaly while the banded ore does not show any Eu anomaly. Field disposition, morphology, mineralogy and chemistry show that the intrusive magnetite dyke is of igneous origin, while magnetite in BIF formed from a carbonate protolith through the process of sedimentation.  相似文献   

4.
The Madoonga iron ore body hosted by banded iron formation (BIF) in the Weld Range greenstone belt of Western Australia is a blend of four genetically and compositionally distinct types of high-grade (>55 wt% Fe) iron ore that includes: (1) hypogene magnetite–talc veins, (2) hypogene specular hematite–quartz veins, (3) supergene goethite–hematite, and (4) supergene-modified, goethite–hematite-rich detrital ores. The spatial coincidence of these different ore types is a major factor controlling the overall size of the Madoonga ore body, but results in a compositionally heterogeneous ore deposit. Hypogene magnetite–talc veins that are up to 3 m thick and 50 m long formed within mylonite and shear zones located along the limbs of isoclinal, recumbent F1 folds. Relative to least-altered BIF, the magnetite–talc veins are enriched in Fe2O3(total), P2O5, MgO, Sc, Ga, Al2O3, Cl, and Zr; and depleted in SiO2 and MnO2. Mafic igneous countryrocks located within 10 m of the northern contact of the mineralised BIF display the replacement of primary igneous amphibole and plagioclase, and metamorphic chlorite by hypogene ferroan chlorite, talc, and magnetite. Later-forming, hypogene specular hematite–quartz veins and their associated alteration halos partly replace magnetite–talc veins in BIF and formed during, to shortly after, the F2-folding and tilting of the Weld Range tectono-stratigraphy. Supergene goethite–hematite ore zones that are up to 150 m wide, 400 m long, and extend to depths of 300 m replace least-altered BIF and existing hypogene alteration zones. The supergene ore zones formed as a result of the circulation of surface oxidised fluids through late NNW- to NNE-trending, subvertical brittle faults. Flat-lying, supergene goethite–hematite-altered, detrital sediments are concentrated in a paleo-topographic depression along the southern side of the main ENE-trending ridge at Madoonga. Iron ore deposits of the Weld Range greenstone belt record remarkably similar deformation histories, overprinting hypogene alteration events, and high-grade Fe ore types to other Fe ore deposits in the wider Yilgarn Craton (e.g. Koolyanobbing and Windarling deposits) despite these Fe camps being presently located more than 400 km apart and in different tectono-stratigraphic domains. Rather than the existence of a synchronous, Yilgarn-wide, Fe mineralisation event affecting BIF throughout the Yilgarn, it is more likely that these geographically isolated Fe ore districts experienced similar tectonic histories, whereby hypogene fluids were sourced from commonly available fluid reservoirs (e.g. metamorphic, magmatic, or both) and channelled along evolving structures during progressive deformation, resulting in several generations of Fe ore.  相似文献   

5.
Ultramafic hornfelses containing the assemblages hornblende + olivine + spinel + magnetite, and clinopyroxene + olivine + spinel + magnetite, are reported from two localities in the Biggenden Beds in southeastern Queensland. They are associated with mafic hornfelses in the contact metamorphic aureoles of the Mungore Adamellite and the Wateranga Gabbro. Chemical composition and minerology of the olivine + amphibole + spinel + magnetite hornfelses suggest that they represent metamorphosed picritic rocks, or possibly, altered serpentinites (blackwall rocks), whereas the clinopyroxene + olivine + spinel + magnetite hornfelses are interpreted as metamorphosed altered clinopyroxene‐rich picritic rocks. Cr‐Fe spinel relations in the hornfelses indicate partial homogenisation of primary chromian spinel with secondary magnetite ± ferrichromite during contact metamorphism.  相似文献   

6.
《Resource Geology》2018,68(3):287-302
Banded iron formations (BIFs) are the most significant source of iron in the world. In this study, we report petrographic and geochemical data of the BIF from the Meyomessi area in the Ntem Complex, southern Cameroon, and discuss their genesis and the iron enrichment process. Field investigations and petrography have revealed that the studied BIF samples are hard; compact; weakly weathered; and composed of magnetite, subordinate quartz, and geothite. The geochemical composition of the whole rock reveals that iron and silica represent more than 98 wt% of the average composition, whereas Al2O3, TiO2, and high‐field strength elements (HFSE) contents are very low, similar to detritus‐free marine chemical precipitates. The total iron (TFe) contents range from 48.71 to 65.32 wt % (average of 53.29 wt %) and, together with the low concentrations of deleterious elements (0.19 wt % P on average), are consistent with medium‐grade iron ores by global standards. This interpretation is confirmed by the SiO2/Fe2O3total versus (MgO + CaO + MnO)/Fe2O3total discrimination plot in which most of the Meyomessi BIF samples fall in the field of medium‐grade siliceous ore. Only one sample (MGT94) plots in the high‐grade magnetite–geothite ore domain. The high Fe/Ti (376.36), Fe/Al (99.90), and Si/Al (29.26) ratios of the sample are consistent with significant hydrothermal components. The rare earth elements (REE) contents of the studied BIF samples are very low (∑REE: 0.81–1.47 ppm), and the Post‐Archaean Australian Shale (PAAS)‐normalized patterns display weak positive Eu anomalies (Eu/Eu*: 1.15–1.33), suggesting a syngenetic low‐temperature hydrothermal solutions, similar to other BIF worldwide. However, the Meyomessi BIFs show high Fe contents when compared to the other BIFs. This indicates an epigenetic mineralization process affected the Meyomessi BIF. From the above results and based on the field and analytical data, we propose that the genetic model of iron ores at the Meyomessi area involves two stages of the enrichment process, hypogene enrichment of BIF protore by metamorphic and magmatic fluids followed by supergene alteration as indicated by the presence of goethite in the rocks.  相似文献   

7.
冀东马兰峪地区出露较大面积的太古宙含紫苏辉石的英云闪长质片麻岩,其中角闪石矿物的Si、Fe、Mg、Mg/(Mg+Fe)等呈明显的环带特点。研究表明,其成分环带与角闪石生长过程和变质条件有关。不同环带成分的热力学计算得到一条逆时针P-T-t轨迹。该P-T-t轨迹与不同变质阶段平衡共生的矿物温度压力计计算的P-T-t轨迹相似。  相似文献   

8.
During emplacement and cooling, the layered mafic–ultramafic Kettara intrusion (Jebilet, Morocco) underwent coeval effects of deformation and pervasive fluid infiltration at the scale of the intrusion. In the zones not affected by deformation, primary minerals (olivine, plagioclase, clinopyroxene) were partially or totally altered into Ca‐amphibole, Mg‐chlorite and CaAl‐silicates. In the zones of active deformation (centimetre‐scale shear zones), focused fluid flow transformed the metacumulates (peridotites and leucogabbros) into ultramylonites where insoluble primary minerals (ilmenite, spinel and apatite) persist in a Ca‐amphibole‐rich matrix. Mass‐balance calculations indicate that shearing was accompanied by up to 200% volume gain; the ultramylonites being enriched in Si, Ca, Mg, and Fe, and depleted in Na and K. The gains in Ca and Mg and losses in Na and K are consistent with fluid flow in the direction of increasing temperature. When the intrusion had cooled to temperatures prevailing in the country rock (lower greenschist facies), deformation was still active along the shear zones. Intense intragranular fracturing in the shear zone walls and subsequent fluid infiltration allowed shear zones to thicken to metre‐scale shear zones with time. The inner parts of the shear zones were transformed into chlorite‐rich ultramylonites. In the shear zone walls, muscovite crystallized at the expense of Ca–Al silicates, while calcite and quartz were deposited in ‘en echelon’ veins. Mass‐balance calculations indicate that formation of the chlorite‐rich shear zones was accompanied by up to 60% volume loss near the centre of the shear zones; the ultramylonites being enriched in Fe and depleted in Si, Ca, Mg, Na and K while the shear zones walls are enriched in K and depleted in Ca and Si. The alteration observed in, and adjacent to the chlorite shear zones is consistent with an upward migrating regional fluid which flows laterally into the shear zone walls. Isotopic (Sr, O) signatures inferred for the fluid indicate it was deeply equilibrated with host lithologies.  相似文献   

9.
Oxide–sulphide–Fe–Mg–silicate and titanite–ilmenite textures as well as their mineral compositions have been studied in felsic and intermediate orthogneisses across an amphibolite (north) to granulite facies (south) traverse of lower Archean crust, Tamil Nadu, south India. Titanite is limited to the amphibolite facies terrane where it rims ilmenite or occurs as independent grains. Pyrite is widespread throughout the traverse increasing in abundance with increasing metamorphic grade. Pyrrhotite is confined to the high‐grade granulites. Ilmenite is widespread throughout the traverse increasing in abundance with increasing metamorphic grade and occurring primarily as hemo‐ilmenite in the high‐grade granulite facies rocks. Magnetite is widespread throughout the traverse and is commonly associated with ilmenite. It decreases in abundance with increasing metamorphic grade. In the granulite facies zone, reaction rims of magnetite + quartz occur along Fe–Mg silicate grain boundaries. Magnetite also commonly rims or is associated with pyrite. Both types of reaction rims represent an oxidation effect resulting from the partial subsolidus reduction of the hematite component in ilmenite to magnetite. This is confirmed by the presence of composite three oxide grains consisting of hematite, magnetite and ilmenite. Magnetite and magnetite–pyrite micro‐veins along silicate grain boundaries formed over a wide range of post‐peak metamorphic temperatures and pressures ranging from high‐grade SO2 to low‐grade H2S‐dominated conditions. Oxygen fugacities estimated from the orthopyroxene–magnetite–quartz, orthopyroxene–hematite–quartz, and magnetite–hematite buffers average 2.5 log units above QFM. It is proposed that the trends in mineral assemblages, textures and composition are the result of an external, infiltrating concentrated brine containing an oxidizing component such as CaSO4 during high‐grade metamorphism later acted upon by prograde and retrograde mineral reactions that do not involve an externally derived fluid phase.  相似文献   

10.
Recently published activity–composition (ax) relations for minerals in upper amphibolite‐ and granulite facies intermediate and basic rocks have expanded our ability to interpret the petrological evolution of these important components of the lower continental crust. If such petrological modelling is to be reliable, the abundances and compositions of phases calculated at the interpreted conditions of metamorphic equilibration should resemble those in the sample under study. Here, petrological modelling was applied to six granulite facies rocks that formed in different tectonic environments and reached different peak metamorphic pressure–temperature (PT) conditions. While phase assemblages matching those observed in each sample can generally be calculated at PT conditions that approximate those of peak metamorphism, a consistent discrepancy was found between the calculated and observed compositions of amphibole and clinopyroxene. In amphibole, Si, Ca and A‐site K are underestimated by the model, while Al and A‐site Na are overestimated; comparatively, in clinopyroxene, Mg and Si are generally underestimated, while Fe2+ and Al are typically overestimated, compared to observed values. One consequence is a reversal in the Fe–Mg distribution coefficient (KD) between amphibole and clinopyroxene compared to observations. Some of these mismatches are attributed to the incorrect partitioning of elements between the predicted amphibole and clinopyroxene compositions; however, other discrepancies are the result of the incorrect prediction of major substitution vectors in amphibole and clinopyroxene. These compositional irregularities affect mineral modal abundance estimates and in turn the position and size (in PT space) of mineral assemblage fields, the effect becoming progressively more marked as the modal abundance of hornblende increases; hence, this study carries implications for estimating PT conditions of high‐temperature metabasites using these new ax relations.  相似文献   

11.
The BIF-hosted iron ore system represents the world's largest and highest grade iron ore districts and deposits. BIF, the precursor to low- and high-grade BIF hosted iron ore, consists of Archean and Paleoproterozoic Algoma-type BIF (e.g., Serra Norte iron ore district in the Carajás Mineral Province), Proterozoic Lake Superior-type BIF (e.g., deposits in the Hamersley Province and craton), and Neoproterozoic Rapitan-type BIF (e.g., the Urucum iron ore district).The BIF-hosted iron ore system is structurally controlled, mostly via km-scale normal and strike-slips fault systems, which allow large volumes of ascending and descending hydrothermal fluids to circulate during Archean or Proterozoic deformation or early extensional events. Structures are also (passively) accessed via downward flowing supergene fluids during Cenozoic times.At the depositional site the transformation of BIF to low- and high-grade iron ore is controlled by: (1) structural permeability, (2) hypogene alteration caused by ascending deep fluids (largely magmatic or basinal brines), and descending ancient meteoric water, and (3) supergene enrichment via weathering processes. Hematite- and magnetite-based iron ores include a combination of microplaty hematite–martite, microplaty hematite with little or no goethite, martite–goethite, granoblastic hematite, specular hematite and magnetite, magnetite–martite, magnetite-specular hematite and magnetite–amphibole, respectively. Goethite ores with variable amounts of hematite and magnetite are mainly encountered in the weathering zone.In most large deposits, three major hypogene and one supergene ore stages are observed: (1) silica leaching and formation of magnetite and locally carbonate, (2) oxidation of magnetite to hematite (martitisation), further dissolution of quartz and formation of carbonate, (3) further martitisation, replacement of Fe silicates by hematite, new microplaty hematite and specular hematite formation and dissolution of carbonates, and (4) replacement of magnetite and any remaining carbonate by goethite and magnetite and formation of fibrous quartz and clay minerals.Hypogene alteration of BIF and surrounding country rocks is characterised by: (1) changes in the oxide mineralogy and textures, (2) development of distinct vertical and lateral distal, intermediate and proximal alteration zones defined by distinct oxide–silicate–carbonate assemblages, and (3) mass negative reactions such as de-silicification and de-carbonatisation, which significantly increase the porosity of high-grade iron ore, or lead to volume reduction by textural collapse or layer-compaction. Supergene alteration, up to depths of 200 m, is characterised by leaching of hypogene silica and carbonates, and dissolution precipitation of the iron oxyhydroxides.Carbonates in ore stages 2 and 3 are sourced from external fluids with respect to BIF. In the case of basin-related deposits, carbon is interpreted to be derived from deposits underlying carbonate sequences, whereas in the case of greenstone belt deposits carbonate is interpreted to be of magmatic origin. There is only limited mass balance analyses conducted, but those provide evidence for variable mobilization of Fe and depletion of SiO2. In the high-grade ore zone a volume reduction of up to 25% is observed.Mass balance calculations for proximal alteration zones in mafic wall rocks relative to least altered examples at Beebyn display enrichment in LOI, F, MgO, Ni, Fe2O3total, C, Zn, Cr and P2O5 and depletions of CaO, S, K2O, Rb, Ba, Sr and Na2O. The Y/Ho and Sm/Yb ratios of mineralised BIF at Windarling and Koolyanobbing reflect distinct carbonate generations derived from substantial fluid–rock reactions between hydrothermal fluids and igneous country rocks, and a chemical carbonate-inheritance preserved in supergene goethite.Hypogene and supergene fluids are paramount for the formation of high-grade BIF-hosted iron ore because of the enormous amount of: (1) warm (100–200 °C) silica-undersaturated alkaline fluids necessary to dissolve quartz in BIF, (2) oxidized fluids that cause the oxidation of magnetite to hematite, (3) weakly acid (with moderate CO2 content) to alkaline fluids that are necessary to form widespread metasomatic carbonate, (4) carbonate-undersaturated fluids that dissolve the diagenetic and metasomatic carbonates, and (5) oxidized fluids to form hematite species in the hypogene- and supergene-enriched zone and hydroxides in the supergene zone.Four discrete end-member models for Archean and Proterozoic hypogene and supergene-only BIF hosted iron ore are proposed: (1) granite–greenstone belt hosted, strike-slip fault zone controlled Carajás-type model, sourced by early magmatic (± metamorphic) fluids and ancient “warm” meteoric water; (2) sedimentary basin, normal fault zone controlled Hamersley-type model, sourced by early basinal (± evaporitic) brines and ancient “warm” meteoric water. A variation of the latter is the metamorphosed basin model, where BIF (ore) is significantly metamorphosed and deformed during distinct orogenic events (e.g., deposits in the Quadrilátero Ferrífero and Simandou Range). It is during the orogenic event that the upgrade of BIF to medium- and high-grade hypogene iron took place; (3) sedimentary basin hosted, early graben structure controlled Urucum-type model, where glaciomarine BIF and subsequent diagenesis to very low-grade metamorphism is responsible for variable gangue leaching and hematite mineralisation. All of these hypogene iron ore models do not preclude a stage of supergene modification, including iron hydroxide mineralisation, phosphorous, and additional gangue leaching during substantial weathering in ancient or Recent times; and (4) supergene enriched BIF Capanema-type model, which comprises goethitic iron ore deposits with no evidence for deep hypogene roots. A variation of this model is ancient supergene iron ores of the Sishen-type, where blocks of BIF slumped into underlying karstic carbonate units and subsequently experienced Fe upgrade during deep lateritic weathering.  相似文献   

12.
The Blue Dot gold deposit, located in the Archean Amalia greenstone belt of South Africa, is hosted in an oxide (± carbonate) facies banded iron formation (BIF). It consists of three stratabound orebodies; Goudplaats, Abelskop, and Bothmasrust. The orebodies are flanked by quartz‐chlorite‐ferroan dolomite‐albite schist in the hanging wall and mafic (volcanic) schists in the footwall. Alteration minerals associated with the main hydrothermal stage in the BIF are dominated by quartz, ankerite‐dolomite series, siderite, chlorite, muscovite, sericite, hematite, pyrite, and minor amounts of chalcopyrite and arsenopyrite. This study investigates the characteristics of gold mineralization in the Amalia BIF based on ore textures, mineral‐chemical data and sulfur isotope analysis. Gold mineralization of the Blue Dot deposit is associated with quartz‐carbonate veins that crosscut the BIF layering. In contrast to previous works, petrographic evidence suggests that the gold mineralization is not solely attributed to replacement reactions between ore fluid and the magnetite or hematite in the host BIF because coarse hydrothermal pyrite grains do not show mutual replacement textures of the oxide minerals. Rather, the parallel‐bedded and generally chert‐hosted pyrites are in sharp contact with re‐crystallized euhedral to subhedral magnetite ± hematite grains, and the nature of their coexistence suggests that pyrite (and gold) precipitation was contemporaneous with magnetite–hematite re‐crystallization. The Fe/(Fe+Mg) ratio of the dolomite–ankerite series and chlorite decreased from veins through mineralized BIF and non‐mineralized BIF, in contrast to most Archean BIF‐hosted gold deposits. This is interpreted to be due to the effect of a high sulfur activity and increase in fO2 in a H2S‐dominant fluid during progressive fluid‐rock interaction. High sulfur activity of the hydrothermal fluid fixed pyrite in the BIF by consuming Fe2+ released into the chert layers and leaving the co‐precipitating carbonates and chlorites with less available ferrous iron content. Alternatively, the occurrence of hematite in the alteration assemblage of the host BIF caused a structural limitation in the assignment of Fe3+ in chlorite which favored the incorporation of magnesium (rather than ferric iron) in chlorite under increasing fO2 conditions, and is consistent with deposits hosted in hematite‐bearing rocks. The combined effects of reduction in sulfur contents due to sulfide precipitation and increasing fO2 during progressive fluid‐rock interactions are likely to be the principal factors to have caused gold deposition. Arsenopyrite–pyrite geothermometry indicated a temperature range of 300–350°C for the associated gold mineralization. The estimated δ34SΣS (= +1.8 to +2.5‰) and low base metal contents of the sulfide ore mineralogy are consistent with sulfides that have been sourced from magma or derived by the dissolution of magmatic sulfides from volcanic rocks during fluid migration.  相似文献   

13.
The petrography and mineral chemistry of magnetite from fifteen volcanogenic massive sulfide (VMS) deposits in Canada, and the Lasail VMS deposit in Oman, as well as from two VMS-associated banded iron formations (BIF), Austin Brook (New Brunswick, Canada) and Izok Lake (Nunavut, Canada), were investigated using optical microscopy, electron probe micro-analyzer (EPMA), and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The method of robust estimation for compositional data (robCompositions) was applied to investigate geochemical censored data. Among thirty-seven elements analyzed by EPMA and/or LA-ICP-MS in magnetite from the studied deposits/bedrock lithologies, only the results for Si, Ca, Zr, Al, Mg, Ti, Zn, Co and Ni contain < 40% censored values, and thus could be imputed using robCompositions. Imputed censored data were transformed using centered log-ratios to overcome the closure effect on compositional data. Transformed data were classified by partial least squares-discriminant analysis (PLS-DA) to identify different compositional characteristics of magnetite from VMS deposits and BIFs. The integration of petrography and mineral chemistry identifies three types of magnetite in VMS settings: magmatic, hydrothermal, and metamorphic. Magmatic magnetite in VMS deposit host bedrocks is characterized by ilmenite exsolution and may be overprinted by metamorphism. Some VMS deposits contain hydrothermal magnetite, which is intergrown with sulfides, and shows a metamorphic overprint as it is partly replaced by common metamorphic minerals including chlorite, sericite, anthophyllite, and/or actinolite, whereas the majority of the deposits are characterized by metamorphic magnetite formed by replacing pre-existing sulfides and/or silicates, and is intergrown with metamorphic minerals. Among VMS deposits of the Noranda mining district, the West Ansil deposit is characterized by hydrothermal-metamorphic magnetite zoned by inclusion-free cores and Si- and Mg-rich rims. Magnetite from the studied VMS-associated BIFs is also metamorphic in origin. Aluminum, Ti and Zn contents of magnetite can separate BIF from the other mineralized and un-mineralized bedrock lithologies in the studied VMS settings.PLS-DA shows that variable compositions of magnetite slightly discriminate different studied deposits/bedrock lithologies. The geochemical observations suggest that the variation in magnetite chemistry from different VMS settings might be sourced from differences in: 1) the composition and temperature of parental magmas or hydrothermal fluids, 2) the composition of host bedrocks, 3) the composition of co-forming minerals, and 4) oxygen fugacity. PLS-DA distinguishes magnetite compositions from the studied VMS deposits and BIFs from that of the other ore deposit types including Ni–Cu, porphyry Cu-Mo-Au, iron oxide-copper- gold, iron oxide-apatite, and the Bayan Obo REE-Fe-Nb deposit. Magnetite from the VMS settings on average contains lower concentrations of Si, Zr, Al, Mg, Ti, Zn, Co and Ni relative to that from the other mineral deposit types. PLS-DA of magnetite data from VMS deposits and BIFs of the Bathurst mining camp as well as PLS-DA of magnetite compositions from various mineral deposit types yield discrimination models for application to mineral exploration for VMS deposits using indicator minerals in Quaternary lithified sedimentary rocks.  相似文献   

14.
Banded iron-formations (BIFs) form an important part of the Archaean to Proterozoic greenstone belts in the Southern Cameroon. In this study, major, trace and REE chemistry of the banded iron-formation are utilized to explore the source of metals and to constraint the origin and depositional environment of these BIFs. The studied BIF belongs to the oxide facies iron formations composed mainly of iron oxide (mainly magnetite) mesobands alternating with quartz mesobands. The mineralogy of the BIF sample consists of magnetite and quartz with lesser amount of secondary martite, goethite and trace of gibbsite and smectite. The major element chemistry of these iron-formations is remarkably simple with the main constituents being SiO2 and Fe2O3 which constitute 95.6–99.5% of the bulk rock. Low Al2O3, TiO2, and HFSE concentrations show that they are relatively detritus-free chemical sediments. The Pearson’s correlation matrix of major element reveals that there is a strong positive correlation (r = 0.99) of Al with Ti and no to weak negative correlation of Ti with Mn, Ca and weak positive correlation of Si with Ca, suggesting the null to very minor contribution of detrital material to chemical sediment. The trace elements with minor enrichments are transition metals such as Zn, Cr, Sr, V and Pb. This is an indicator of direct volcanogenic hydrothermal input in chemical precipitates. The studied BIF have a low ΣREE content, ranging between 0.41 and 3.22 ppm with an average of 0.87 ppm, similar to that of pure chemical sediments. The shale-normalized patterns show depletion in light REE, slightly enrichment in heavy REE and exhibit weak positive europium anomalies. These geochemical characteristics indicate that the source of Fe and Si was the result of deep ocean hydrothermal activity admixed with sea water. The absence of a large positive Eu anomaly in the studied BIF indicates an important role of low-temperature hydrothermal solutions. The chondrite-normalized REE patterns are characterized by LREE-enriched (Mean LaCN/YbCN = 8.01) and HREE depletion (Mean TbCN/YbCN = 1.61) patterns and show positive Ce anomalies. With the exception of one sample (LBR133), all of the BIF samples analyzed during this study have positive Ce anomalies on both chondrite- and PASS-normalized plots. This may indicate that the BIFs within the Elom area were formed within a redox stratified ocean. The positive Ce anomalies in the studied samples likely suggest that the basin in which Fe formations were deposited was reducing with respect to Ce, probably in the suboxic or anoxic seawaters.  相似文献   

15.
Abstract: The Mamut deposit of Sabah, East Malaysia, is a porphyry type Cu‐Au deposit genetically related to a quartz monzonite (“adamellite”) porphyry stock associated with upper Miocene Mount Kinabalu plutonism. The genesis of the Mamut deposit is discussed based on petrology of the intrusives in the Mount Kinabalu area combined with ore– and alteration–petrography, fluid inclusion and sulfur isotope studies. Groundmass of the adamellite porphyry at Mamut is rich in K which suggests vapor transport of alkaline elements during the mineralizing magmatic process, while the groundmass of the post‐ore “granodiorite” porphyry at Mamut contains small amounts of normative corundum suggesting depletion in alkaline elements at the root zone of the magma column. Sub‐dendritic tremolitic amphibole rims on hornblende phenocrysts in the Mamut adamellite porphyry suggest interaction between the mineralizing magma and the exsolved fluids. Occurrences of clinopyroxene microphenocrysts and pseudomor‐phic aggregates of shredded biotite and clinopyroxene after hornblende phenocrysts in the barren intrusives imply lower water fugacity and decreasing in water fugacity, respectively. Compositional gap between the core of hornblende phenocrysts and the tremolitic amphibole rims and those in the groundmass of the Mamut adamellite porphyry suggests a decrease in pressure. Higher XMg (=Mg/(Mg+Fe) atomic ratio) in the tremolitic amphibole rims in the Mamut adamellite porphyry compared to those of the barren intrusions suggests high oxygen fugacity. High halogen contents of igneous hydrous minerals such as amphiboles, biotite and apatite in the Mamut adamellite porphyry suggest the existence of highly saline fluids during the intrusion and solidification of the mineralizing magma. Fluid inclusions found in quartz veinlet stockworks are characterized by abundant hypersaline polyphase inclusions associated with subordinate amounts of immiscible gaseous vapor. Both Cu and Au are dispersed in disseminated and quartz stockwork ores. Chalcopyrite and pyrrhotite as well as magnetite are the principal ore minerals in the biotitized disseminated ores. Primary assemblage of intermediate solid solution (iss) and pyrrhotite converted to the present assemblage of chalcopyrite and pyrrhotite during cooling. Subsequent to biotitization, quartz veinlet stockworks formed associated with retrograde chlorite alteration. The Cu‐Fe sul–fides associated with stockwork quartz veinlet are chalcopyrite and pyrite. Overlapping Pb and Zn and subsequent Sb mineralizations were spatially controlled by NNE‐trending fractures accompanying the phyllic and advanced argillic alteration envelope. Sulfur isotopic composition of ore sulfides are homogeneous (about +2%) throughout the mineralization stages. These are identical to those of the magmatic sulfides of Mount Kinabalu adamellitic rocks.  相似文献   

16.
冯钟燕 《现代地质》1998,12(4):467-476
摘 要  太行山南段是我国著名的矽卡岩铁矿成矿区域。区内有很多岩体‚有的有矿‚有的 无矿。选择了一些有代表性的岩体‚进行系统的岩石学研究工作‚总结了有矿、无矿两类岩 体的判别标志‚并对一些现象产生的原因进行了初步讨论。  相似文献   

17.
Glaucophane-lawsonite facies blueschists representing a metamorphosed sequence of basic igneous rocks, cherts and shales have been investigated northeast of the district of Tav?anli in Northwest Turkey. Sodic amphiboles are rich in magnesium reflecting the generally high oxidation states of the blueschists. Lawsonite has a very uniform composition with up to 2.5 wt.% Fe2O3. Sodic pyroxenes show an extensive range of compositions with all the end-members represented. Chlorites are uniform in their Al/(Al+Fe+Mg) ratio but show variable Fe/ (Fe+Mg) ratios. Garnets from metacherts are rich in spessartine (>50%) whereas those from metabasites are largely almandine. Pistacite rich epidote is found in metacherts coexisting with lawsonite. Phengites are distinctly higher in their Fe, Mg and Si contents than those from greenschist facies. Hematites with low TiO2 are ubiquitous in metacherts. Fe2+/Mg partitioning between chlorite and sodic amphibole is strongly controlled by the calcium content of the sodic amphibole and ranges from 1.1 for low calcium substitution to 0.8 for higher calcium substitution. The Al/Fe3+ partition coefficient between sodic amphibole and sodic pyroxene is 2.1. A model system has been constructed involving projections from lawsonite, iron-oxide and quartz onto a tetrahedron with Na, Al, Fe2+ and Mg at its apices. Calcite is treated as an indifferent phase. The model system illustrates the incompatibility of the sodic pyroxene with chlorite in the glaucophanelawsonite facies; this assemblage is represented by sodic amphibole. Sodic amphibole compositions are plotted in terms of coexisting ferromagnesian minerals. Five major areas on the sodic amphibole compositional field are delineated, each associated with one of the following minerals: chlorite, stilpnomelane, talc, almandine, deerite.  相似文献   

18.
Laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) was used to determine the trace element concentrations of magnetite from the Heifengshan, Shuangfengshan, and Shaquanzi Fe(–Cu) deposits in the Eastern Tianshan Orogenic Belt. The magnetite from these deposits typically contains detectable Mg, Al, Ti, V, Cr, Mn, Co, Ni, Zn and Ga. The trace element contents in magnetite generally vary less than one order of magnitude. The subtle variations of trace element concentrations within a magnetite grain and between the magnetite grains in the same sample probably indicate local inhomogeneity of ore–forming fluids. The variations of Co in magnetite between samples are probably due to the mineral proportion of magnetite and pyrite. Factor analysis has discriminated three types of magnetite: Ni–Mn–V–Ti(Factor 1), Mg–Al–Zn(Factor 2), and Ga– Co(Factor 3) magnetite. Magnetite from the Heifengshan and Shuangfengshan Fe deposits has similar normalized trace element spider patterns and cannot be discriminated according to these factors. However, magnetite from the Shaquanzi Fe–Cu deposit has affinity to Factor 2 with lower Mg and Al but higher Zn concentrations, indicating that the ore–forming fluids responsible for the Fe–Cu deposit are different from those for Fe deposits. Chemical composition of magnetite indicates that magnetite from these Fe(–Cu) deposits was formed by hydrothermal processes rather than magmatic differentiation. The formation of these Fe(–Cu) deposits may be related to felsic magmatism.  相似文献   

19.
Strain localization within shear zones may partially erase the rock fabric and the metamorphic assemblage(s) that had developed before the mylonitic event. In poly‐deformed basements, the loss of information on pre‐kinematic phases of mylonites hinders large‐scale correlations based on tectono‐metamorphic data. In this study, devoted to a relict unit of Variscan basement reworked within the nappe stack of the Northern Apennines (Italy), we investigate the possibility to reconstruct a complete pressure (P)temperature (T)–deformation (D) path of mylonitic micaschist and amphibolite by integrating microstructural analysis, mineral chemistry and thermodynamic modelling. The micaschist is characterized by a mylonitic fabric with fine‐grained K‐white mica and chlorite enveloping mica‐fishes, quartz, and garnet pseudomorphs. Potassic white mica shows Mg‐rich cores and Mg‐poor rims. The amphibolite contains green amphibole+plagioclase+garnet+quartz+ilmenite defining S1 with a superposed mylonitic fabric localized in decimetre‐ to centimetre‐scale shear zones. Garnet is surrounded by an amphibole+plagioclase corona. Phase diagram calculations provide P–T constraints that are linked to the reconstructed metamorphic‐deformational stages. For the first time an early high‐P stage at >11 kbar and 510°C was constrained, followed by a temperature peak at 550–590°C and 9–10 kbar and a retrograde stage (<475°C, <7 kbar), during which ductile shear zones developed. The inferred clockwise P–T–D path was most likely related to crustal thickening by continent‐continent collision during the Variscan orogeny. A comparison of this P–T–D path with those of other Variscan basement occurrences in the Northern Apennines revealed significant differences. Conversely, a correlation between the tectono‐metamorphic evolution of the Variscan basement at Cerreto pass, NE Sardinia and Ligurian Alps was established.  相似文献   

20.
Eclogites from the Onodani area in the Sambagawa metamorphic belt of central Shikoku occur as layers or lenticular bodies within basic schists. These eclogites experienced three different metamorphic episodes during multiple burial and exhumation cycles. The early prograde stage of the first metamorphic event is recorded by relict eclogite facies inclusions within garnet cores (XSps 0.80–0.24, XAlm 0–0.47). These inclusions consist of relatively almandine‐rich garnet (XSps 0.13–0.24, XAlm 0.36–0.45), aegirine‐augite/omphacite (XJd 0.08–0.28), epidote, amphiboles (e.g. actinolite, winchite, barroisite and taramite), albite, phengite, chlorite, calcite, titanite, hematite and quartz. The garnet cores also contain polyphase inclusions consisting of almandine‐rich garnet, omphacite (XJd 0.27–0.28), amphiboles (e.g. actinolite, winchite, barroisite, taramite and katophorite) and phengite. The peak P–T conditions of the first eclogite facies metamorphism are estimated to be 530–590 °C and 19–21 kbar succeeded by retrogression into greenschist facies. The second prograde metamorphism began at greenschist facies conditions. The peak metamorphic conditions are defined by schistosity‐forming omphacites (XJd ≤ 49) and garnet rims containing inclusions of barroisitic amphibole, phengite, rutile and quartz. The estimated peak metamorphic conditions are 630–680 °C and 20–22 kbar followed by a clockwise retrograde P–T path with nearly isothermal decompression to 8–12 kbar. In veins cross‐cutting the eclogite schistosity, resorbed barroisite/Mg‐katophorite occurs as inclusions in glaucophane which is zoned to barroisite, suggesting a prograde metamorphism of the third metamorphic event. The peak P–T conditions of this metamorphic event are estimated to be 540–600 °C and 6.5–8 kbar. These metamorphic conditions are correlated with those of the surrounding non‐eclogitic Sambagawa schists. The Onodani eclogites were formed by subduction of an oceanic plate, and metamorphism occurred beneath an accretionary prism. These high‐P/T type metamorphic events took place in a very short time span between 100 and 90 Ma. Plate reconstructions indicate highly oblique subduction of the Izanagi plate beneath the Eurasian continent at a high spreading rate. This probably resulted in multiple burial and exhumation movements of eclogite bodies, causing plural metamorphic events. The eclogite body was juxtaposed with non‐eclogitic Sambagawa schists at glaucophane stability field conditions. The amalgamated metamorphic sequence including the Onodani eclogites were exhumed to shallow crustal/surface levels in early Eocene times (c. 50 Ma).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号