首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A microstructural and metamorphic study of a naturally deformed medium‐ to high‐pressure granitic orthogneiss (Orlica–?nie?nik dome, Bohemian Massif) provides evidence of behaviour of the felsic crust during progressive burial along a subduction‐type apparent thermal gradient (~10 °C km?1). The granitic orthogneisses develops three distinct microstructural types, as follows: type I – augen orthogneiss, type II – banded orthogneiss and type III – mylonitic orthogneiss, each representing an evolutionary stage of a progressively deformed granite. Type I orthogneiss is composed of partially recrystallized K‐feldspar porphyroclasts surrounded by wide fronts of myrmekite, fully recrystallized quartz aggregates and interconnected monomineralic layers of recrystallized plagioclase. Compositional layering in the type II orthogneiss is defined by plagioclase‐ and K‐feldspar‐rich layers, both of which show an increasing proportion of interstitial minerals, as well as the deformation of recrystallized myrmekite fronts. Type III orthogneiss shows relicts of quartz and K‐feldspar ribbons preserved in a fine‐grained polymineralic matrix. All three types have the same assemblage (quartz + plagioclase + K‐feldspar + muscovite + biotite + garnet + sphene ± ilmenite), but show systematic variations in the composition of muscovite and garnet from types I to III. This is consistent with the equilibration of the three types at different positions along a prograde P?T path ranging from <15 kbar and <700 °C (type I orthogneiss) to 19–20 kbar and >700 °C (types II and III orthogneisses). The deformation types thus do not represent evolutionary stages of a highly partitioned deformation at constant P?T conditions, but reflect progressive formation during the burial of the continental crust. The microstructures of the type I and type II orthogneisses result from the dislocation creep of quartz and K‐feldspar whereas a grain boundary sliding‐dominated diffusion creep regime is the characteristic of the type III orthogneiss. Strain weakening related to the transition from type I to type II microstructures was enhanced by the recrystallization of wide myrmekite fronts, and plagioclase and quartz, and further weakening and strain localization in type III orthogneiss occurred via grain boundary sliding‐enhanced diffusion creep. The potential role of incipient melting in strain localization is discussed.  相似文献   

2.
The Tres Arboles ductile fault zone in the Eastern Sierras Pampeanas, central Argentina, experienced multiple ductile deformation and faulting events that involved a variety of textural and reaction hardening and softening processes. Much of the fault zone is characterized by a (D2) ultramylonite, composed of fine‐grained biotite + plagioclase, that lacks a well‐defined preferred orientation. The D2 fabric consists of a strong network of intergrown and interlocking grains that show little textural evidence for dislocation or dissolution creep. These ultramylonites contain gneissic rock fragments and porphyroclasts of plagioclase, sillimanite and garnet inherited from the gneissic and migmatitic protolith (D1) of the hangingwall. The assemblage of garnet + sillimanite + biotite suggests that D1‐related fabrics developed under upper amphibolite facies conditions, and the persistence of biotite + garnet + sillimanite + plagioclase suggests that the ultramylonite of D2 developed under middle amphibolite facies conditions. Greenschist facies, mylonitic shear bands (D3) locally overprint D2 ultramylonites. Fine‐grained folia of muscovite + chlorite ± biotite truncate earlier biotite + plagioclase textures, and coarser‐grained muscovite partially replaces relic sillimanite grains. Anorthite content of shear band (D3) plagioclase is c. An30, distinct from D1 and D2 plagioclase (c. An35). The anorthite content of D3 plagioclase is consistent with a pervasive grain boundary fluid that facilitated partial replacement of plagioclase by muscovite. Biotite is partially replaced by muscovite and/or chlorite, particularly in areas of inferred high strain. Quartz precipitated in porphyroclast pressure shadows and ribbons that help define the mylonitic fabric. All D3 reactions require the introduction of H+ and/or H2O, indicating an open system, and typically result in a volume decrease. Syntectonic D3 muscovite + quartz + chlorite preferentially grew in an orientation favourable for strain localization, which produced a strong textural softening. Strain localization occurred only where reactions progressed with the infiltration of aqueous fluids, on a scale of hundreds of micrometre. Local fracturing and microseismicity may have induced reactivation of the fault zone and the initial introduction of fluids. However, the predominant greenschist facies deformation (D3) along discrete shear bands was primarily a consequence of the localization of replacement reactions in a partially open system.  相似文献   

3.
浙西南遂昌-大柘地区八都岩群在印支期变质事件影响下发生变质变形,通过详细野外调查和岩相学研究,可将其划分为3期变质变形序列:S1变形期,NW向片麻理记录的残留紧闭褶皱,共生矿物组合为石榴子石变斑晶及其内部定向分布的包裹体矿物,石榴子石+黑云母+石英(泥质)和石榴子石+角闪石+斜长石+石英(长英质);S2变形期,区域性宽缓褶皱及NE向缓倾透入性片麻理,共生矿物组合为石榴子石变斑晶及定向分布的基质矿物,矽线石+石榴子石+黑云母+石英+斜长石±钾长石(泥质)和石榴子石+钾长石+斜长石+黑云母+石英(长英质);S3变形期,NE向陡倾透入性片麻理及韧脆性断裂大部分被花岗斑岩脉填充,共生矿物组合为石榴子石变斑晶及其周围退变矿物,石榴子石+矽线石+堇青石+斜长石+黑云母+石英±钾长石(泥质)和角闪石+斜长石+黑云母+钛铁矿(长英质)。结合前人研究成果,八都岩群印支期变质事件峰期变质程度达到麻粒岩相,显示顺时针近等温降压(ITD)型的p-T演化轨迹,S1-S3变质变形反映出从俯冲碰撞到快速折返冷却的演化过程,伴随S3同期侵位的花岗斑岩锆石U-Pb定年结果,将该演化过程完成时间约束在229.7 Ma,可能是浙西南地区对印支期古特提斯洋域内印支-华南-华北板块之间俯冲-碰撞过程的响应。  相似文献   

4.
The Winding Stair Gap in the Central Blue Ridge province exposes granulite facies schists, gneisses, granofelses and migmatites characterized by the mineral assemblages: garnet–biotite–sillimanite–plagioclase–quartz, garnet–hornblende–biotite–plagioclase–quartz ± orthopyroxene ± clinopyroxene and orthopyroxene–biotite–quartz. Multiple textural populations of biotite, kyanite and sillimanite in pelitic schists support a polymetamorphic history characterized by an early clockwise P–T path in which dehydration melting of muscovite took place in the stability field of kyanite. Continued heating led to dehydration melting of biotite until peak conditions of 850 ± 30 °C, 9 ± 1 kbar were reached. After equilibrating at peak temperatures, the rocks underwent a stage of near isobaric cooling during which hydrous melt ± K‐feldspar were replaced by muscovite, and garnet by sillimanite + biotite + plagioclase. Most monazite crystals from a pelitic schist display patchy zoning for Th, Y and U, with some matrix crystals having as many as five compositional zones. A few monazite inclusions in garnet, as well as Y‐rich cores of some monazite matrix crystals, yield the oldest dates of c. 500 Ma, whereas a few homogeneous matrix monazites that grew in the main foliation plane yield dates of 370–330 Ma. Culling and analysis of individual spot dates for eight monazite grains yields three age populations of 509 ± 14 Ma, 438 ± 5 Ma and 360 ± 5 Ma. These data suggest that peak‐temperature metamorphism and partial melting in the central Blue Ridge occurred during the Salinic or Taconic orogeny. Following near isobaric cooling, a second weaker thermal pulse possibly related to intrusion of nearby igneous bodies resulted in growth of monazite c. 360 Ma, coinciding with the Neoacadian orogeny.  相似文献   

5.
南阿尔金吐拉地区所出露的变质泥质岩和变质基性岩普遍经历了中压麻粒岩相变质作用,其中变泥质岩以出现石榴子石+夕线石+长石+黑云母+石英为特征,而基性麻粒岩则以石榴子石+单斜辉石+紫苏辉石+斜长石+石英为特征,具有典型中压相系的麻粒岩相变质作用矿物组合,即显示"巴罗式"变质作用特征。野外宏观特征显示这套变泥质岩普遍经历了原地深熔作用,并局部发生混合岩化作用。岩相学观察结果显示泥质片麻岩保留了关键的深熔作用显微结构证据:(1)石榴子石内部发育有钾长石、石英和斜长石组成的矿物集合体,可能代表了早期熔体的假象;(2)黑云母颗粒边界发育尖锐的、不规则的微斜长石,而且黑云母边界溶蚀明显,形成锯齿状不规则的边界,指示深熔作用可能与黑云母的分解密切相关,即黑云母可能为深熔作用的主要反应相;(3)石英、斜长石或石榴子石颗粒边界发育圆珠状不规则的钾长石,而且颗粒边界或三联点中尖锐状钾长石与周围矿物的形成较小的二面角,有些甚至相互连通呈网络状,这也与它们继承了熔体结构特征一致;(4)不规则钾长石(或微斜长石)分布在石榴子石和夕线石附近,指示石榴子石和夕线石可能为深熔作用的残留相。锆石U-Pb定年结果显示麻粒岩相变质作用和相关深熔作用时代基本一致,主要发生在~450Ma。因此,吐拉地区的中压麻粒岩相变质作用和深熔作用明显要晚于南阿尔金地区榴辉岩和高压麻粒岩的峰期变质时代40~50Myr,而是与榴辉岩折返过程中麻粒岩相叠加变质作用的时代较为接近。但南阿尔金~450Ma的变质作用、深熔作用和岩浆作用是否为独立的构造热事件抑或深俯冲板片折返阶段的产物,这还需要今后进一步的工作验证。  相似文献   

6.
A petrological and thermobarometric study of the Lago Teleccio hornfelses was undertaken to reconstruct the polymetamorphic evolution and constrain the P–T conditions of Permian contact metamorphism. The Lago Teleccio metasedimentary rocks record a Variscan regional metamorphism characterized by amphibolite facies mineral assemblages including quartz, plagioclase, K‐feldspar (Kfs 1), biotite, garnet (Grt 1) and staurolite; this was followed by a late‐Variscan mylonitization event. Metamorphism of the Variscan metamorphic rocks at the contact with a Permian granitic intrusion produced static recrystallization and/or new growth of quartz, garnet (Grt 2), plagioclase, K‐feldspar (Kfs 2), cordierite, green spinel, biotite and prismatic sillimanite (Contact 1). This thermal event, which occurred at a peak pressure of 0.23–0.35 GPa, temperature of 670–700 °C and aH2O of 0.751, was followed either during post‐contact metamorphism cooling or, more likely, during the early‐Alpine metamorphism by the breakdown of cordierite into an anhydrous kyanite + orthopyroxene + quartz assemblage. The poorly developed early‐Alpine eclogite facies metamorphism (Alpine 1) was characterized by relatively anhydrous mineral associations and low strain, which locally produced coronitic and pseudomorphous microstructures in metasedimentary rocks, with scanty formation of jadeite, zoisite and a new high‐pressure garnet (Grt 3). Greenschist facies retrogression (Alpine 2) was characterized by the local development of a chlorite‐ and muscovite‐bearing mineral association, suggestive of aqueous fluid incursion. In the hornfelses, the limited extent of metamorphic overprinting is suggested by the fine grain size of the Alpine mineral associations, which formed at the expense of the Permian contact metamorphic associations, and was favoured by the anhydrous mineralogy of the hornfelses.  相似文献   

7.
冀磊  刘福来  王舫  田忠华 《岩石学报》2021,37(2):513-529
石榴夕线片麻岩是中、下地壳主要组成岩石之一,岩石内石榴石和夕线石的结晶学优选方位会显著影响地壳深部流变性质,因此探讨特征变质矿物的变形机制和主要受控因素对构造带深部演化过程有深远意义.本文选取红河-哀牢山韧性剪切带内石榴夕线片麻岩为研究对象,通过定向切片内显微构造、电子探针、X-ray成分扫描、电子背散射衍射(EBSD...  相似文献   

8.
Contact aureoles of the anorthositic to granitic plutons of the Mesoproterozoic Nain Plutonic Suite (NPS), Labrador, are particularly well developed in the Palaeoproterozoic granulite facies, metasedimentary, Tasiuyak gneiss. Granulite facies regional metamorphism (MR), c. 1860 Ma, led to biotite dehydration melting of the paragneiss and melt migration, leaving behind biotite‐poor, garnet–sillimanite‐bearing quartzofeldspathic rocks. Subsequently, Tasiuyak gneiss within a c. 1320 Ma contact aureole of the NPS was statically subjected to lower pressure, but higher temperature conditions (MC), leading to a second partial melting event, and the generation of complex mineral assemblages and microstructures, which were controlled to a large extent by the textures of the MR assemblage. This control is clearly seen in scanning electron microscopic images of thin sections and is further supported by phase equilibria modelling. Samples collected within the contact aureole near Anaktalik Brook, west of Nain, Labrador, mainly consist of spinel–cordierite and orthopyroxene–cordierite (or plagioclase) pseudomorphs after MR sillimanite and garnet, respectively, within a quartzofeldspathic matrix. In addition, some samples contain fine‐grained intergrowths of K‐feldspar–quartz–cordierite–orthopyroxene inferred to be pseudomorphs after osumulite. Microstructural evidence of the former melt includes (i) coarse‐grained K‐feldspar–quartz–cordierite–orthopyroxene domains that locally cut the rock fabric and are inferred to represent neosome; (ii) very fine‐ to medium‐grained cordierite–quartz intergrowths interpreted to have formed by a reaction involving dissolution of biotite and feldspar in melt; and (iii) fine‐scale interstitial pools or micro‐cracks filled by feldspar interpreted to have crystallized from melt. Ultrahigh temperature (UHT) conditions during contact metamorphism are supported by (i) solidus temperatures >900 °C estimated for all samples, coupled with extensive textural evidence for contact‐related partial melting; (ii) the inferred (former) presence of osumilite; and (iii) titanium‐in‐quartz thermometry indicating temperatures within error of 900 °C. The UHT environment in which these unusual textures and minerals were developed was likely a consequence of the superposition of more than one contact metamorphic event upon the already relatively anhydrous Tasiuyak gneiss.  相似文献   

9.
Large garnet poikiloblasts hosted by leucosome in metapelitic gneiss from Broken Hill reflect complex mineral–melt relationships. The spatial relationship between the leucosomes and the garnet poikiloblasts implies that the growth of garnet was strongly linked to the production of melt. The apparent difficulty of garnet to nucleate a large number of grains during the prograde breakdown of coexisting biotite and sillimanite led to the spatial focussing of melting reactions around the few garnet nuclei that formed. Continued reaction of biotite and sillimanite required diffusion of elements from where minerals were reacting to sites of garnet growth. This diffusion was driven by chemical potential gradients between garnet‐bearing and garnet‐absent parts of the rock. As a consequence, melt and peritectic K‐feldspar also preferentially formed around the garnet. The diffusion of elements led to the chemical partitioning of the rock within an overall context in which equilibrium may have been approached. Thus, the garnet‐bearing leucosomes record in situ melt formation around garnet porphyroblasts rather than centimetre‐scale physical melt migration and segregation. The near complete preservation of the high‐grade assemblages in the mesosome and leucosome is consistent with substantial melt loss. Interconnected networks between garnet‐rich leucosomes provide the most likely pathway for melt migration. Decimetre‐scale, coarse‐grained, garnet‐poor leucosomes may represent areas of melt flux through a large‐scale melt transfer network.  相似文献   

10.
Melt infiltration into quartzite took place due to generation and migration of partial melts within the high‐grade metamorphic rocks of the Big Cottonwood (BC) formation in the Little Cottonwood contact aureole (UT, USA). Melt was produced by muscovite and biotite dehydration melting reactions in the BC formation, which contains pelite and quartzite interlayered on a centimetre to decimetre scale. In the migmatite zone, melt extraction from the pelites resulted in restitic schollen surrounded by K‐feldspar‐enriched quartzite. Melt accumulation occurred in extensional or transpressional domains such as boudin necks, veins and ductile shear zones, during intrusion‐related deformation in the contact aureole. The transition between the quartzofeldspathic segregations and quartzite shows a gradual change in texture. Here, thin K‐feldspar rims surround single, round quartz grains. The textures are interpreted as melt infiltration texture. Pervasive melt infiltration into the quartzite induced widening of the quartz–quartz grain boundaries, and led to progressive isolation of quartz grains. First as clusters of grains, and with increasing infiltration as single quartz grains in the K‐feldspar‐rich matrix of the melt segregation. A 3D–μCT reconstruction showed that melt formed an interconnected network in the quartzites. Despite abundant macroscopic evidence for deformation in the migmatite zone, individual quartz grains found in quartzofeldspathic segregations have a rounded crystal shape and lack quartz crystallographic orientation, as documented with electron backscatter diffraction (EBSD). Water‐rich melts, similar to pegmatitic melts documented in this field study, were able to infiltrate the quartz network and disaggregate grain coherency of the quartzites. The proposed mechanism can serve as a model to explain abundant xenocrysts found in magmatic systems.  相似文献   

11.
The investigated area around Sarvapuram represents a part of the Karimnagar granulite terrane of the Eastern Dharwar Craton, India. Garnet–bearing gneiss is hosted as enclaves, pods within granite gneiss and charnockite. It is largely made up of garnet, orthopyroxene, cordierite, biotite, plagioclase, K–feldspar, sillimanite and quartz. The peak metamorphic stage is represented by the equilibrium mineral assemblage i.e. garnet, orthopyroxene, cordierite, biotite, plagioclase, sillimanite and quartz. Breakdown of the garnet as well as preservation of the orthopyroxene–cordierite symplectite, formation of cordierite with the consumption of the garnet + sillimanite + quartz represents the decompressional event. The thermobarometric calculations suggest a retrograde P–T path with a substantial decompression of c. 3.0 kbar. The water activity(XH2 O) conditions obtained with the win TWQ program for core and symplectite compositions from garnet–bearing gneiss are 0.07–0.14 and 0.11–0.16 respectively. The quantitative estimation of oxygen fugacity in garnet–bearing gneiss reveal log f O2 values ranging from-11.38 to-14.05. This high oxidation state could be one of the reasons that account for the absence of graphite in these rocks.  相似文献   

12.
Garnet–clinopyroxene intermediate granulites occur as thin layers within garnet–kyanite–K–feldspar felsic granulites of the St. Leonhard granulite body in the Bohemian Massif. They consist of several domains. One domain consists of coarser‐grained coexisting ternary feldspar, clinopyroxene, garnet, quartz and accessory rutile and zircon. The garnet has 16–20% grossular, and the clinopyroxene has 9% jadeite and contains orthopyroxene exsolution lamellae. Reintegrated ternary feldspar and the Zr‐in‐rutile thermometer give temperatures higher than 950 °C. Mineral equilibria modelling suggests crystallization at 14 kbar. The occurrence and preservation of this mineral assemblage is consistent with crystallization from hot dry melt. Between these domains is a finer‐grained deformed matrix made up of diopsidic clinopyroxene, orthopyroxene, plagioclase and K‐feldspar, apparently produced by reworking of the coarser‐grained domains. Embedded in this matrix, and pre‐dating the reworking deformation, are garnet porphyroblasts that contain clinopyroxene, feldspar, quartz, rutile and zircon inclusions. In contrast with the garnet in the coarser‐grained domains, the garnet generally has >30% grossular, the included clinopyroxene has 7–27% jadeite and the Zr content of rutile indicates much lower temperatures. Some of these high‐grossular garnet show zoning in Fe/(Fe + Mg), decreasing from 0.7 in the core to 0.6 and then increasing to 0.7 at the rim. These garnet are enigmatic, but with reference to appropriate pseudosections are consistent with localized new mineral growth from 650 to 850 °C and 10 to 17 kbar, or with equilibration at 20 kbar and 770 °C, modified by two‐stage diffusional re‐equilibration of rims, at 10–15 and 8 kbar. The strong pervasive deformation has obscured relationships that might have aided the interpretation of the origin of these porphyroblasts. The evolution of these rocks is consistent with formation by igneous crystallization and subsequent metamorphism to high‐T and high‐P, rather than an origin by ultrahigh‐T metamorphism. Regarding the petrographic complexity, combination of the high grossular garnet with the ternary feldspar to infer ultrahigh‐T metamorphism at high pressure is not justified.  相似文献   

13.
对沙沟糜棱岩带的78个样品进行了显微构造与组构分析。石英以动态重结晶Ⅱ型条带为主,其C-轴组构型式为极密Ⅰ型,同时可见Ⅲ型石英条带残存。长石均显脆性碎裂变形,仅钾长石略具韧性变形。糜棱岩面理普遍绕过石榴石斑晶分布。存在多次后期脆性变形构造。这些显微构造与组构特征表明,该带糜棱岩化阶段处于中─高绿片岩相条件、并大致发生在晚白垩世以后。糜棱岩化阶段之前该带可能存在一个角闪岩相左行韧性剪切变形阶段。糜棱岩化阶段之后,该带直接进入脆性变形阶段。据此,笔者对前人有关沙沟糜棱岩带(p)-T-t演化路径提出修正意见。  相似文献   

14.
The Motuo area is located in the east of the Eastern Himalayan Syntaxis. There outcrops a sequence of high-grade metamorphic rocks, such as metapelites. Petrology and mineralogy data suggest that these rocks have experienced three stages of metamorphism. The prograde metamorphic mineral assemblages(M1) are mineral inclusions(biotite + plagioclase + quartz ± sillimanite ± Fe-Ti oxides) preserved in garnet porphyroblasts, and the peak metamorphic assemblages(M2) are represented by garnet with the lowest XSps values and the lowest XFe# ratios and the matrix minerals(plagioclase + quartz ± Kfeldspar + biotite + muscovite + kyanite ± sillimanite), whereas the retrograde assemblages(M3) are composed of biotite + plagioclase + quartz symplectites rimming the garnet porphyroblasts. Thermobarometric computation shows that the metamorphic conditions are 562–714°C at 7.3–7.4 kbar for the M1 stage, 661–800°C at 9.4–11.6 kbar for the M2 stage, and 579–713°C at 5.5–6.6 kbar for the M3 stage. These rocks are deciphered to have undergone metamorphism characterized by clockwise P-T paths involving nearly isothermal decompression(ITD) segments, which is inferred to be related to the collision of the India and Eurasia plates.  相似文献   

15.
The behaviour of quartz during metamorphism is studied based on two case studies from the Barrovian terrains of Sulitjelma in arctic Scandinavia and Loch Tay in the Central Highlands Dalradian of Scotland. Both terrains preserve evidence for metamorphism in pelites involving nucleation and growth of garnet at different times in the deformation history. Data are presented on the size, shape and crystallographic orientation of quartz preserved as inclusions in garnet and as grains in the surrounding matrix. While quartz-grains remain small and dispersed between mica grains, deformation appears to be dominated by grain-boundary sliding accommodated by dissolution–precipitation. At amphibolite facies, textural coarsening occurs by dissolution of small quartz grains and growth of larger quartz grains, coupled with segregation of quartz from mica. As a result, quartz deforms by dislocation creep, developing crystallographic preferred orientations (CPO) consistent with both coaxial and non-coaxial strain. Quartz CPOs with <0001> axes lying parallel to foliation and stretching direction are commonly developed, and best explained by mechanical rotation of inequant (detrital?) quartz grains. There is no evidence for selective entrapment of quartz inclusions in garnet on the basis of quartz crystallographic orientation.  相似文献   

16.
An analysis is presented of equilibrium in six specimens ofgarnet—biotite—sillimanite—plagioclase—potashfeldspar—quartz ... gneiss from a metamorphic terrainin south-western Quebec. A nearly uniform Ti content of biotite may be accounted forby an equilibrium (a) involving biotite, sillimanite, quartz,garnet, potash feldspar, and H2O. The nature of the distributionof Fe and Mg between garnet and biotite may be accounted forby another equilibrium (b) involving the same mineral suite,or by a simple exchange equilibrium (c) involving only garnetand biotite. The distribution of Mn between garnet and biotiteis accounted for by an exchange equilibrium (d). A nearly uniformvalue of the ratio Ca content of plagioclase/Ca content of garnetmay be accounted for by an equilibrium (e) involving plagioclase,garnet, sillimanite, and quartz. A proposed equilibrium (f)involving biotite, quartz, ilmenite, potash feldspar, sillimanite,and H2O conflicts with equilibrium (a) and was evidently notestablished in the gneisses. The factors governing the Ca contentof biotite remain largely unknown. Some of these equilibria form potential indicators of relativegeologic temperature, pressure, and chemical potential of H2O.  相似文献   

17.
The Ross of Mull pluton consists of granites and granodioritesand intrudes sediments previously metamorphosed at amphibolitefacies. The high grade and coarse grain size of the protolithis responsible for a high degree of disequilibrium in many partsof the aureole and for some unusual textures. A band of metapelitecontained coarse garnet, biotite and kyanite prior to intrusion,and developed a sequence of textures towards the pluton. InZone I, garnet is rimmed by cordierite and new biotite. In ZoneII, coarse kyanite grains are partly replaced by andalusite,indicating incomplete reaction. Coronas of cordierite + muscovitearound kyanite are due to reaction with biotite. In the higher-gradeparts of this zone there is complete replacement of kyaniteand/or andalusite by muscovite and cordierite. Cordierite chemistryindicates that in Zone II the stable AFM assemblage (not attained)would have been cordierite + biotite + muscovite, without andalusite.The observed andalusite is therefore metastable. Garnet is unstablein Zone II, with regional garnets breaking down to cordierite,new biotite and plagioclase. In Zone III this breakdown is welladvanced, and this zone marks the appearance of fibrolite andK-feldspar in the groundmass as a result of muscovite breakdown.Zone IV shows garnet with cordierite, biotite, sillimanite,K-feldspar and quartz. Some garnets are armoured by cordieriteand are inferred to be relics. Others are euhedral with Mn-richcores. For these, the reaction biotite + sillimanite + quartz garnet + cordierite + K-feldspar + melt is inferred. Usinga petrogenetic grid based on the work of Pattison and Harte,pressure is estimated at 3·2 kbar, and temperature atthe Zone II–III boundary at 650°C and in Zone IV asat least 750°C. KEY WORDS: contact metamorphism; disequilibrium  相似文献   

18.
A metamorphic field gradient has been investigated in the Moldanubian zone of the central European Variscides encompassing, from base to the top, a staurolite–kyanite zone, a muscovite–sillimanite zone, a K‐feldspar–sillimanite zone, and a K‐feldspar–cordierite zone, respectively. The observed reaction textures in the anatectic metapsammopelites of the higher grade zones are fully compatible with experimental data and petrogenetic grids that are based on fluid‐absent melting reactions. From structural and microstructural observations it can be concluded that the boundary between the kyanite–staurolite zone and the muscovite‐ and K‐feldspar–sillimanite zones coincides with an important switch in deformation mechanism(s). Besides minor syn‐anatectic shearing (melt‐enhanced deformation), microstructural criteria point (a) to a switch in deformation mechanism from rotation recrystallization (climb‐accommodated dislocation creep) to prism slip and high‐temperature (fast) grain boundary migration in quartz (b) to the activity of diffusion creep in quartz–feldspar layers, and (c) to accommodation of strain by intense shearing in fibrolite–biotite layers. It is suggested that any combination of these deformation mechanisms will profoundly affect the rheological characteristics of high‐grade metamorphic rocks and significantly lower rock strength. Hence, the boundary between these zones marks a major rheological barrier in the investigated cross section and probably also in other low‐ to medium‐pressure/high‐temperature areas. At still higher metamorphic grades (K‐feldspar‐cordierite zone), where the rheologically critical melt percentage is reached, rock rheology is mainly governed by the melt and other deformation mechanisms are of minor importance. In the study area, the switch in deformation mechanism(s) is responsible for large‐scale strain partitioning and concentration of deformation within the higher‐temperature hanging wall during top‐to‐the‐S thrusting, thus preserving a more complete petrostructural record within the rocks of the footwall including indications for a ?Devonian high‐ to medium‐pressure/medium‐temperature metamorphic event. Thrusting is accompanied by diapiric ascent of diatexites of the K‐feldspar‐cordierite zone and infolding of the footwall, suggesting local crustal overturn in this part of the Moldanubian zone.  相似文献   

19.
Abstract Sapphirine-bearing rocks occur in three conformable, metre-size lenses in intrusive quartzo-feldspathic orthogneisses in the Curaçà valley of the Archaean Caraiba complex of Brazil. In the lenses there are six different sapphirine-bearing rock types, which have the following phases (each containing phlogopite in addition): A: Sapphirine, orthopyroxene; B: Sapphirine, cordierite, orthopyroxene, spinel; C: Sapphirine, cordierite; D: Sapphirine, cordierite, orthopyroxene, quartz; E: Sapphirine, cordierite, orthopyroxene, sillimanite, quartz; F: Sapphirine, cordierite, K-feldspar, quartz. Neither sapphirine and quartz nor orthopyroxene and sillimanite have been found in contact, however. During mylonitization, introduction of silica into the three quartz-free rocks (which represent relict protolith material) gave rise to the three cordierite and quartz-bearing rocks. Stable parageneses in the more magnesian rocks were sapphirine–orthopyroxene and sapphirine–cordierite. In more iron-rich rocks, sapphirine–cordierite, sapphirine-cordierite–sillimanite, cordierite–sillimanite, sapphirine–cordierite–spinel–magnetite and quartz–cordierite–orthopyroxene were stable. The iron oxide content in sapphirine of the six rocks increases from an average of 2.0 to 10.5 wt % (total Fe as FeO) in the order: C,F–A,D–B,E. With increase in Fe there is an increase in recalculated Fe2O3 in sapphirine. The four rock types associated with the sapphirine-bearing lenses are: I: Orthopyroxene, cordierite, biotite, quartz, feldspar tonalitic to grandioritic gneiss; II: Biotite, quartz, feldspar gneiss; III: Orthopyroxene, clinopyroxene, hornblende, plagioclase meta-norite; IV: Biotite, orthopyroxene, quartz, feldspar, garnet, cordierite, sillimanite granulite gneiss. The stable parageneses in type IV are orthopyroxene–cordierite–quartz, garnet–sillimanite–quartz and garnet–cordierite–sillimanite. Geothermobarometry suggests that the associated host rocks equilibrated at 720–750°C and 5.5–6.5 kbar. Petrogenetic grids for the FMASH and FMAFSH (FeO–MgO–Al2O3–Fe2O3–SiO2–H2O) model systems indicate that sapphirine-bearing assemblages without garnet were stabilized by a high Fe3+ content and a high XMg= (Mg/ (Mg+Fe2+)) under these P–T conditions.  相似文献   

20.
In high-grade (granulite facies) quartzofeldspathic rocks the progressive development of a fabric records contrasting deformation behaviour of quartz and feldspar. Feldspar has undergone deformation mainly by recrystallization-accommodated dislocation creep and produced smaller recrystallized grains progressively in the course of deformation. Quartz has not deformed solely by dislocation creep but also by a diffusion-controlled mechanism. Dislocation climb is important in the dislocation creep of quartz. In contrast to feldspar, quartz grains have not recrystallized into smaller grains at any stage of deformation. Rather, they have transformed initially to short monocrystalline ribbons and ultimately to long polycrystalline ribbons. This textural change of quartz is a continuous process and has taken place in the course of bulk textural change of the rocks during the deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号